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A 2-D Analysis of the Stability of Boundary Layer Flow on Single

and Multilayer Compliant Coatings

A. Postelnicu, M. Lupu, I. Pop

The paper deals with a theoretical study of the stability of a laminar boundary layer flow on single or

multilayer compliant coatings, where the main flow is the classical Blasius boundary layer flow. Using linear

stability analysis, the disturbance modes in the boundary layer flow are governed by the Orr—Sommerfeld

equation which is integrated numerically employing a method based on a Riccati matrix. The dynamics of the

compliant coating, composed of one or more viscoelastic sublayers, is analyzed using an original formalism,

the central result being a recurrent relation for the displacements of successive sublayers. After the

implementation of the matching conditions between the perturbations in the fluid flow and in the compliant

coating, the model is tested successfully with known results from the open literature.

1 Introduction

Studies concerning the interaction between boundary layer flows and compliant coatings have their origin in

the experimental work of Kramer (1957, 1959) and are based on his observation of a dolphin swimming in

water. In these papers, Kramer obtained substantial drag reduction for towed underwater bodies covered with

compliant coatings, which simulated the dolphin skin. The early papers by Benjamin (1959, 1963), Landahl

(1962) and Kaplan (1964) tried to elucidate the physical mechanisms of the favourable effects of the

compliance on the transition delay. Then a number of theoretical and experimental studies extended the

knowledge of this phenomenon. However, subsequent work showed that none of the experimental tests

considered to simulate the coatings proposed by Kramer (1957, 1959) were satisfactory (see Riley et al., 1988).

The research is rapidly continuing in the direction of more sophisticated numerical formulation and of more

careful and competent experimental work. Several papers showing the state—of—the—art on this subject have been

published in the last years by Gad-el-Hak (1986), Riley et al. (1988) and Carpenter (1990, 1994).

In the present context, we are interested here only in the 2-D analysis of the stability of a laminar, viscous and

incompressible boundary layer flow on single and multilayer compliant coatings. The first paper attempting to

treat this topic is due to Duncan et al. (1985), where the compliant coating was modelled as a single isotropic

layer of finite thickness bounded by a rigid half-space. For the flow region these authors have considered a

model based on the potential flow theory modified to account for the characteristics found in the previous

studies of boundary layer flow over wavy walls. This kind of analysis was refined by Yeo (1988), Carpenter et

al. (1990) and Dixon et al. (1994). Using a normal mode analysis, under the assumption of local parallelism of

the flow in the boundary layer and a dimension of the coupled solid-flow system much greater than the length

of the perturbations developed in the boundary layer, Carpenter et al. ( 1990) and Dixon et al. (1994) were able

to analyze and optimize such a configuration, in the sense of delaying the transition from laminar to turbulent

flow. These studies have used linear theory of hydrodynamic stability flow. The Orr-Sommerfeld equation is

integrated numerically following a compound-matrices technique as was used by Yeo (1988), or the

Chebyshev-Tau method (based on Chebyshev polynomials) presented in Dixon et al. (1994). Thus, the

Tollmien—Schlichting instabilities (TSI) have been determined. The dynamic instability in the compliant

coating of travelling wave flutter (TWF) and divergence type instabilities were also predicted by different

methods.

In this paper, we present some new results concerning the problem of linear stability of a 2-D boundary layer

flow on single or multiple compliant coatings. Like in other studies mentioned above, the basic flow is the

Blasius boundary layer on a semi-infinite flat plate. In section 2, the basic equations are given and an analysis

for a single compliant wall model is presented. The method used is a displacement-stress one, being similar to

other techniques found in the literature (see Duncan, 1985; Yeo, 1988). Then, a rigidity matrix is introduced

for a Viscoelastic solid (or liquid Viscous) sublayer and the matching conditions between the sublayers are

established. In this way, the analysis is directed to a recurrent relation between the displacements of successive

sublayers. The flow analysis is presented in section 3, while the interface conditions between the coating wall

and the boundary layer flow are established in section 4. In section 5 a technique based on a Riccati matrix is

proposed for the numerical integration of the Orr-Sommerfeld equation, with the appropriate boundary
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conditions. The present model is tested in sections 6 and 7 using a single compliant coating wall as in Yeo

(1988). Concluding remarks follow in section 8. Because one of the major aims of the present paper is the use

of an alternative scheme for the integration of the Orr—Sommerfeld equation, the attention is focussed only on

instabilities of Tollmien—Schlichting type. The actual model has been adapted to incorporate the asymptotic

method, introduced by Carpenter and Gajjar (1990), for the prediction of travelling wave flutter and divergence

instabilities; more details on this subject are given by Postelnicu (1996).

2 The Compliant Wall Analysis

The geometry of the problem is illustrated in Figure l, where E and Z are Cartesian coordinates, with the J? —

axis measured along the rigid base and the 2—, —axis normal to it, h is the height of the solid material and Um is

the free stream velocity. The compliant walls are composed of m isotropic viscoelastic layers, some of which

may be viscous liquid sublayers. The solid and the fluid regions are considered to be theoretically unlimited in

the E —direction and practically they correspond to a length along the E —axis much greater than the wave length

of perturbation 21t/ (x , where (X is the wave number of the perturbation developed in the boundary layer flow.

2.1 Governing Equation for the Solid Region

For a material, which obeys the model of an ideal viscoelastic solid, the equation which governs the

displacement n can be written in non-dimensional form as

— = ciAn + (ci—c%)grad(div n) (1)

where the non-dimensional variables are defined as t = Uoj/L, (x,z) = (Tea/L, 11 = fi/5*and

(CL,CT) = (EL,EL)/Uw. Here f is the time, A is the Laplacian operator, EL and ET are the longitudinal

(bulk) and transversal (shear) wave speeds respectively, L is a characteristic length of the rigid base, U „o is the

velocity of the free stream flow and 5* is the displacement thickness of the boundary layer flow. In this paper,

we shall use the following expressions for the wave speeds:

_ Q _ f__E___ _ 1——*_ {1—H

CT '_ _ CL _ _ JECT

where X , G and p6 are the Lame constant, shear modulus and density of the solid material respectively, E is

the elastic modulus and p is the Poisson ratio of the material; these expressions can be found in Dixon et al.

(1994). The quantities E, G, land p, are nondimensionalized as G‚Ä):(E‚Ö‚7—„)/(p’_fui) ‚

and px = Ex MS]. where of is the fluid density.
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Figure 1 Coordinate System and Physical Model
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The effect of the wall elasticity is introduced in a manner similar to that of Carpenter et al. (1990) and Dixon et

al. (1994), namely E = E’+iE” = E’(1——iys), where E’ is the conventional elasticity modulus, vs is a

non-dimensional damping coefficient and i = \/——1 . The expression for CT used by Yeo (1988) is slightly

different than that of equation (2). He used for G the relation G = psCtZ — iwd , where C, is the wave speed for

the viscoelastic material, d is a damping coefficient, and a) = c / 0c is the circular frequency with c being the

wave speed; Cd, D, vs and a) are nondimensional quantities. However, there is an equivalence between his

formulation and the present one. Thus if we express G as G = pth2 —ic0d = G'(l—iys), with

G’ = E’ / [2(1 + M] and 7S = 03d / (pSCE) , then there results the expression (10) given in Dixon et al. (1994).

A similar case can be made for CL , as well.

2.2 Displacements and Shear Stresses in the Solid Material

We notice that for the case in which we are interested here, there exists a plane state of displacement of the

form n = {n1,0,n3}T. Thus, the Stokes—Helmholtz decomposition n = V¢+wa, with W = {0,w,O}T

  

gives

86p 8w a¢ aw

lli ax az 113 az ax ( )

where q) and w satisfy the wave equations

a az_<o L939 aims; _ L azw (4)
8x2 822 cg t2 3x2 azz C2 Erz

Considering the waves which propagate in the x—direction, we look for a solution of equations (4) of the form

¢ = i(z)e"(‘““”’) v = w(z)e"<‘”“°‘> <5)

Then, equations (4) become

£1211;

dz2

 

— bit! = 0 <6)

2_2 2 2 2_2 2 2
wherebL—OL—co/CLande—Ot—0)/CT.

The solutions of equations (6) are

(i): AlebLZ + Aze’bLZ q; = A35?!“ + ice—biz (7)

where A], A2, A3, A4 are complex constants. If we now substitute equations (5) and (7) into equations (3), the

displacements (n1, 113) can be expressed as

Komm») A i((x.x—(.ut) (8)

Th = fi1e 113 = “3"

where

A _ ~ bLz v —bLz sz ~bTZ

n1 — tote A1 +10te A2 —bTe A3 +bTe A4

(9)

$13 : bLebLZAl — bLe_bLZA2 + März/43 + mam/44
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For the problem of a 2-D configuration, the stresses can be written in non-dimensional form as

To) = we; m + 3'13 6;» = ‚p cgfl + (cg _2c;)m (10>
dz ax

where r = 8*/L = Refit/ReL and p 2 p5 /pf. Here Rest and ReL are Reynolds numbers defined as

Res, 2 Uw8*/vf and ReL = UwL/vf with vf being the kinematic viscosity of the fluid. Further,

introducing equations (8) and (9) into equations (10), we obtain

XZe“) = rpc%(fi{ mm) 6:“ = rpc%[c,% fi; + (Ci -2)iafi1] <11)

where CR 2 CL / CT . We now substitute equations (9) into equations (1 1) so that, after some algebra, one gets

 

*(S)

ä = ZiochebLzAl — zitxbLe‘bLzA2 —(b% + a2) WA, —(b% + a2)e"’TZA4

T

(12)

A (s)

:62 = (19% + a2) (gm/410;; + a2) e_"’l~“A2 + 2iabTeb‘rzA3 — 2i0the_szA4

T

2.3 The Introduction of a Rigidity Matrix for a Solid Layer

At a given station z, we have

A A T A A A Y T

{111,113} : DA {12?}, 02)} :EA (13)

where the matrices D and E will be specified later and A = {A1, A2,A3,A4}T. For a jth sublayer,

Z145 z S zj,we introduce

A ‘ A A A A ‘T Ast) A.\' As As As
111(1) = {n1+‚n3+‚nl_‚n3_}(’) o( ) I = {1:}, oi}, T( Ä, 62.)} (14)

)CZ

where plus and minus signs refer to the evaluation at the upperside and at the lower—side of the jth sublayer.

Using equations (13), we can write

W= {$1th = um“) T39) = mm?” = DE!) AU)

(15)

6(09) ={%E;)‚ 69)?” = Ei“ AU) 6(99) ={%Sg?‚ (swim = Ei“ AM

or

flu): Do) Am 6(3)“): Eg) Am (16)

I (1') I EU) 4

(J) _ + (1)- + - ' - (.1) - -
where D — and E — _ .Now,e11m1nat1ng A between the relations (16), we finally

D9)
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get

A

W) = Kmn (17)6“

. . 4 —l

where Km = EU) D0) can be called the matrix of rigidity for the jth layer. A useful form of equations (17)

is also

6mg) = Kg) fig) + Kg) fig) 6mg!) = Kg) {191+ Kg) fig) (18)

where the rigidity matrix K, which is 4x4, has been compartmentalized into two 2x2 matrices

(j) (j)

= KI. (19)

Kg) Kg)

Also, the structure of the matrices D and E for thejth layer are

[ocebe1 z'0t(a_]7LZ"’l — bTehTZH bTe_bTZH

Dm _ bLebsz’l — laLeibsz‘1 iocebi’izj’l iOLewaZJ'1

— iotebLZ’ £0664)sz —bTebTZ/ bTe‘szJ

bLebLZj — [he—b“! iotebfl] ioce—bTZ’

(20)

ZiOCbLebLZF1 — 21")‘Z’L‘3_bLZj_1 ‘ (b; +a2 VW" ‘ (b? + a2 )€_bTZi—1

Em 2 (b; + (b; + a2 Mayra—1 _Mme-W
= r c

p T ZiochebLZ’ — ZiabLe’bLz’ — (b% + 012 )esz1 — (bä + 012 )6]?sz

(b; + My“ (22% + a2 )e—hsz ZiochebTZ’ — zioche'bTZ!

It is worth mentioning that the notion of a matrix of rigidity for a solid layer was introduced previously by

Evrensel and Kalnins (1985, 1988), but with a different meaning and only for the case of a single layer. On the

other hand, one can easily prove that the relations (8) and (12) can be reduced to relations (2.12a) and (2.12b)

from the paper by Yeo (1988).

2.4 The Matching Conditions

The matching conditions to be imposed adjacent to the two Viscoelastic sublayers are the kinematic conditions

f1“) = 1‘19“) (21)

and the dynamic conditions

(3mg) Z wg“)

Q
>

(22)

At the interface between the solid layer and the rigid base, we have m30“) = 0 and TXZ_(m) = 0 (see Kaplan,

1964) if displacement at the rigid base is permitted and

113'”) = O or fill") = 0 (23)

if no displacement at the rigid base is permitted. This last condition is encountered in all the modern studies

(Duncan et al., 1985; Yeo, 1988; Dixon et al., 1994) and therefore, we shall use it here. Relation (22) can also

be written as
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= Kgf+1)figj+l)+ Kg“) ‘9“) (24)

if equations (17) and (22) are used. We also get, after some manipulation, the final relation

€19“) = AU) «39) + BMW (25)

where

—1

A0) = KH(-’+1)’1(KIV(-’) — K1(j+l)) and BU) z K110“) Km“) (26)

We notice that equation (25) is a recurrent relation of 3 levels, which requires the knowledge of two starting

terms, f] (1) and fi_(2) , where the first term can be related through equation (24) to the displacement of the

coating at the interface with the boundary layer flow and the second term can be easily calculated, writing

equations (17) and (19) for the first and the second sublayers and imposing the kinematic and dynamic

matching conditions (21) and (22). Thus, we get, after some short algebra,

fi_(1) = L(1)6(s)0+ M(1)f10

(27)

where L“) = K110)—1 and M“) = —K„(l)4] K10)

3 The Analysis of the Fluid Flow

3.1 The Boundary Layer Flow

We will consider for the basic fluid flow, the classical Blasius boundary layer flow past a semi—infinite flat

plate. As it is known, the governing equation of this flow is

2f’” + ff” = 0 (28)

where f ’(z) = U (z) is the reduced velocity in x-direction and primes denote differentiation with respect to z.

However, equation (28) can be also written as (see Jaffe et al., 1970; Drazin and Reid, 1982)

2f’” + aBfo” = 0 (29)

where aB = 1.72078 is the Blasius constant. The boundary conditions of equation (29) are

f(0) = 0 f’(0) = 0 f’(Z2) = 1 (30)

where Z2 : 6 is an optimum value.

3.2 The Stability Analysis of the Hydrodynamic Problem

We know that a study of the flow stability can be made using the Ort-Sommerfeld equation (see Drazin and

Reid, 1982)

 

(U — am!" — W) - W = mic, (W MW) 61>

the pressure ß being given by

i

OLRe

 

‚s=—(U — arm W — (w-ofiv') <32)
5*
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The non-dimensional fluid shear stresses for the present problem (2—D case) can be written as

  

(f) _ l dU aw au] (f) _ 2 aw

‘C — —— — + — + — o — — +———— 33

H Rea, ( dz 8x dz z p Rear dz ( )

or, in terms of the non-dimensional stream function,

(f) _ I II 2 __ „, I ‚

I — U + + 0L 0 — —— + U — c — — U 34

XZ Refit ( W w) Z ocReér w [ Refii w W ( )

where w is the non-dimensional fluid velocity component in z—direction. We shall proceed here to a spatial

stability analysis, so that 0L is real and 0) is complex (see Drazin and Reid, 1982).

4 The Interface Conditions

These conditions are to be imposed at the interface between the sublayer 1 of the compliant wall and the Blasius

boundary layer flow, and they are analysed in detail in the papers by Yeo (1988) and Postelnicu (1996). The

second author has analysed these conditions on the basis of the form given by Dowell and Ilgamov (1988).

Thus, we consider here the interface conditions of the following form: the kinematic conditions

n1=u+n3U6 1.13:“) (35)

and the dynamic conditions

[62”]; Til—3°37] +1691, [r22]: + wo
0 0

where the subscript 0 denotes the value of the quantities at the interface between the sublayer 1 and the fluid

flow. Using now equations (34), (35) and (36), we obtain

va+ [fi3loU6 = —ico[fil]0

l A A

:‘l’o Z [n3]0

 

Rey (W wz‘i’o) = [15321)
(37)

“Kiev wg—[C
-Fä1fi

’6—U6
‘Üo = [6:91)

 

which can be also written as

QD ‘l’o : flo Q5 “70 Z 6(00 (38)

- A A A A A III T

where we have used the notations wo = {1110,wf), wg, wo} and

    

0c 1

iU' ' 0 O

70f ä 0 0 Reas R65

QB: 1 QET 3 1
E 0 0 0 —U6 — c+Rla

e5, OLReat
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D

E

equation (25) is a recurrent relation which needs, for a wall with m sublayers, 2 starting conditions, namely,

no and n1 , which can be obtained from equations (23) and (27). Thus, using these relations, we get

The matrix QC = ] can be found in Yeo (1988) where it is called the coupling matrix. We notice that

L 6090 + M fio z 0 (39)

or, with equation (38) in mind,

Q0 lilo = O (40)

where Q0 = LQD + MQE.

5 The Solution of the Stability Problem Using the Technique of a Riccati Matrix

5.1 General Considerations

This technique is, in principle, described by Drazin and Reid (1982) for the case of rigid walls with application

to the Poiseuille flow. The main idea of this method is to transform the linear eigenvalue problem into a

nonlinear one. We will follow this technique here by adopting it for the case of compliant coatings. Thus, the

Orr—Sommerfeld equation is written in matrix form as

U = AV V = U (41)

with

—iOLRe5, U” a2 +iaRe5, (U—c)

Further, on using the transformation

1J z 1; \I (42)

one introduces Riccati’s matrix, R, which satisfies the differential equation

R + R2 = A (43)

where

I” I”

R = ‘ 2 (44)

r; r4

and r1,r2,r3,r4 are unknown variables. The matrix equation (43) is equivalent to the following 4 scalar

equations:

r,’+ r12+r2r320L2 rz’+rlr2+r2r4:1 r3'+r1r3+r3r4 :-iocRe8*U”

(45)
7 7 .

01+ r2r3 + r; zu“ +lOLR€5+(U-C)
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with the boundary conditions that we shall specify below. We mention to this end that from equation (42), we

have

"I// 2"/

we riv+rz(¢”—o<2ir) w a w = W + nth/mm!) (46>

5.2 The Boundary Conditions

To determine these conditions, we follow the procedure where the integration starts from the wall (there exists

also the inverse way, from the outer edge of the boundary layer). With the notation [Qt-fl (which is the

determinant of the submatrix formed with the ith row and the jth column of the matrix Q0), from equation

(40) we get

A III

\l’g = Fi‘llo + F296 Wo = F3‘l’o + F496 (47)

Where Fl = —|Q14|/|Q34|s F2 = —|Q24‘/|Q34a F3 = ‘iQ13i/lQ34l and F4 = ‘IQ23|/iQ34|- We assume

here that |Q34| > e , where 8 has an appropriate value for computation convenience. This is, of course, not a

 

unique situation. Thus Postelnicu (1996) has discussed other cases too, such as, for example, when lQ34| < 8

and |Q12| < 8 with appropriate values for e . Using equations (47), equations (46) become at the wall

[r1 + r2(F1 — 0‘2)}‘l’0 +(r2F2 ‘ ll‘l’i) Z 0

[rg—E, +r4(Fl —a2)]q;0+(r4r3—F4+a2)qig = o (48)

which lead to

r1+r2(F1 —oc2)=0

rZF2 — l = 0

2
(49)

r3 —F3+r4(F1 —o< )=0

r4F2 — F4 + a2 = 0

This is an algebraic system of equations in the variables rl , r2, r3 and r4 . The solution of equation (49) is

r1=(0c2 —F])/F2 r2 =1/F2 r3 = F3 +(0t2 —Fl)(0L2 —F4)/F2 r4 =(o:2 —F4)/F2 (50)

But, it is known from the paper by Drazin and Reid (1982) that

Q! = C150“ + C2677“ (51)

where Cl and C2 are constants yet unknown. Here X2 = 0L2 + i010 — c)Re5* = 0t2 + i((x— (1))Re5, and the

real parts of X and 0L must be positive. Substituting equation (51) into equation (46), the following

homogeneous system of algebraic equations is obtained for C1 and C2
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(u+r1)e“"1C1+[x+ri +062 ‘0‘2l’hlvaZC2 = 0 (52)

r3e_OLZC1+[X3 — Otzx+ r3 + (X2 ~—ocz )r4]e_XZC2 = 0

Imposing the condition that this system must have a nontrivial solution, we obtain the following eigenvalue

problem:

i0t(1~c)Re8.[(X+r4)(0t+q)~r2r3]+r3(0t-x) = O (53)

It is worth mentioning that Postelnicu (1996) has also proposed a procedure for solving the Orr-Sommerfeld

equation by using the matrix S = R~1 , where R"1 is the inverse of Riccati’s matrix.

6 Numerical Details

The Blasius and the Orr—Sommerfeld equations are integrated simultaneously. For this purpose, a column

/ II T ~
— o t .

vector Y={f,f ‚f ,r1,r2,r3,r4} lS formed. Also, a system of first order differential equatlons for the

variable Y is formed from equations (29) and (45). The integration of this system was performed using a

subroutine in Matlab, based on the Runge—Kutta—Fehlberg method. A solver, based on the secant method along

with the ,,regula falsi“ procedure, was also worked out in Matlab for equation (53). The starting scheme was

performed by a special implemented procedure. The fixed level of convergence for the present work was 10'8

for the system of ordinary differential equations (29) and (45), and also 10'8 for the nonlinear algebraic

equation (53).

7 Results for the Tollmien-Schlichting Instabilities

The results obtained in this paper are for a single compliant viscoelastic sublayer, which is characterized by

h = 1, CI = 0.7, of :1, d=0.0049, ReL = 20000 and K = 500, where K is the bulk modulus, which is

given by K = E’ / 3(1— 2p). These results refer first to the curve of neutral stability which is shown in Figure 2.
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Figure 2. The Curve of Neutral Stability
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Thc next step is to determine the maximum constant amplification envelope. To do this, we use the e"

criterion expressed as

rl = lnlAlRea‘l/A((RCS‘)O)l z —;2_g

Re.

fa‚-(Reö. )d Reö. (54)

(Rcö‘ )„

where n is the exponential growth factor, 0:1. is the imaginary part of 0t, (Re5.)o is the Reynolds number

corresponding to the lower branch of the marginal stability curve at a fixed value of the frequency parameter

F = a) x 106 /Re8. , and A signifies the amplitude of the Tollmien-Schlichting instabilities corresponding to

Reg). and (Res. )0 , respectively.

We should notice that it is generally accepted that a value of n in the range (8...,10) characterizes correctly

the transition stage, which is studied within the linear hydrodynamic stability analysis. However, Carpenter et

al. (1990) have used a value of n : 7 and we have also used this value in the present paper. The total

amplification curves are plotted in Figure 3 for some values of F.
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v——_v F=60
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a

   

0 1000 2000 3000 4000

Rea.

Figure 3. Total Amplification Curves

Finally, using the results shown in Figure 3, we have presented in Figure 4 the variation of the maximum

constant amplification envelope for the compliant wall and for the compliant coating cases. Thus, for n = 7,

we found Rea. =3376. On the other hand, it can be read from Figure6 of the paper by Yeo (1988) that

Rea. : 3300. Therefore, the value of Rea. determined employing the present method compares favourably

with that from Yeo (1988).
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Figure 4. The Maximum Constant Amplification Envelope

S Conclusions

A new method has been developed in this paper for the analysis of the stability of a 2—D boundary layer flow on

single and multilayer compliant coatings. The originality of the dynamical behaviour analysis of the compliant

walls lies in the introduction of a rigidity matrix for the solid viscoelastic sublayers. After partitioning of this

matrix, a suitable recurrent relation between the displacements of successive sublayers is Obtained. The two

conditions necessary to close this recurrent relation are the zero displacements of sublayers at the interface with

the rigid base and also the interface conditions with the boundary layer flow. This method possesses the

advantage of accelerating the numerical computation and, on the other hand, the possibility to properly treat

discontinuities between adjacent sublayers. Such situations are left for future work and we mention that they

are, to this date, not found in the literature devoted to this topic.

For the fluid region, the present method offers a successful alternative to numerical integration of the Orr-

Sommerfeld equation; the method of Riccati’s matrix works more rapidly in comparison with other methods;

its rapidity is comparable only with that of the spectral method (see Postelnicu, 1996). These are important

arguments for such problems of interaction which require quite a long computation time. Other test cases

concerning the TSI and TWF/divergence predictions can be found in Postelnicu (1996). Our model has

incorporated the asymptotic technique for the prediction of the TWF characteristics, originally presented by

Carpenter and Gajjar (1990). Thus, a new way to analyse the linear stability of the boundary layer over single

and multilayer coatings has been established in this paper.
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