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Stress and Strain Fields in Cracked Damaged Solids

A. Benallal, L. Siad

The crack tip characteristics are analysed for an damaged elastic solid exhibiting softening. A closed—form

solution is constructedfor an antiplane crack when the residual stress carried by the material is non—zero and

the crack tip behavior is well understood. However, when the residual shear stress is zero, difi‘iculties that

arise in the construction ofthe solution are pointed out.

1 Introduction

An adequate knowledge of the crack tip field is necessary for any fracture analysis. For a power—law hardening

plastic material, the crack~tip field possesses the so-called HRR singularity. The crack behavior for softening

materials is considered in the present paper.

The problem of an antiplane crack in an elastic—damageable material is investigated in detail. The-

corresponding nonlinear boundary value problem is solved in closed form within the assumption of small scale

damage. This solution is obtained via the hodograph transformation. Materials considered here behave linearly

up to a given shear strain, harden up to a peak, soften up to a strain beyond which they support a constant

residual shear stress.

Two features of the above behavior are important in the construction of the solution. The first one is the

presence of the softening which leads to solutions with discontinuous displacement gradients (Knowles and

Sternberg, 1981), the other is the value of the residual shear stress carried by the material. When this residual

shear stress is different from zero. a full solution is constructed by matching two solutions corresponding to

elliptic and hyperbolic regimes of the field equations respectively. The stress, strain and damage states are

explicitly obtained and allow to understand the crack behavior for this type of material and in particular the

singularity of the strain field. Also the shape and size of the damaged zones ahead of the crack are related to

the loading parameter.

When the residual shear stress is zero, however, the situation is much more complex. Fundamental difficulties

arise in the construction of the solution. Indeed, the solution constructed (when the residual shear stress is non

zero) blows up in the limit when the residual shear stress tends to zero.

2 Formulation ofthe Basic Equations

2.1 Statement of the Problem

For convenience. we treat the antiplane deformation problem here. We consider a mode III crack in a

homogeneous isotropic elastic-damaged material. The semi-infinite crack occupies the negative part of the x—

axis, Referring to the rectangular coordinate system (x, y) shown in Figure 1, all stress and strain components

are zero except 5x1 six. Eyz E Ey, Y“ E 17x and i'yz E ß, where z is the coordinate axis perpendicular

to the plane of Figure 1. The equilibrium equation reduces to (no body forces)

35X Sty
+ —

8x äy

 

= 0
(1)

and the strain-displacement equations are written as

- öw _ aw

l'y — a—y (2)
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Figure 1. Problem under Consideration

Then we have a single compatibility equation

8?); fly_a = a— (3)

y X

The effective stress Y and strain Y are related to the stress and strain components by

—2 —2 —2 —2 _ —2 —2
Tzrx+ry Y—Yx+Yy

The components Yx and Yy are related to the effective strain Y by (see inset of Figure 1)

Yx = —?sin¢ Yy = -Ycos<1> (4)

We adopt the assumption of proportional loading, so that the components of stress and strain are related by

_ Y Y _ _ 7c Y _

1x = —(.)Yx Ty = —_)Yy (5)
Y Y

3 Elasticity-based Damaged Models

Continuum damage mechanics deals with the load carrying capacity of solids without major cracks but where

the material itself is damaged due to the presence of microscopic defects such as microcracks or voids. Here we

restrict ourselves to an isotropic damage formulation. The material under consideration is an elastic—damaged

softening one. From the hypothesis of strain equivalence the stress tensor 6 is given in terms of the strain

tensor 8 and the damage parameter D by

G" : " 8k]
1/

where Ei,“ is the fourth-order tensor of the elastic undamaged material. The parameter D reflects the amount

of damage which the material has experienced. It starts at zero (sound material) and grows to one (fully

damaged material corresponding to complete loss of coherence).

The damage strain energy density is given by

1

Y : EEiJ-kl Ekl

The damage criterion (or the damage loading function) fdepends on Y and the damage variable D
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f = f(Y;D)

fis such that during progressive damage evolution, the identity f: O holds, otherwisef < O. The kinetic law of

damage evolution is derived from the damage criterionf

. _ .a_f _

D _ Mann) (8)

where Ä, is the damage multiplier. In the sequel we firstly limit ourselves to local theory of damage, and

secondly we choose for the function f the simple expression

f(Y;D) a J7 — k(D) : m + MD

where M is a material constant. The history term k(D) measures the largest value that has been attained by the

damage strain energy density release rate Y. Accordingly, it is a non-decreasing function and grows only when

f(Y, D) = O. Provided the damage criterion is satisfied, D takes the simple form

_ yo

cr— 7/0

D =
(9)

<
|

«
ä
l

where 70 and Y5, are the yield and critical shear strain, respectively. In the sequel, the material on hand is

treated as fully damaged when

a = 5,, D : ——3’"_ Y." (10>
Yer — Yo

where the material constant flu : ä<1 + 1 — E”) is the ultimate shear strain beyond which the

material is considered fully damaged. At this point we haVe all ingredients we need to write down the

constitutive equations. To this end, it is more convenient, as will become clear later, to introduce the non-

dimensional quantities

I = 470(1 — to); v = g v, = (11>

  

The shear stress 1: is then given in terms of the shear strain 7 by

4(1 - 70)?! if 7 < 7,,

T= 40-107 inst/<7” (12)

Tu if Yu S Y

Figure 2 shows the curve (T, y) where the peak corresponds to Y 2% and T = 1 . We mention in passing two

features of the material considered. First we note that after the peak the stress decreases as the strain increases

(softening) and second, when the material is fully damaged the residual shear stress 1,, may go to zero. Indeed,

the analysis to follow will be carried out for "cu i O and then the limit when “Cu —9 O will be considered as well

Besides, the previous constitutive relations are only valid for loading cases. We assume in this paper that

unloading does not take place.
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4 Elliptic and Non-elliptic Solutions

4.1 Hodograph Method

In order to obtain the whole solution to the crack tip fields we use the hodograph transformation first used by

Rice (1967) for the problem of a sharp notch in a semi-infinite plane made on with a power—law material and

loaded by longitudinal shear. This transformation treats the physical coordinates (x, y) in the physical plane as

functions of strain 7,, 33 in the hodograph plane. By doing so, the nonlinear problem is reduced to a linear

boundary value problem in the hodograph plane. For the following, it is more advantageous to use the polar

coordinates system (7, (b) in the hodograph plane shown in Figure 3, where (1) is the angle, measured positive

counterclockwise, between the principal shear strain and the y-axis.

Shear stress vs. shear strain
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Figure 2. Idealisation of Elastic Damaged Behavior
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Figure 3. Physical and Hodograph Planes

From the compatibility equation (3), a scalar function w = My, (1)) is found to exist such that the physical

coordinates x and y are related to its derivatives by

 

x = —sin¢%"(v,¢) — “mg—EM)

. (13)

y = Costa—WW) - mains)
ÜY 3(1)

It can be readily shown that the antiplane displacement w in terms of the potential function \|l('Y‚ (1)) is given by
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MM) = valor) — wot) (14>

The potential function w satisfies (Rice, 1967)

M) 82v 8v 1 32w
—-——— — ‚ -— ‚ = 0 15im avg (Mn) + av (7 ¢) + Y Mg (Y (b) ( )

and the associate boundary conditions

an! +112]
__ ‚__ = 0 16am [y 2 < >

In equation (15) “((7) stands for Physically, the fully damaged zone is expected to be located in the

Y

immediate vicinity of the crack tip, or what amounts to the same thing, the crack tip x = y = 0 is the point at

infinity in the strain plane. Thus r —> O as Y a w .

It must be remembered that the governing differential equation (15) is of mixed elliptic—hyperbolic type and is

well known in the theory of transonic flow. Indeed, the type of equation (15) depends on the location of the

material point at hand. As outlined for instance by Zhang et a1. (1994), equation (15) is elliptic for Y <ä

. i . . . 1 i

which corresponds to t’(y)>0, that is for stra1n hardening materials, and hyperbolic for §<YWthh

corresponds to 1(7) < O, that is for strain softening materials.

4.2 Construction of Solutions

A particular solution w of the governing equation (15) which meets the boundary conditions

Bib, i?) : O can be constructed through a separation of variables of the form

54>

vb, ¢) = f(v)sin<1> (17)

By means of equation (15) the unknown functionf satisfies the ordinary differential equation

Y%f”(7} + my) - m) = o (is)

where (’) and (”) stand for the first and second derivative of f with respect to 7. The fully damaged zone is

expected to be located in the immediate vicinity of (the crack tip. Thus r —> O as Y —-> <><>‘ 1t ensues from

2

‚ . 1
r = [f (y)s1n2¢ + Vf2(v)cos2¢]

that fly) is such that

f’(y) —> 0 as y —> o<> (19)

to which we may add another condition to make f definite. It is straightforward to establish by substitution of

equation (17) into equation (13) that the physical coordinates x(y‚ (1)) and y(y‚ (1)) are given in terms of 7 and q)

by

x = X(y) + R(Y)c0s2q> y = R(y)sin2¢ (20)

with

Rm = glam — firm] xm = firm + gm] <21)
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By means of equation (14) the antiplane displacement My, (1)) may be put in the form

w(v, o) = 27 R(Y)sin¢ (22>

The geometrical interpretation of equations (20) is immediate: the lines along which Y and 1(7) have constant

and positive values are circles with radius R(y) and centered on the x-axis at the abscissa X(Y). The solution of

equation (18) imposes to treat separately the types of behavior that a material point could meet. Let us indicate

some striking features of the iso-strain circles inside the yet undetermined elastic, damaged and fully damaged

zones. In the sequel, the subscripts e, d and f for the function f stand for elastic, damaged and fully damaged,

respectively.

1. Solution in the Elastic Zone

Far away from the crack tip the material is elastic and therefore the potential w is harmonic,

that is Ayww, (1)) = O. The corresponding solution is that given by Rice (1967)

1

12(7) = —A(; + BY) (23)

1 K 2
with A ‚K = T„Jna and B will be determined later on. Thus, inside the elastic

TE To

region characterized by Y < Y0 the iso—strain circles are such that

A
Rem) z y—z X,(y) : AB (24)

Figure 4(a) represents the iso-strain circles corresponding to the elastic zone in the physical plane

normalized by the load parameter A. These circles are concentric since Xe(y) is independent of y.

2. Solution in the Damaged Zone

In the circumstances where 72 yo , a solution of equation (18) is

 

v d
121(7) z CYJY “2:210 + DY (25)

as can readily checked by substitution. The constants C and D are, as will be seen later, related

to the constants A and B associated to the elastic solution through the continuity requirement of

the physical coordinates x(Y, (1)) and y(Y‚ (p) with respect to y. Inside the damaged zone, where

Y 2 7,, the iso—strain lines are, once again, circles whoose radii and centers are respectively given

 

by

C 1
RAY) - gm

(26)

g (1 - 27) 700 - v) 1 + 270

X“) “ also — v) + “We — in) i3 D

3, Solution in the Fully Damaged Zone

Inside the yet undetermined fully damaged zone for which 7,, S y and T = Tu ‚ a solution of

equation (18) is readily obtained

fin) = Ev + F (27)

where E and F are constants to be determined. The requirement f;(y) —> O as 7 —> 0°

imposes E = O. The constant F will be determined later on from the continuity conditions.

Consequently in the (x, y) plane corresponding to the fully—damaged zone we have
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F

R/(Y) = -5; X,(y) : Rf(y) (28)

As expected we find that this sub-family of circles are tangent to the y-axis (Figure 4(c)).

We note that for a point located in the neighbourhood of the crack tip, there may exist three iso—strain circles

which pass through that point (Figure (4d)). To determine the actual solution, we must account for the

matching conditions which in turn impose some constraints This is the object of the following subsection.

4.3 Matching Conditions

So far we have formally solved the governing equation (15). It remains to specify the constants of integration B,

i— , €— and ä and the domain of the physical plane where the solutions obtained are valid. First of all, the

physical coordinates x(y, (1)) and y(y, 4)) must be continuous functions with respect to their arguments.

Elsewhere, the actual boundaries separating the different zones are characterized by two others constraints

0 w(y‚ (1)) as defined by equation (22) is continuous

0 the tractions too are continuous accross these boundaries.

   

>
l
>
<

  

      

(a) ISO-strain circles in elastic region: (b) {so-strain circles in damaged region:

Y S 70 Yo S Y S Yu
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(c) ISO-strain circles in fully damaged region: ((1) Three iso-strain circles pass through some

7" S 7. Also represented the circle 7 = 7., points located in the vicinity of the crack tip

Figure 4. ISO-strain Circles in Different Regions
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1 . Continuity of the Physical Coordinates

The requirement of the continuity of the physical coordinates x(y, 4)) and y(Y‚ (1)) with respect to y

imposes the relations

 

 

C T
_ : 2_0_ : 81 _
A 0 ( Yo)

2 z _ 1 _ i (1 +2270) _ (1 +22yu) + 2h13/„(1 — yo)

C Yul-u 8 Yo Yu 700 _- Yu)

D 1

B 2 ~81 — — — —— 29( mc YO ( >

i _ _L

C .— Tu

It is worth noting that

lim B = +<>o (30)

“cu—>0

which means that the centers of the different iso—strain circles corresponding to elastic solutions

are extended to infinity. In that case, the small damage assumption is violated. The interface

between the damaged zone and the elastic one is the arc of the iso-strain circle 7 2 yo limited

by the intercepts of both circles y: Y0 and Y = Y“ .

2. Continuity of the Displacement and the Tractions

We turn now to the question of the determination of the interfaces between the different zones

around the crack tip where we have at our disposal two or three solutions. These zones which

differ one from the other by the level of damage suffered, meet at a common boundaries 5 which

can be determined from the continuity of the displacement w(y‚ (1)) and the traction 1(7, (1)). The

shape of S is not known beforehand except the fact that s is symmetric with respect to the x—axis.

Besides, the curve is expected to be composed with much branches since different material

behaviors are met in the neighborhood of the crack tip, and hence the type of solution changes as

the branches are crossed.

One of the salient features of the previous geometrical comments is that in the vicinity of the

crack tip there exist three or two solutions, depending on the point considered. The number

of solutions is exactly the same as the number of iso—strain circles passing through that point. In

some regions of the physical plane (x, y) there exists only one iso-strain circle passing through

a given point. Hence the solution at that point is completely determined. This is the case, for

instance, for remote points for which the material behavior is still elastic. However, as it is the case

in the immediate vicinity of the crack tip, there are two or three iso-strain circles which pass

through a given point. The actual solution is the one for which the displacement w(Y‚ 4)) and the

corresponding traction {(7, ¢)are continuous across the curve 5, yet unknown, which separate

two adjacent zones. The expression of the displacement w(Y‚ (1)) is readily obtained from the

combination of equations (22) and (20)

w
o
l
v
—

1

WW, ct) = Y[2R(1)]2 [X(Y) + Rh!) - x] (31)

A parametric representation of the curve 5 may be obtained through the use of the Knowles

and Sternberg’procedure outlined in Knowles and Sternberg (1981). For the sake of brevity, this

procedure will not be repeated here
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Figure 5. The Shock Curve 5 together with the lso-strain Circles y: Yo, y = ~2- , and y: Yu

The location of the different zones are displayed graphically in Figure 5. Note in passing that the different

branches of the curve 3 , obtained separately, fit continuously one to each other. Regarding the check of the

continuity of the traction accross the curve 3 , the proof is the same as the one given by Knowles and Sternberg

(1981).

The shape for the different zones is shown in Figure 5. The damaged zone is composed with both hardening

and softening damaged zones. The foregoing results do not account for unloading cases, although physically

plausible. Zhang et al. (1994) have shown that unloading zones prevail with a reduced tangent of the boundary

S at the crack tip.

5 The Crack Tip Field Characteristics

One may now determine the nature of the crack tip singularity. Of some interest for fracture mechanics are the

fields directly ahead of the crack tip on the x-axis where (p = O. Inside the fully damaged zone where T = Tu and

which originates at the crack tip, the relations (20) combined with equations (28) simplify to

F

X = KM) + RM) = 2Rf(Y) = 7

which in turn implies that

81 — 0
Y = _(__XL) (32)

tut—lA

To find 19 (x, 0) and Ty (x, 0) use will be made of equations (4) and (5) with (l) = 0

7y(x‚0) = M : K2£1TllT
wi

0 u

(33)

Iy(x, O) II a

This is an expected result since for 'y 2 ’yu the stresses are constant and equal to I" ‚ as for perfect plasticity.

Notice in passing from the formula (33)1 that the shear strain yy (x, 0) tends to infinity when the residual shear

stress 1., tends to zero. In fact, in this circumstance the solution obtained blows up and is no longer valid since

in particular, the small scale damage assumption is violated.

303



6 Concluding Remarks

While a complete solution has been obtained for the antiplane crack in an elastic damaged solid, difficulties

arise when the residual shear stress carried by the material is zero. These difficulties seem to be related to the

absence of a singularity (for stress and strain) and to the idealisation of the crack as a line. To overcome these

difficulties, two lines are followed: modelling of a crack as a damaged zone with a finite thickness in the spirit

of the work by Bui and Ehrlacher (1980) and introduction of nonlocal effects.
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