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On Compatibility Conditions for Mixed Boundary Value

Problems

Gy. Szeidl

The present paper focuses on the conditions of single-ualuedness for the displacement field on multiply-

connected bodies. It has been shown for a class of mixed boundary value problems that all the macro

conditions of compatibility, i. e., the compatibility conditions in the large and the supplementary conditions

of single-valuedness are also natural boundary conditions of the principle of minimum complementary

energy as a variational principle.

1 Introduction

1.1 As regards the classical case it was Southwell (1936,1938) who first derived the compatibility conditions

from the principle of minimum complementary energy as a variational principle. At the same time he

pointed out — he utilized Maxwell’s (1870) and Morera’s (1892) solutions — that only three of the six Saint—

Venant compatibility conditions follow from the principle of minimum complementary energy. Since any

stress condition can be given in terms of three stress functions chosen appropriately he arrived at a

contradiction because for the displacements to be single-valued all the six Saint—Venant compatibility

conditions should be satisfied. This contradiction was named Southwell’s paradox. After Southwell’s

papers the following problems remained unresolved: Is it sufficient for the strains to satisfy three Saint-

Venant compatibility equations? If yes, which three? If yes7 are there further conditions to satisfy?

1.2 A detailed description of the paradox based on all the possible stress function combinations is

provided by Stickforth (1965) who noticed by generalizing a partial result of Washizu (1957) that the

compatible strains satisfy some boundary conditions referred to as boundary conditions of compatibility.

The latter term was proposed by Kozak in 1980, who pointed out in three distinct ways, i.e., in a purely

mathematical one (1980b) and by utilizing the principle of minimum complementary energy as well as the

dual forms of principle of virtual work (1980a,c) that for the strains to be compatible it is necessary and

sufficient that three differential equations of compatibility and the boundary conditions of compatibility

are fulfilled. The latter two papers are the only ones in which mixed boundary value problems are

considered. It is assumed in all the papers mentioned above that the body is single-connected.

1.3 For a doubly—connected domain and plane problems Prager (1946) pointed out assuming traction

problems and homogeneous isotropic material that Mitchell’s conditions (1900) (cf. e.g. Gurtin, 1972), or

what is the same thing, the compatibility conditions in the large regarded under the conditions mentioned

are natural boundary conditions of Castigliano’s principle. This result was generalized for mixed boundary

value problems by Haichang (1986) and independently by Szeidl and Gemert (1991). Returning to

the three—dimensional case the papers by Moriguti (1948) and independently by Stickforth (1964) are

concerned with three-dimensional traction problems on multiply connected regions but they provide no

solution to Southwell’s paradox.

By macro conditions of compatibility is meant the totality of those additional conditions the strains should

meet to be compatible on a multiply connected body. Depending on What the boundary conditions are

in the points of a simply—connected and closed curve on the surface of the body the macro conditions

of compatibility are separated into two groups. If tractions are imposed in each point of the curve the

condition is referred to as a compatibility condition in the large. If there exists at least one are on the

curve along which displacements are imposed then the corresponding condition is called supplementary

condition of single-valuedness.

1.4 In View of the foregoing it seems to be an open question what supplementary conditions of single-

valuedness are needed for mixed boundary value problems on multiply connected regions. On the bases of

all that has been said the present paper is aimed at investigating the problem of what natural boundary
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Figures 1(a) and (b)

conditions follow from the principle of minimum complementary energy assuming a three-dimensional and

multiply connected body and a certain class of mixed boundary value problems. We shall also assume

that the linear theory of deformations is valid. When applying Castigliano’s principle in addition it will

be assumed that the material of the body is linearly elastic.

1.5 In section 2 we collect some preliminary results and derive the supplementary conditions of single—

valuedness from geometrical considerations concentrating attention on the classical case. Section 3 is

devoted to the problem of how the supplementary conditions of single-valuedness can be obtained from

the principle of minimum complementary energy. Section 4 is a summary of the results. Finally there

is section 5 where some fundamental mathematical relations being used in this paper and some longer

transformations are presented.

2 Derivation of the Supplementary Conditions from Geometrical Considerations

2.1 The bounded region of the three—dimensional space occupied by the multiply connected body and

the surface of the body are denoted respectively by V and S. In principle the surface S' of the body may

consist of not only one but more closed surfaces, in Which case the region is multiply bordered, though

the latter circumstance Will play no role in the investigations. The surface S is divided into parts Su and

St whose common bounding curve is denoted by g.

The present paper restricts its attention to the triple-connected but single-bordered body represented in

Figure 1(a) which contains some further notational conventions. It is clear from Figure 1(a) that both

the subsurfaces Su7 St and the curve 9 consists of more parts, i.e.,

(1) (2) (1) (2) (3) (1,0) (1,1) (L2) (1,3) (L4)

Suzsuusu; StzstuStuSt and gugugugug

In a limit case any of the subsurfaces

(1) (2) (1) (1) (1)

Sn: Su: and Sn 01' St,St, St and St

246



may be an empty set.

The non—intersecting, simple and closed curves £1 and £2 encircle the first and second holes.

(1) (2)

It is essential for the further investigations that S u and S u are respectively triple and double connected

surfaces in the way they are represented in Figure 1(b). The curves £1 and £2 intersect the curve g and

Z in the points

P11, P12, P13. P14 and P21

Let the parts of L1 be defined by

£1j=P1jP17j+1 j=1,...,4.

When performing integral transformations by making use of Stokes’ theorem one must keep in mind that

the theorem is applicable under the condition that the surface considered is simple—connected. Figure

1(b) represents a possibility for cutting up the surface S into simple-connected parts by utilizing the

curves 9, £1, £2 and Z .

It is worthy of mention that the restrictions we have made in connection with the body considered are

not essential for the body is at least triple-connected and the partition of the boundary surface S is

sufficiently general.

2.2 Indicial notations and two coordinate systems: the (331272.773) curvilinear and the (685’) curvilinear

(defined on the surface S) are employed throughout this paper. Scalars and tensors, unless the opposite

is stated are denoted independently of the coordinate system by the same letter. Distinction is aided by

the indication of the arguments m and 5 used to denote the totality of the corresponding coordinates.

When referring to some formulas of the paper by Kozak and Szeidl (1996a) the equation number will be

followed by the roman number i.

Volume and surface integrals are considered, respectively, in the coordinate systems ($1,:r2,$3) and

(£1, €2,53). Consequently, in the case of integrals, arguments are omitted.

In accordance with the general rules of indicial notations summation over repeated indices is implied and

subscripts preceded by a semicolon denote covariant differentiation with respect to the corresponding

subscripts. Latin and Greek indices range over the integers 1, 2, 3 and l, 2, respectively. eklm and 639m.

stand for the permutation tensors; 6% is the Kronecker delta. In the system of coordinates ($1,172,373) gk

and gl are the covariant and contravariant base vectors. The corresponding metric tensors are denoted

by gm and g“-

A pair of subscripts is enclosed by parentheses to indicate the symmetric part of a tensor of order

two and by brackets to indicate the skew part. A covariant derivative is denoted by a Latin subscript

preceded by a semicolon — see (A.4,i) for details

2.3 Calculations carried out on the surface S can be better understood by introducing a suitable surface

oriented coordinate system. Let wk : mk({1‚f2) be the equation of the surface S where £1 and 52 are the

surface coordinates. Let £3 be the perpendicular distance measured on the outward unit normal n t0 the

surface S. On S £3 2 0.[Base vectors] {Metric tensors} on S are denoted by [ak and ak] {am and am}.

In the surface oriented coordinate system (51, £2, £3)

n:a3=a 713:1 7177:0 (2.1)

If Iggl/(minflRfl, {R2|}) < 1 in which R1 and R2 are the principal radii of curvature on S then the

relationship 1'" : 17k (£1,£2,§3) is always one—to-one. The tensor of curvature is denoted by bag 7 see

(A.6,i). [Covariant derivative on the surface S] {The surface covariant derivative} is denoted by a Greek

subscript preceded by {a semicolon (or one short vertical line) e see (A.8,i)] {two short vertical lines — see

(A.9,i)}.

It will be assumed that the vector and tensor fields involved in the investigations are sufficiently smooth.

2.4 Now we shall assemble equations of elastostatics ~ in a form suited to our objective — in primal

and dual systems as well. In accordance with this, paragraphs 2.5 and 2.6 provide a brief overview of

the equations of the primal system while the following part of the present section turns its attention to

the equations and boundary conditions of the dual system including the missing conditions of single—

valuedness.
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Let wg, ekl and tkl be the displacement field, strain tensor and stress tensor (or displacements, strains

and stresses for short). Body forces will be denoted by bl.

2.5 In the primal system the three—dimensional problems under consideration are governed by the kine—

matic equations

1

8k; 2 501,)” +Ul;k), x E V (2.2)

Hooke’s law

if“ = Chime” x e V (2.3)

and the equilibrium equations

tflk + bl : 0 a: e V (2.4)

where CM” is the tensor of elastic coefficients.

Field equations (2.2), (2.3) and (2.4) are to be supplemented by boundary conditions. It will be assumed

that [tractions] {displacements} are prescribed on [St] {8”}. Then

u) = a) g E Su (2.5)

is the displacement boundary condition and

7237531 : {l g e S. (2.6)

is the traction boundary condition in which a; and 751 are the pre-assigned displacement and traction

components.

The strains ekl are said to be [compatiblel {kinematically admissible} if the kinematic equations (2.2)

have a sufficiently smooth solution to the displacements u) and the solution [meets no other conditions]

{satisfies the displacement boundary condition (2.5)}.

Stresses t“ are said to be [equilibrated] {statically admissible} if they satisfy the equilibrium equation

(2.4) and [meet no other conditions] {and the traction boundary condition

Every solution of equilibrium equations (2.2) admits the following representation found in its final form

by Schaefer (1953) (cf. e.g. Gurtin, 1972):

ti” = epykeldrfilymr + quBflq + gl‘lBfiq — gPlB’jk a: e V (2.7)

Where Üyd 2 BTW is the stress function tensor (whose components will also be referred to as stress

functions) and the vector field Bl is given by (2,8,1), i.e., it is a particular solution of the Poisson equation

(2.7,i). For this reason we shall assume that the vector field Bl(:)3) is known.

Because of its role in the further investigations an important property of the above stress representations

should be mentioned here. To begin with, one has to introduce some notations.

The index pairs which range over a subset of the nine possible values will be capitalized.

Let aab be a sufficiently smooth otherwise arbitrary symmetric tensor field in V. Furthermore let w,

be an unknown vector field on V. By AB we denote those subsets of the possible values of the index pairs

ab for which the differential equations

1

5(wA;B+wB;A):aAB(a:) 16V

always have a solution for the vector field wl It is obvious that the index pairs AB may have only

three different values.

Let Rs be the supplementary subset of the index pairs whose union with AB is the set of index pairs

ab. Obviously, the index pairs RS may have six distinct values. Because of the symmetry, however, the

corresponding tensor components OzRS represent three distinct functions only.

The stress functions

Hab : Hab + w(a;b) ‚1' E V

lead to the same stress state as Hab since

epykeldrwmdmr E 0 zu E V
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It immediately follows from this that by solving the differential equations

11104.3): — ab SC 6 V (2.9)

for and substituting the result into equations (2.8) we find that the three stress functions identified

by the indices AB will vanish. In other words: any stress state can be given in terms of the stress functions

HRS, or what is the same thing, in terms of three stress functions. This result is due to Finzi (1934).

NOTE 1.: In the sequel it will be assumed, that HAB : 0 m E V independently of the circumstance

what subscripts are employed, i.e., capitalized or not.

2.6 By inverting Hookc’s law we obtain the equation

71

ekl ZCklrs trs 33' E V

‚1 '1

in which the fourth order tensor C M” follows from the condition Ckm CTqu = 62651. The strains

6k; are said to be [equilibrated] {statically admissible} if they are calculated from Hooke’s law (2.10) by

substituting [equilibrated] {statically admissible} stresses tkl.

The tensor of incompatibility yab is defined by the equation

yab : Eakmeblpeklsmp x E V

The following results are those of Kozak (1980a,b).

For strains eh; to be [compatible] {kinematically admissible} in a single-connected region V it is necessary

and sufficient that the differential equations of compatibility

yRS : ekaeSlPekWp = 0 a: e V (2.11)

the boundary conditions of compatibility

nayab : n3y3b : ”363km6dlpeklgmp : n363nrc€ldpende : 0 [g E S] or {E E St} (2.12)

and [no further conditions] {the strain boundary conditions}

6M — from) : 0 £6 Sn (2.13a)

(631». — U3;K)|}‚\ + 631(60... — Maw) — (61m?) — exam) = 0 E E Sn (213b)

should be fulfilled. From equations (2.13a,b) there follows the fulfilment of equation

(BMW + eMW — (uMKMg — ugubw : 0 g e S (2.130)

For proof see the paragraphs 3.9 and 5.16 in the paper by Kozak and Szeidl (1996a).

It can also be shown that the fulfilment of kinematic boundary conditions (2.13a,b) on SE automatically

assures the fulfilment of boundary conditions of compatibility ~ see the paragraphs 3.7, 5.14 and 5.14 in

the paper cited above.

2.7 For the equilibrated stresses

1P1 2 epykeld7'Hyd;k. + gmBfiq + gqufiq — gplB]:k a: e V (2.14)

obtained from (2.7) by substituting Hyd for Üyd to be statically admissible it is sufficient if the traction

boundary condition

tl : np(€pyk€ldrHyd;kr + gquful + gquPuI “ gplB]:k)

n3(e377*’velde„d.p„ + 8‘13qu + aquiq — a3lB’3k) g e St (2.15)

is fulfilled.

2.8 For single—connected bodies the three—dimensional problems of elasticity in the dual system are

governed by the dual kinematic equation (2.14), the constitutive equation (2.10) and the dual balance

equation (2.11).
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Observe that we have as many unknowns 7 the dual configuration variable H33, the first intermediate

variable If“ and the second intermediate variable em — as there are field equations, viz, (2.14), (2.10)

and (2.11); both numbers are 15.

Field equations (2.14), (2.10) and (2.11) are associated with the boundary conditions (2.12) of compati—

bility and the traction boundary condition (2.15) on St and with the strain boundary conditions (2.13a,b)

on Sn.

The terminology used in the present paragraph was proposed by Tonti (1972).

 

Figure 2.

2.9 For multiply connected domains fulfilment of the differential equation (2.11) of compatibility and

the compatibility boundary conditions (2.12) is, however, not sufficient for strains 61,; to be compatible,

but some supplementary conditions, referred to as compatibility conditions in the large, are also to be

satisfied. Now we turn our attention to the supplementary conditions. We shall consider the single, closed

curve £1 — see Figure 2. Let P be an arbitrary but fixed point on L1. Position vector of point P(s) with

respect to P is denoted by 12(8) = R”a„‚(s). Observe that the basis is taken at the point 8. It is apparent

that _

_ dR _ d(R(s)—R(P)) _@§ _ E

a a _ __ ___ _ a L 2.16
T a ds ds 85a d8 ds a 8 e 1 < )

With the rotation field 1

wl : Eelpdudm LL’ E V (2.17)

and equations (2.2) one can write

3 1 3Ä19
w : ~2-6 um)‘ EG S (2.18a)

and 1

w)‘ = €A319[— (U193 + Uglg) — Uglg] = 62319 (6193 — 1143W) E E S (2.1813)

2

NOTE 2.: Assume for clarity that uk is a displacement field given on S. Equation (2.18a) reflects that

uk(f) uniquely determines the rotation 0J3. On the contrary equation (2.18b) involves the derivative u‚\;3

taken along the normal to the surface S consequently w’\ is only partly determined by U],

2.10 By making use of the kinematic equations (2.2) from equation (2.17) it follows that

1

“l "y : fielpdiudmy + WM) Z 6Weg/dm :1: E V (2.19)

which, with regard to equation (2.16) and the notations of Figure 3. leads to

Öwl a;

88

lpd
= 7776 am”, a; f E S (2.20)
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and consequently

P

(wAaA + w3a3)|p : (wAai +w333)|P11 +/ 'rnel’fllend;p alds (2.21)

P11

A comparison of equations (2.2) and (2.17) yields

um = ekl - €191er 17 E V

from which utilizing again the notations of Figure 3 and substituting the equations (2.16) and (219) one

obtains

öwlal ___ ö l

a. _&{(R”(8) — R“(P))6kvzw am» + + — Rv<P>>1 ak<s> s eßl
(2.22)

or after integration

P

W: aklP = Uk- akan + Gkvlwl(Rv(S) — RU(P))akIP11+/ Tnlenk + emeWRWs) — RD(P))end;pl ak d3
P

n (2.23)

Equations (2.21) and (2.23) coincide with Cesaro’s formulas. Outline of their derivation is presented

herein for the sake of those further transformations in which same partial results of the derivation will

be utilized.

 

Figure 3.

Returning to the three-dimensional elasticity problem considered on the triple-connected region V A

see Figure 1 7 for the strains ekl to be compatible it is also necessary, in addition to the fulfilment

of field equation (2.11), that the rotation field wl and the displacement uk should be single-valued on

all closed simple curves which encircle the two holes. It can readily be shown that the fulfilment of

the supplementary conditions of single—valuedness on a one-one single curve encircling the holes M one

can chose £1 and £2 for instance 7 is sufficient for the rotation wl and the displacements uk to be

single-valued along all the other curves that encircle the holes provided that the differential equations of

compatibility hold.

In light of this circumstance we confine ourselves to the curves £1 and £2 during further investigations.

Observing that £2 lies inside St for the single-valuedness of the rotation wl there follows from equation

(2.21) the compatibility conditions in the large

z d «93 M93
jg Tnep efldw alds 2% 7776p am”), a3 d3 + % 7’776 (engm ——e„‚9;3)aÄ d5 = O (2.24)

2 2 L2

Using exactly analogous reasoning from equation (2.23) one obtains the compatibility condition in the

large

f T’7[e„k + ekvlclpd(R”(s) — R”(P21))e„d;p] ak d3 = 0 (2.25)

L2

for the displacements uk to be single—valued along £2.

As regards the curve £1 its parts [£11 and £13] {£12 and £13} lie wholly [in St] {in Sn}. In view of this

fact the problem raised in paragraph 1.4 can be reworded in the following way: What is the effect on

the compatibility conditions in the large of the circumstance that any simply closed curve encircling the

first hole on S passes through the boundary part S'u twice. Solution to the problem posed is sought by

means of a geometrical line of thought. Assume that the curve L1 is divided into two parts as shown
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in Figure 3. On arc £1,- = 1,3) drawn in heavy line the tractions are given while displacements are

prescribed on the parts of arc P11¢+1,P1,- lying in the neighborhood of the endpoints. For the rotation wl

to be continuous on the closed curve £1 being divided into two parts in two ways it is necessary that the

continuity conditions

P P P P

dazu: + Malt): : 0 and Mama: + wlallP: : 0 (2.26)

be satisfied. The first term on the left hand sides can be calculated from equation (2.21) by an appropriate

change of limits. As regards the second term one has to utilize equations (2.18a,b) by taking into

consideration the circumstance that the displacements are known if

s E (3(P1j) — 6, 3(P1j)] or S E [5(P1,j+1),8(P1,j+1) +6) j: 1,3 (2.27)

in which 6 is a small positive and otherwise arbitrary quantity. In this way one obtains

P1<1 .

3/\'I9 A Ä3'L9 A

5€ Um a3 + 6 (6193 — 1131.9)aw

  

193

+/ 77’s” enmpagds+

P1,i+1 LU

/ 7’16W3(e„3‚.9 — emm) aA d8 = 0 i: 1,3 (2.28)

Lu

One should notice, that the rotation is continuous along the whole curve £1 if the condition (2.28) is

fulfilled.

Repeating the line of thought leading to equation (2.28) we find that the displacements should meet the

continuity conditions

uk ak):: + uk ak)::; = 0 and uk akli: + uk aklg: = 0 (2.29)

In order to obtain a more suitable form, the above continuity conditions will be transformed further in

three steps:

(a) First one has to take into consideration again that the displacements are prescribed if s meets the

conditions (2.27); this circumstance affects the second term on the left hand sides.

(b) Secondly Cesaro’s formula (223) should be used to determine the first difference (term) on the left

hand sides. '

((3) Finally one has to substitute equations (2.18a,b) so as to determine the rotations «)3 and w’\ involved

in the Cesaro formula at the points P11 and P13.

After all these manipulations one obtains

P1i

Ük amply,+1 + 631903319 — ü3\u)€/\kz (Rk(P1,i+1) ‘ Rk(P1i)) al|PU

1 « A

+ E €3’WUU;‚\ 63W (Rw(P1‚i+1) — RWPMD 3‘)

Pu

+/ 7’77{6„k + 6W em [3“(3) — R”(P1,.-+1)]e,,d,p}ak d3 = 0 i: 1, 3 (2.30)

1311

NOTE 3.: Conditions of single-valuedness (2.28) and (2.30) reduce formally to the compatibility condi—

tions (2.24) and (2.25) in the large if moving in clockwise direction the point PMH reaches the point P1,-

or, what is the same thing, if the arc £1,- coincides with the closed curve £1.

2.11 For triple-connected domains the dual equation system (2.14), (2.10) and (2.11)7 which is associated

with the boundary conditions (2.12), (2.15) and (2.13a,b), should be supplemented by the compatibility

conditions (2.24), (2.25) in the large and supplementary conditions (2.28) and (2.30) of single—valuedness.

3 Derivation of the Supplementary Conditions from Castigliano’s Principle

3.1 All conditions the strains 6k; should satisfy in order to be [compatible] {kinematically admissible} in a

simply connected three-dimensional region can be derived from Castigliano’s principle 7 see the paper by

Koza’k (1980a) for details. Consequently the present section follows the line of thought of Kozak except

in two things:
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1. Stress functions satisfying the side condition (2.15) can be varied provided that there are no stresses

due to the variations. In this respect the paper will utilize a form which does not require the

knowledge of derivatives taken along the normal to the surface St of the vector field in terms of which

the variations causing no stresses can be given.

2. Since now the volume region is multiply connected, special care will be taken with those terms

obtained by applying Stoke’s theorem on the simple—connected parts of S in order to find a proper

form for the jumps of stress functions and to ensure in this way the fulfilment of the subsidiary

conditions of single—valuedness.

3.2 Let —K be the total complementary energy functional. Then the functional

K:_1/tklekldA+/ 7137531016114 (3-1)
2 v 3..

as a function of the statically admissible stresses tkl and strains ekl has a strict maximum at the actual

solution.

The necessary condition for extremum of functional (3.1) is the vanishing of the first variation

6K 2 — / amt“ dV +/ ngötklaA dA = 0 (3.2)

V Su

obtained from equation (3.1) by making use of the fact that

1 kl kl
550: ekl) = 6191615

Paragraphs 3.3 to 3.8 are devoted to the long formal transformations aimed at casting the extremum

condition —ÖK = 0 into an appropriate form. In order to clarify the nature of the various steps a short

outline of the transformations is presented below.

(a) In paragraph 3.3 the variations of stresses are given in such a form that the side conditions are

satisfied both in V and on St. I

(b) paragraph 3.4 is devoted to the integral transformations. When applying Stoke’s theorem we must

keep in mind that the surface S has been cut up and the integrals have to be taken on simple-

connected subsurfaces. Consequently line integrals are also obtained. From these some line integrals

cancel each other if the following conditions hold:

1. All the variables in the integrals are continuous on the part of the boundary curve regarded.

2. We go twice along this part of the boundary curve. (When applying Stokes’ theorem on 8’“ for

instance we go along the arc P12, P13 twice.)

It is worthy of mention here that except 6w; all the other variables are continuous on the entire

boundary S. As regards 6w; it is continuous on the simple-connected subsurfaces

(1) (2) (3)

St, t and St

but has a jump on the arc

£=£11 U £13 Ufig.

The first integral to contain 611); is the one rmulting from equation (3.14) after substituting the

side conditions (3.6a,b). In the subsequent steps special care should be taken with those integrals

performed along £11, £13 and £2.

(c) paragraph 3.5 contains the final form of the extremum condition in respect ofthe volume and surface

integrals.

(d) paragraphs 3.6 to 3.8 are devoted to the analysis of the line integrals taken along g and L.

3.3 Being statically admissible the stresses tkl are to be varied under the subsidiary conditions (2.4) and

(2.6). Consequently the variations 6th can not be taken at will but should meet the conditions

6t’iflk = 0 ac e V and „355“ = 0 g e St (3.3)

which follow from equations (2.4) and (2.6) by taking into consideration that the variations of body forces

b; and prescribed tractions f’ are equal to zero. It is also assumed that the variation ÖBl is equal to zero.
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It follows from equations (2.14) and (2.15) that the variations of stresses satisfying (3.3) can be given in

terms of variations of stress functions

6th : ekrmelspöfimmp a: E V (3.4)

where (SHTS is arbitrary on V and Sn but should satisfy the side condition

623‘ = n363meld7’6HndW = 0 g e S, (3.5)

Let (5111; be a vector field defined on St. If Ö’Hm satisfies the conditions

(SH/m : 5100W g E St (3.6a)

(ÖHKA — 5103‘K)||>\ + bg(ÖHaK‚ — (Squaw) — (ÖHKÄg, — ÖHA3;K) = 0 f E St (3.61))

then condition (3.5) holds. The proof of this statement is very simple if one notices that equations

(3.5) and (3.6a,b) coincide with the compatibility boundary condition (2.12) and kinematic boundary

conditions (2.13a,b) provided that end and u; are substituted for 6H,” and 611); in equations (3.5) and

(3.6a,b) respectively. Then recalling the assertion that the fulfilment of the strain boundary conditions

(2.13a,b) implies the fulfilment of the compatibility boundary conditions one can come to the conclusion

that the original statement is true.

NOTE 4.: The relatively long and cumbersome proof of the assertion mentioned is published in a paper

by Kozak and Szeidl (1996), but originally it appeared in a thesis written by Kozak (1980d).

NOTE 5.: The static-kinematic analogy, which makes possible the use of the proof cited above, was

found by Kozak and Szeidl (1996b). This analogy also involves the equation

5HHA||19+5HAKH19—6w,\innqg — 6W3p‘b195 = 0 f E St (3.6c)

which is the dual counterpart of equation (2.13c).

NOTE 6.: Kozak (1980a,c) assumes that

<5sz = 5712mm E E St (3-7)

which, contrary to conditions (3.6a,b), involves the derivatives Öwkg, taken along the normal to the

surface St. It has also been shown v— see the NOTE 11 in the paper by Kozak and Szeidl (1996b)

— that equations (3.7) imply equations (3.6a,b) but the opposite statement is not true. Consequently

condition (3.7) is less rigorous than conditions (3.6a,b).

NOTE 7.: Conditions (3.6a,b) are given in terms of 6101(5), therefore, as already mentioned they say

nothing about 6w,\,3 on 315. With regard to the assumed continuity of ÖHkl on curve 9 which separates

S1, and St one may write by using equations (3.7) that

1

(57‘553 I 5(6w‚\;3 + (51U3;‚\) E E g

On the basis of the latter equation it will be assumed that (SH/\g can freely be varied on g or, what is the

same thing, it can be given in terms of 6111M), which is considered to be arbitrary.

NOTE 8.: With regard to conditions (3.6a,b) and NOTE 7 one has three functions, i.e., 6w; which can

be varied freely on St and five functions, i.e., 61m and 6w,\,3 which can be varied freely on 9.

NOTE 9.: Without any loss of generality one may assume that

(51133 = 67.0333 E E g (3.81))

3.4 Upon substitution of condition into variation one obtains

—5K=11V+1fu=/ ekrmelsvmmw ekldV — / €3nKCldp5HndWKal dA = 0 (3.9)

V Su
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Since the surface integral in equation (3.9) coincides with the left hand side of equation (5.1) if in the

latter in, Ö'Hkl, Sn and g are substituted for ul, Hm, SO and go, respectively, one can write

If“ 2 1;“ + : —/ n3€KU36Ä63{ÜA;n6Hm9;3 + [(ü3IK)H/\ "l" bgüam + bgü(‚\;n)]6Hm9

u

+[(fl)\‘,4)H19 + ag‘AbflK]6Hn3 + bnaü(‚\;K)ÖH33} dA

+/n36”"3T‘9(flmK6Hn3 ——ü3|„ÖHm9)d5—-/TneldpöH„d;pülds (3.10)

g g

for the surface Su lies on the right hand side with respect to the positive direction chosen on curve g 7

see Figure 1(b).

By applying Gauss’ theorem twice and renaming dummy indices one obtains for 11V that

K=g+fi=/ akmeslpeklmmmdv + / ngewälwemmw — emmöHpsMA (3.11)

V S

As regards the surface integral it is worth decomposing those sums involving ElSp. After some manipula—

tions we have

[15 : I]:va + If“ Z/n36Kp36A193[6AK,6Hp19;3 — 6AK6Hp3fl9 _ 63K6Hp19;}\

s

_e/\I€;36Hp19 + exam/Hp?) + €3n|A5Hpn91 dA (3-12)

Integral 12;?" can be transformed into a more suitable form by making use of equation (5.2). First the

dummy indices ‚07 19 in equation (5.2) should be renamed H, /\ and vice versa7 i.e., K, /\ are to be renamed

p, 19. Then the desired result can readily be achieved if one follows the way leading to equation (3.10)7 i.e.,

by substituting ü), ö’Hkl, Su and g for u), H“, 30 and go and taking into consideration that the positive

description on g is the one which leaves Su on the right; the latter convention affects the sign of the line

integrals. After renaming some dummy indices in the line integrals in order to factor out the vector T79

one has

I3“ : If“ + [g z/ n3€m736M93{ GÄKÖHpqsß +(GKAH19 + EÄK||19)ÖH773

+(63HHA + bi‘eafi — emf, + 6A3” — bgeAn)6Hm9 + bmgeÄKÖ’Hgg} dA

—/n36K"3T”9(6H„9„e7I7]3 — öHgnegqgws (3.13)

g

where U is not an upper index but denotes the limit llmggsuag ekl .

Now we intend to manipulate integral If” into a form which makes possible the direct substitution of

side conditions (3.6a,b,c). To achieve this goal transformation (5.3) should be applied. The procedure

is the same as above except three things: (a) There is no need to rename dummy indices in the surface

integral; (b) St should be substituted for So, and (c) because of that the sign of the line integrals will

remain unchanged.

Finally we have

[13‘ = —/ 723657736A193{5H,\Ke776;3 +(5'HKAH19 + ÖIHÄKH19)8„3

St

+(6H3KHÄ + biöHan — 571mg, + (SH/um — bg5Hm)€m9 + bnßöHAne33} dA

+/TL3€M73(7'195H356519 —— TAÖHÄ„€53)d8 (3.14)

g

from which by substituting from conditions (3.6a,b,c) and by renaming dummy indices in the line integral

it follows

[1st = 15‘ + I3? Z —/S n3€m3€wgf5wmmenm3 + [(6w3ln)H)\ + b§5wa|n + 525wuml€m9

+[(6wA‘K) H19 + (511}3Mb19d6713 + bnüöw(Ä|K)633} CIA

—/n36’“737'”9(6H3,€e£3 — öHMegflws (3.15)

9
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Here T stands for the limit llmEEStHg 6k; . In the next step integral I23t will be transformed further into

a final form with respect to the surface integral in the resulting equation.

It is worthy of mention that [it coincides with the surface integral on the right hand side of equation (5.1)

if in the latter 61m, em, and St are substituted for m, Hm, and So. In addition to this, special care should

be taken with the line integrals on the boundary of St.

Recalling that the union of curves £11, £13, and L2 is ß we should also remember that we go twice along

ß when we apply Stokes’ theorem. Let the jump of 6111; be denoted by [öwl]. Its definition is as follows

[610;] : 6101+ — 611); 56 L (3.16)

where the [positive] {negative} sign denotes the value of 611); taken on the [positive] {negative} side of C

7 see Figure 1(b) for details. On the bases of all that has been said one has

[5”: [529‘ +156“) 2/ 63"”6ldpendmnöwl dA

St

+/n36”"376(6w19|neg3 — 6103,56?” d5 — /T7761dpe£d,p6wlds

g 9

+/ n-g,6””737'19 ([6wmn] egg 7 [611}3‘K] 6,71119) d3 — f Tneldpegdgp [öwl] ds (3.17)

L L

3.5 Comparing the left hand sides of equations (3.9), (3.11), (3.12), (3.13), (3.14) and (3.15) we may

write

—6K 2 12V + [in + If” + I? + [IG +15 + If + I?” + 1le = 0 (3.18)

or after substituting the right hand sides

—6K 2 / ekaeslpeklmpöHdeV

V

+/ “36””3EW3{(6M - amelmnm
Su

+[(63K — flgmlnx + Wem - flaw) - (en/VB - 6mm) - (flew — ü(M„))]5Hms

Hemiw + 6mm - (1%,,qu — flg‘ywaHw—bmfiem — a(/\|/4))6H33} dA

+/ 63"”61dpendmm6wl dA + [IG + 15M 2 0 (319a)

S:

where

[IG : 116‘ + [2‘3 + I? + 105w (3.1910)

Since in equations (3.19a,b) no conditions for

671125, (Sng;3‚ (5717719, (571773, ÖHgg, and Öwl

are set down, they are arbitrary. Consequently from the vanishing of volume and surface integrals

in equations (3.19a‚b) there follows the fulfilment of differential equations (2.11) of compatibility, the

fulfilment of compatibility boundary conditions (2.12) and the fulfilment of kinematic boundary conditions

(2.13a,b).

In the latter case one has to recall that on one hand the condition (2.13c) is not independent of condi—

tions (2.13a,b) and on the other hand the coefficient of 67133 coincides with conditions (2.13a,b). Among

others this is one of the reasons why the corresponding stress functions H‚\3 and H33 can be set to

zero. It is worthy of mention that the Euler equation and natural boundary conditions obtained from

the extremum condition —6K : 0 are those the strains 6k; should satisfy in order to be kinematically

admissible on a single—connected volume region.

3.6 Analysis of line integrals involved in equation (3.19b) requires some preparation. Let the jump [Öwb]

be

u (1i) .

[öwb] Z 6 ((3)1, +65“) (5 C S[Rv — Ry (131714.0) i: 1,3 E E L1,

‚ (21) (21>. . .
[öwb] — Ö C b +€svb6 C [R —- R (1321)] 5€ L2 (3.21)
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(1) (li) (21) (21) _

Where 6 c b, ö C S, 6 c b and esvbö C S are arbitrary constants.

NOTE 10.: Function

[öwb] : öcb + esvbéCisv — R“(P)]‚ g E S

in which 60;, and 503 are arbitrary constants and P is an arbitrary but fixed point, causes no ’stress

functions’ since the gradient of [öwb] is skew-symmetric:

[510193;] = 63519605 [61mm] 2 €‚\‚{3ÖOÄ 5€ S (3.22)

3.7 As regards the line integral IIG the necessary transformations are presented in the Appendix 7 see

Section 5. Assuming continuity of strains on S it is plain that

62]; = 6%; E E g (3.23)

By using the equation

5wwu>—5wwui=5wow>+5wumi=5wM3 569

and omitting the distinguishing U and T from equations (5.13) and (5.14) one obtains

d „

[IG = /{T”6“”3(eq9m3 — €3m19)— El-S[€1m(ew93 - U3;«9)l}5wxd8

9

d 1
3 19 3A1»

+/g[7"76 ’0 e19an — —8(—2e umÄ)]6w3 ds

+/ Tneü3’\(emg — wwwwg ds + 21 + 22 + E3 (3.24)

g

Vanishing of the line integrals for arbitrary 52m, öwg and 511m3 yields the continuity conditions

d A

TU€19Ä3(61971;3 — 63mm) Z filemgtwa — 16339)] 5 E 9 (3'253)

d 1

T7763P‘9eimp = @(EEMW) 6 E 9 (3251))

777(87719 —- “IA/.09???» I 0 E E g

If we had not omitted the distinguishing U and T then with respect to equations (2.18a,b) and (2.20)

continuity conditions (3.25a,b) would assume the forms

dw3

ds

dwÄ da03dw’\ T U
: —— d _

) (d8) an (d8(E )T=< )U 5€ g (3.26)

NOTE 11.: Fulfilment of conditions (3.25a,b,c) is sufiicient for the determination of 0.23, 1119 and 03”

in terms of 6197733, egnlqg, 619W, and 6.7.9. After integrating equation (3.25b) we obtain wg. With 0J3 and

equation (3.250) it follows

“(6770 ‘1119m +flwmi) =0 E E 9

or what is the same thing

dim

71: = 777(67719 — 61977303) 5€ g

from which the displacements a.) are obtained immediately by integration with respect to s.

As regards the equation (3.25a), it can be solved for 113W by integration with respect to 3. If 03'.) is

known then

düg „9

32716329 5€!)

from which 113 can be determined by integration.
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3.8 The last part of the line integrals consists of those terms Whose presence expresses that the volume

region is triple connected. Substituting [am], El, 22, and E3 from equations (3.17), (5.9)‚(5.11) and

(5.12) and comparing equations (3.19a) and (3.24) we have

Iflwl+§31+22+23=

: Z 7236“”37'19 ([6w„9\„]egg— [6103m] 63,19) d8 — /L Tneldpegdm [öwl] d3

i=1,3 Ii
u

+ 619” (Wow — [WABD W

A319(

 

Pu — 619$ ([6w(/\13)]— [611043]) üß'PuH

+ 6 €193 — ügm) [ÖwÜHPU * 3319(6193 — 113m) [511119])PUH

}
P1,i+1

+/L n36””37’9([6w19;„]eg3 — [6W3m] 67%) d5 —/L TUEdeegdm [öwl] d5

2 2

1 A 1 fl

+ 563MU19;‚\ [511)3) —- ‘éégkflumi

  

P11

To obtain the supplementary conditions of single-valuedness let us substitute equations (3.20) and (3.21)

then gather the coefficients of

2 (21) 1' (li)

5((31)k ak, (5 0 la; and 6(é)k ak, (5 0 la;

Upon a subsequent rearrangement we have

Iflwl +21 +22 + E3 :

21

z TUE/3193mm); a3 d5 +ji 77781930277319 — 67179;3)a/\ d5} -ak 6 (6)1.

L2 L2

(21)

+% Tnlenk+6kvlclpd(Rv(s)—R”(P21))end;p]akds ~a,6 o l

£2

P1i

1 A 1 A

Z { [563wumi a3 + 939(693 - ugm) ax

i=1,3

  

P1‚i+1

(11')

+/ Tne’fi‘o’enmp a3 ds +/ 7‘776M93(e„3‘„q — 677.9;3)a‚\ d3} .ak 6 c k

Lu Lli

A Pi A

Z [W ak|Pli+l + 63379 (€319 - MIME/vet (1316031441) " Rk(P1i))allP1i

i=1 3
v

1 „ , ‚

+ 563qu 68w (Ru (P1441) - liq/(1310):?!”

 

P1i

‚ ‚ (li)

+/ 7'77{€nk + €lpd 61w; [RU(S) — R”(P11i+1)]end;p}ak d8] - alö C l

£11

21 (11')

Vanishing of the above expression for arbitrary 6 (c k. . . . ‚6 C l results in the fulfilment of compatibility

conditions (2.24) and (2.25) in the large and the supplementary conditions (2.28) and (2.30) of single—

valuedness.

4 Concluding Remarks

4.1 In accordance with the aims detailed in paragraph 1.5 the present paper has studied the question

as to what further conditions the strain fields should meet in addition to the usual ones in order to be

kinematically admissible on multiply connected regions providing three-dimensional and mixed boundary

value problems. The mathematical form of the supplementary conditions of single—valuedness has been

derived from a geometrical line of thought. Consequently the conditions are independent of the material

law.
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4.2 It has also been proved that both the compatibility conditions in the large and the supplementary

conditions of single-valuedness are natural boundary conditions that follow from the minimum com—

plementary energy. The significance of this conclusion is inherent in the applications. In other words

applications of direct methods — finite element methods for instance — to find approximate solutions

from the extremum condition do not require that the admissible fields should satisfy these conditions in

advance.

5 Mathematical Transformations

5.1 Let u; and Hkl be sufficiently smooth tensors on SO. Comparing equations (A50‚i) and (3.25,i) one

can write

/ 7136377K6lde77deu1 dA = —/ n36m73€Ä793{U(‚\(K)Hm9;3 + [(u3|„)|„ + bfuaw + bgU(‚\|„)]Hm9

S0 Sn

HUME) “19 + “31Ab79n1H773 + bnüu(‚\|K)H33} dA

—]{ 71365773qu (umKang - U3|KH7719>d8 +f TUEIdendgpul d8

A detailed proof of the above equation is presented in the paper by Koza’k and Szeidl (1996a).

5.2 Using the above notations and comparing equations (A54,i) and (3.26a,i) one obtains

/ n36KpSE/V93[—HÄKep19;3+H/\Kep3;19+H3Kepfl9gÄ+HÄKßepl9_"HÄKI'Öepg—H3K1Äep’l9] dA =

So

= f “3657’36W3f eannufi + (emw + €AK|w)Hn3

So

+(e3nHA + bieom '— eKAg?) + 6A3ln — bgeÄK)HT]Ü + bmSeAnH33} dA

+f n36”"3(7663„7im9 — TÄEÄKHng) d5 (5.2)

a

As regards the transformations leading to equation A54,i) the reader is referred to paragraph 5.18 in the

paper by Kozak and Szeidl (1996a). By interchanging the letters e and H in equation (5.2) the sign of

surface integral turns to the Opposite. Keeping this in mind we may write

K 3 A193
/ n36 p 6 [—BAKHMQ + EMpr + €3KHM;A + 6m;3Hp«9 — $51an?) — eBKlAHpfll 6514 =

o

: / 77/36K7736A193{Hkmen19;3 + (HKA||19+H>\K||19)6773

So

+(H3KHA + biHan*Hm;3+H134„ - 45ngka + banmess} dA

+f n36“"3(7'19H3„e„„9 — TÄHMeng) d3 (5.3)

5.3 Transformation of intgeral 1?.

By making use of equations (3.10), (3.13), (3.15), (3.17) and (3.19b) we may write

[IG = I€+I§+13G+I€5w z

: /n36m’37”9(ÖH„a„ü3W —6H3„ümn)ds - /T"61dpöH„d;pül d3

g 9

n36”"3T”9(6H19„eg3 — ÖHgKegüWs — /n36“’73719(6H„9„eg3 — 6H3Ke$fl)ds

g

K 3 19 T T ld T

”3€ 77 T (Öwwnens - Öwgmenaws — f 7’76 pendmISwzds (5.4)

g

+

«
N
M

The above equation clearly shows the structure of those line integrals resulted from the transformations

if the volume region under consideration is simply-connected.

Now it is our aim to manipulate integral (5.4) into a more suitable form.
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During the transformations we shall utilize, among others, the following equations:

(Stuwm : —6.,9K3(57‘3 611107519) z 6111.9“? + 619773673 E E St (5.5)

where 6T3 is the third component of the corresponding axial vector.

It follows from equation (3.6b) that

(SHAmg — 671377;; 2 6H3WM + bfi‘éHQA — 6M3MH77 — bfi‘tSwaM E E St

from which by adding 0 = b,\„(6H33 — 61033) to the right hand side 7 see equation (3.8b) 7 and taking

into consideration the rule (A9,i) we obtain

(SH/Wag — 571377;) I Ö’HgMHn + bgö'Hax—ÖMÖHgg — (Öwgwm + bfiöwau — bMÖwgß)

Z 6H3M7] — (5103;)(q

In view of equation (3.6a) it is plain that

1 1

63A‘96HM;A = €3Afi§(6w19;/\rn + 6111mm) : eswäöwß.‚\n f E g (5.7)

Care should be taken to the partial integrations carried out along the curves i = 1, ...‚ 4 since 6w; has a

jump at the points PM.

Now we shall consider the line integral I1G ! see equation (3.1) or the first line of expression (5.4). After

making use of the resolution

—T7761dp6Hnd;pül : 777€3Müg + T776193Ä(6H‚\77;3 — 6H3„(>\)ü19 E E S“ (5.8)

one can substitute equations (5.6) and (5.7). Then it becomes possible to carry out partial integrations

along the curve g. Finally substitute equations (3.6a) and (3.8a) for ÖHAK and (57-63,» Renaming some

dummy indices where necessary we have

1

If: I? + 21 I/TUE3Ä1956UJÄWÜ3MdS — /’T776793’\(Öw(‚\;3) — 6w3;‚\)ü.9(„ ds

g g

—/T"€193’\6w‚\;3ü.9|„ds—/T’763“’76w(n|.9)ü3(„ds

g y

+ Z { €793A(6’LU()\;3) — (51U3(/\)’Ü/79 €63Ä(

i:1‚3

  

P1‚i+1 }P1i — 5w(/\s3) _ 6w3|/\)fl19

Observe that the terms denoted by 21 are those one obtains for multiply connected regions and mixed

boundary value problems.

Now we turn our attention to the line integral 1;? + Ilc‘s’“ — see equations (3.15) and (3.17) or the last

line of expression (5.4). Decomposing the sum Tneldpendméw; i see equation (5.8) for details # and

substituting equations (3.6a), (3.8a) and (5.5) we find after some rearrangement that

1;? + 1165” : 77763Ä19619n;‚\6w3 d5 + /T776195A(e{m3 — 63,17,”)61019 ds

g

+/T"egnör3ds+/7’776"”36:196w[„;3]ds (5.10)

g g

A more suitable form of line integral I? can be derived if one substitutes equations (5.9) and (5.10) for

[1G and If + [law and then equations (3.6a) and (3.8a) for (571M and (5ng in [2G — see the third line in

expression (5.4). Next substitute equation (5.5b) for 63me in the [last] {first} line integral in [[1G (5.9)

] {12G After some rearrangement it becomes possible to utilize the transformation

A d A
/T"e’“93(eg3 — u3(„)5w„9(„ ds : — / E [€M93(€g3 — u3(„)]6w19 d3 + E2

g g

where

22 = Z {6"193(e£{3 _ 213,.) [nymph — Mae; — am) {minim} (5.11)

i=1‚3
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If in addition to this the right hand side of [IG is ’enlarged’ by

in which

1 3/\19A
_ 5€ WM [am] (5.12)

1 A
23 : Z { 5639191179” [(51113]

i=1‚3

  

P1‚i

then, upon a subsequent rearrangement, we have

d 1 1

0 : — f E- {553Waflfl} 6103 d8 -l- /T775€3M9Ü„91‚\5w3m d8 + 23

g S 9

P1‚i+1}

IIG: I§+I§+I§+If5w+21+22+23 =

d
_—_ /{Tn619’\3(619m3 i 0377W) # fikfl/wfiigg — 113‘19)]}6w,\d8

9

63w d l smA
+ eflnlp — $(26 UMA)]6U}3 dsw

9

+/(e5{3 — e53)6r37"ds + 1g + 21 + 22 + 23 (5.13)

9

In the above equation

[60: —/Tn€'93’\2fL(n‘19)6w(M3)dS—/TUEflBAele)6w[3IA]dS

9

63A(A n

We Win) - “1191779574131de+

TUEÜSÄÜ[7]‘19]Öw[3‘‚\]dS + /T776193’\eä119)6w(3|‚\)d5 =

9

/

+/
: /Tn6193>‘(eg7‘19) — awwfldwwy/wds — /T776193’\ (saw) — Ü(n‘„9))6w[3'/\]d8

9 9

9

9

9

(5.14)
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