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The Impact of Laminate Surface Cracks on Surface Quality

W. Becker

Within a thermally loaded [90°/0°]s-cross-ply laminate a transverse mairiz crack in the upper ply is
considered as an idealized model defect. With the crack emergence the laminate does not remain di-
mensionally stable, but due to a redistribution of local siresses some corresponding laminate deformation
occurs. The analysis of the crack resultant laminate deformation can be performed by a higher order lami-
nate theory specially formulated for that purpose. For an appropriately chosen set of kinematic variables
the consideration of stress equilibrium leads to a system of differential equations which can be solved in
a closed-form manner. The corresponding solution includes the representation of all deformation aspects
and in particular allows to quantify the resultant effective lamninate surface roughness.

1 Introduction

Within the last years CFRP (carbon fiber reinforced plastic) laminates have demonstrated their use-
fulness also for such lightweight applications where an extremely high dimensional stability is needed.
Important examples for that are thermally loaded mirror carriers for antenna reflectors where the surface
smoothness has to meet optical quality requirements (Salmen et al., 1993; Ehmann et al., 1994). Typi-
cally the operating temperature of a CFRP laminate is well below the curing temperature. Then due
to the anisotropic thermal expansion properties of unidirectional CFRP plies a laminate gets thermally
prestressed. In general the coefficient of thermal expansion is close to zero in fiber direction (or even
slightly negative), whereas in transverse direction it is clearly positive and of a significant magnitude.
For the laminate below curing temperature in the individual unidirectional ply this leads to compressive
stress in fiber direction and to tension stress in transverse direction. Thus transverse matrix cracks are
prone to develop. If a matrix crack actually evolves, its crack faces become stress-free and thus local
stresses are released with the opening of the crack. Then the main detrimental effect is not just the crack
opening (appearing as a scratch on the laminate surface) but it is the accompanying redistribution of
cross-sectional forces and the resultant laminate deformation. This deformation and the corresponding
surface degradation are to be analysed in the following.

2 The Problem Considered and its Analysis

As an idealized model defect situation the case of a [90°/0°]s-cross-ply laminate is considered, where for
a negative temperature load AT < 0 (i.c. operating temperature below curing temperature) a matrix
crack has developed in the upper 90°-ply, as it is schematically shown in Figure 1.
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Figure 1. Idealized Model Defect Situation

307



For the analysis it is appropriate to consider the three lower intact plies together as a sublaminate
I whereas the upper 90°-ply is considered as a sublaminate II. For an idealized representation of the
displacement field within the laminate four kinematic variables are introduced which are pure functions
of z, namely the displacements uo(z) and w(z) of the laminate midplane in z- and z-direction and the
deflection angles ;(z) and p2(z) of the respective sublaminates I and II. By means of the functions
introduced the displacement field within the whole laminate continuum (sublaminates I and II) can be
represented as follows:

ulz, 2) { uo(z) + zp1(x) for z< %
; uo(z) + Bp1(z) + (2 — 2)ga(z) for 4 <z2<E -
’U)(.’E,Z) = w(g;)

According to the standard strain-displacement relations the displacements (1) give the following strains:
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From the strains (2) with Hooke’s law the following inplane stresses o, and oy occur in the individual
laminate plies:
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Herein the quantities @ij are the standard reduced inplane stiffnesses (Jones, 1975; Tsai and Hahn,
1980), eI and 6:5 are the thermal strains in = and y-direction, respectively, and €, is supposed to be
constant in accordance with the underlying thermal loading:

T = 0, AT el = oy AT gy = al O AT (4)

where the quantity ag;égoo denotes the effective coefficient of thermal expansion of the whole laminate.

From the transverse shear strain -y, on the other hand respective transverse shear stresses result in an
averaged sense, namely
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The quantities G% and G99 denote the effective shear moduli of the 0°- and 90°-plies.

For the determination of the unknown functions u§), w', 1, and ¢y use is made of the equilibrium con-
ditions in z- and 2-direction:

Oz,x + Tzxz,z = 0 (6)
Tzzxe +0z,2 = 0 (7)

With the displacement field (1) the equilibrium conditions cannot be fulfilled in an identical manner at
any point (z, z) of the laminate continuum, but they can be fulfilled in appropriately averaged ways.

When the equilibrium condition (6) is integrated through the whole laminate thickness from z = —h/2
to z = h/2 taking into account that the laminate is free of shear (7., = 0) at its top and bottom surfaces
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and that there is no resultant inplane force we have

h/2

/ ool =10 (8)

—h/2

When the equilibrium condition (6) first is multiplied by z and then integrated through the whole
laminate thickness there results

/2
d
= / ox2dz =0 (9)
—h/2
When the equilibrium condition (7) is integrated from z = —h/2 to z = h/2 it represents the statement

of a constant resultant transverse force. In the absence of transverse loadings the resultant transverse
force will be equal to zero, giving

3 1

Zm;z - Zhrﬁ =10 (10)
Finally, from the equilibrium condition (6) by direct integration through the upper 90°-ply and by
integration after multiplication with the thickness coordinate z the following relation can be obtained:

h d
— [ og2dz - T 0.dz — =1,, =0 (11)

By means of relations (2), (3) and (5) the stresses in the (integrated) equilibrium conditions (8), (9),
(10) and (11) can be traced back to the underlying deformation quantities, which eventually gives the
following system of coupled differential equations:

0 0 0 0 ’LLIOH 0 0 B13 Bl4 Ug
0 O A23 A24 w'! i’y 0 0 0 0 w"
00 O 0 oy 0 0 O 0 7
0 0 Agp Ay Py | Bu 0 0 0 Nz
(12)
F Cll O 0 0 T uo
0 0 0 0 w'
- =D
0 Cs Cs3 Ca P1
| 0 Cio 0 Cu | | ¢
Within that matrix form representation the individual non-zero components in detail are:
Az = %h:s@u(goo) + §1§h3611(00) Azg = %hsan(goo) Agz = E%Ehsau(goo)
Ay = 155h3Q1; (90°) Biz = —£h%Q;(90°) + £h2Q;,(0°) + 15h7Q1;(90°)
By = 3h%Qy;(90°) By = 3;h7Qy;(90°) Cn = 3(Q11(90°) + Q1 (0°)]  (13)
Cs2 = 2G%+2G3% Css3 = 2G5 + G35’ Csq = 2G3Y
Co = -4G3% Cu = —3Gi¢
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3 Closed-Form Solution

The system of differential equations (12) is linear with constant coefficients and thus can be solved by
standard methods. For the solution a representation of the kind

u) i

w' — w! - ]
o | = | @ e (14)
V3 vy

is chosen with still undetermined constants U’, W', &, ¥ and ). Substitution of representation (14)
into the system (12) leads to an eigenvalue problem with the trivial eigenvalues Ay = Ay = 0 and the
nontrivial eigenvalues Az = +X, Ay = —A with

—C11C42(CagAzg — AszAza) — C11C32423C 4

= 15
C11C33 A3 Agg — C11C32 Agz Azg + By C32 Bi3Azq — By C32 Az By (15)
The corresponding cigenvectors are
Ty ] U, [ 0
Wil _ W3 _ —C33C44
Py ®, C32C44 — C2C34
| ¥y | v, | Cy3C33
) ) ) (16)
Us Uy C32A(B13A24 — B14A23)
Wé o Wi s 011(1423034 = A24C33)
Py 7 C11C32424
L s ] Ty L —C11C32423
With that the general solution of (12) can eventually be given as
ug) 0 Uil Uy
w' — Wll W.; Ax I/Vzi’ —Az
o1 = (Cy + Csx) o, + Cs o, e + Cy o, e (17)
2 \Ijl ‘IIS ‘1’4

where the constants C; to Cy are still to be determined from given boundary conditions.
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Figure 2. Periodic Crack Array Considered

Of particular practical interest is the case of neighbouring cracks that in an idealized way are arranged
periodically with a characteristic distance 2d, see Figure 2 . The corresponding boundary conditions

h/2
01(0)=0 p1(d) =0 wa(d) =0 / 0.dz =0 (18)

e =0
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lead to a system of four linear equations from which C to C4 can be determined easily in a unique way.

For the assessment of the laminate deformation most important is the normal deflection w. According
to the solution (17) obtained we have (after performing a simple integration for w')

2 1 1
w(z) = (c13B 4 C2%> Wi + Xcgwge*z = X(AWQe’“ (19)

As a simple indicator for the effective surface degradation the peak-to-valley value Aw = w(0) — w(d)
can be considered.

In order to assess the predictions of the analysis approach presented so far, a laminate with b = 1 mm
and d = 2h = 2mm and the following single ply properties is considered (T300/epoxy):

Ey = 135000 MPa E, = E3 = 10000 MPa
V19 = Vo3 = V13 = .27
(20)
G12 = G13 = 5000 MPa G-zg = 3972 MPa
a = -0.6-107%/K a; =40-107% /K

From these data all other constitutive properties (as e.g. the reduced stiffnesses) can be calculated by
standard relations of classical laminate theory (Jones, 1975; Tsai and Hahn, 1980).

For a temperature load of AT = —150K the closed-form analysis presented yields a resultant surface
degradation of Aw = 1.18 um, i.e. a peak-to-valley deformation in the order of about one micron.

4 Comparison with Finite Element Analysis

In order to ensure that the derived closed-form analysis gives realistic predictions a comparative finite
element analysis has been performed by means of the finite element code NASTRAN. In doing so, each
laminate ply has been discretized by five layers of volume elements within the range of z =0..d.

The laminate deformation (for AT = —150K) determined by finite element analysis in an appropriate
scaling is shown in Figure 3 . The peak-to-valley value Aw results as Aw = 1.33 pm, which means a
good agreement with the closed-form result Aw = 1.18 um. Due to the kinematic assumptions introduced
the closed-form model behaves somewhat stiffer than the finite element model which is not surprising.
In contrast to the finite element analysis the closed-form results can be directly exploited for altered
geometries (varying laminate thickness h, crack distance 2d etc.) and they allow to discuss parameter
sensitivites in an easy way.
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Figure 3. Deformation Determined by Finite Elements
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Figure 4. Surface Roughness Aw(h,d/h)

5 Discussion of Effective Surface Roughness and Conclusions

If the peak-to-valley value Aw is taken as a measure for the resultant effective surface roughness it is
relatively easy to assess the corresponding surface degradation as a function of the geometrical cha-
racteristics h and d (or equivalently h and d/h). Accordingly, Figure 4 shows the resultant effective
surface roughness Aw as a function of h and d/h, Aw = Aw(h,d/h), for the range h = 0.5...5mm and
d/h = 1...10.

It can be noted that the surface degradation Aw is the larger the larger the laminate thickness h is, and
the larger the relative neighboring distance d/h is. The last statement is remarkable insofar as it means
that a larger distance of the cracks to each other is more harmful than a smaller distance. On the other
hand this means that in terms of the peak-to-valley value Aw the effective surface quality improves with
an increasing number of surface cracks (higher crack density, smaller neighboring distance).

Thus, for a good surface smoothness it is desirable either to have no surface cracks or to have a sufficiently
high number of surface cracks. Most critical are just a few cracks.

Considering the magnitude of the surface deformation it has to be stated that this can easily attain a non-
negligible and serious amount. For a laminate thickness of h = 2 mm and a characteristic neighboring
distance of 2d = 40 mm for example it is predicted that Aw ~ 8 um which may be unacceptable.

On the other hand from the derived results it is clear in which way the unwanted deformation can be
reduced. Of course, it can be reduced by use of a thinner laminate. If for some reason (e.g. for sufficient
bending stiffness) a relatively thick laminate is required it can be recommended to reduce the individual
ply thickness and correspondingly increase the total number of individual plies. The analysis of transverse
surface cracks in a thermally loaded cross-ply laminate with more layers (e.g. with [(90°/0°).]s-layup)
can, in principle, be performed in just the same way as has been demonstrated.
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