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Optimal Design of Rotationally-Symmetric Disks

in Thermo-Damage Coupling Conditions

A. Ganczarski, J. Skrzypek

This paper demonstrates a concept of coupling between the rheological and the thermal properties of a

material, applied to arisymmetric problems. The damage tensor, which appears in the constitutive equa—

tions of creep and damage and, on the other hand, in the combined heat flow—radiation rule, plays a

role of the variable introducing coupling. As example, an antisymmetric disk subjected to creep damage

under combined mechanical and thermal loadings is considered. The concept of uniform creep strength is

extended to optimal design of disks when coupling between the mechanical and the thermal fields is taken

into account.

1 Introduction

Creep process and associated material deterioration are temperature sensitive. The classical approach

consists in accounting for the effect of temperature on the material constants in constitutive equations of

creep and creep damage. When more advanced approach is used, the thermo-damage coupling is required

in order to take into account changes of temperature field, caused by deterioration, and vice versa.

1.1 Brittle Rupture Mechanics of Axisymmetric Disks and Plates Subject to Creep under

Mechanical and Thermal Loading

Recently, on the basis of continuum damage mechanics, authors have analysed creep rupture mechanisms

in axisymmetric disks and plates subject to thermal and mechanical loadings. Ganczarski and Skrzypek

(1992) consider clamped annular disk subject to creep under radial tension, body forces due to rotation,

and the temperature gradient. The orthotropic damage growth rule is combined with the flow theory

and the time hardening hypothesis, in order to analyse failure mechanisms in the disks of a jump-like

variable thickness. Influence of the initial prestressing on the localization of first macrocracks in disks of

a constant or a variable thickness is examined in Ganczarski and Skrzypek (1992).

The extension to the case of both membrane-bending states, when an axisymmetric sandwich plate of a

constant thickness is initially thermally prestressed by the elastic ring or by the cylindrical shell, is done

in Ganczarski and Skrzypek (1993). In case of a plate fitted into the cylindrical shell, depending on the

prestressing parameters two failure mechanisms are distinguished, when either the circumferential fibres

in the central zone of the interior layer, or the radial fibres along the periphery of the exterior layer,

suffer first macrocracks. A general formulation in the case of prestressed plates of variable thickness is

developed in Ganczarski and Skrzypek (1994). The orthotropic damage growth rule is coupled with the

isotropic or the orthotropic creep law (weak or strong creep—damage coupling). The unilaterally coupled

Karman system extended to the case of visco-elastic plates of variable thickness is used to describe

membrane—bending states. An additional membrane-bending coupling is due to boundary excitation,

when force or displacement type, and membrane or bending type plate prestressing is considered. Further

generalization consists in accounting for the effect of transverse shear due to the Reissner’s theory of

thick plates (cf. Ganczarski at al. (1997)). The shear effect causes, in general, rotation of the principal

directions of the damage tensor following the principal directions of tension. Therefore, this formulation

requires to associate all constitutive relationships with a corrotational coordinate system and use an

objective measure of damage rate tensor.
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1.2 Representative Formulations of Optimal Design Problems of Structures under Creep

Conditions

Optimization problems under creep conditions have been formulated and classified by Zyczkowski (1988).

Generally, constraints may be imposed on brittle, ductile or mixed rupture, strength, lifetime, creep

stiffness or compliance, residual displacement, stress relaxation, creep buckling, dynamic response, to

mention the most important cases On the basis of continuum damage mechanics the structures of

uniform creep strength may be defined (local optimality criterion). When brittle rupture is considered

the first macrocracks appear simultaneously either everywhere or, at least, along appropriate lines or

surfaces to produce a. rupture mechanism (cf. Skrzypek and Egner, 1993; Ganczarski and Skrzypek,

1994). When optimal design with respect to ductile rupture is sought the structures of uniform initial

strength or uniform deformability may be defined, where initial principal stress components are equal

throughout the structure or principal strain components are equalized at each time step (cf. Szuwalski,

1989)

In general, with geometry changes or non—stationary loadings taken into account, neither structures of

uniform creep strength nor structures of uniform deformability are optimal with respect to lifetime. This

problem is discussed by Skrzypek and Egner (1993), and by Ganczarski and Skrzypek (1994). In such

cases the optimization should be formulated on a basis of a global criterion (maximum lifetime, minimum

residual displacement, etc), rather than a local one. On the other hand, under thermal loading, when a

brittle rupture mechanism affects the stress relaxation phenomenon, two opposite behaviours result: the

decrease of nominal stresses in time due to stress relaxation, and the increase of net stresses with the

accumulation of creep damage. Depending on the test temperature the question arises whether the brittle

failure occurs at a finite stress level at limited lifetime, or a complete stress relaxation takes place when

the lifetime tends to infinity (cf, Brathe, 1976). Hence, it is necessary to include into an analysis a proper

thermo-damage coupling, when a, temperature field affects the creep-rupture data and an accumulation

of damage influences the temperature gradient by the modified heat transfer law.

2 Basic Equations

2.1 Equation of Heat Transfer through Partially Damaged Solid

Consider an uniaxial representative volume element defirder (where 7i z h + 7dh, 7 E (0;1] is

the mean thickness) as an infinitesimal element which affects brittle rupture at elevated temperature

(Figure 1).

    

 

qrcd+dqrod

qcond+dqcond

i E T(r dr)=T+dT

h+dh

  

Figure 1. Schematics of Heat Transfer through Partly Damaged Cylindrical RVE
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An actual state of damage of the element is determined by the damage parameter Dr (Murakami, 1987).

Hence, we can easily interpret the products Drfirdä and \IlrhrdO as the damaged and the undamaged

portions of the elementary cross section area hrdf) respectively. Due to the dual nature of a partially

damaged cross section the total heat flow rate needs to be decomposed into two parts: the classical

Fourier conductivity through the undamaged portion of the cross section, and the Stefan—Boltzmann

radiation through the damaged portion. The concept of an equivalent coefficient of thermal conductivity

A” (cf. Ganczarski and Skrzypek, 1997; Skrzypek and Ganczarski, 1998) requires, first of all, to compare

the heat flux of radiation through a partially damaged cross section and the heat flux of conductivity

through a fictitious undamaged cross section:

N T

ae„[D‚AOT4(r) — DTAUT4(T+AT)] = —AxmddA0:—r (1)

Next, expanding the temperature T(r + Ar) into a Taylor series around r,

T(r) : T T(r+Ar) = T+g—€Ar+... (2)

and substituting into equation (1) we have

_ . T _. ~ ._ T

060 D„T4hrd9 — D,r (T4 + Ami—Tm + . . mag] z —A)\”dhrd9%; (3)

Neglecting higher order terms, the substitutive coefficient of thermal conductivity in pseudoundamaged

material AN“, responsible for the radiation in the damaged material, is expressed by the formula

AW : 0604DTT3A7” (4)

Therefore, the corresponding equation of uniaxial heat transfer takes the form

1 ö 8T 1 8h 8T ‘
_. __ Eq __ _ __ ('34_ ’ _

T 8?“ (TA 31" ) h 87° A 87' + q” — CWQT (5)

where

W = X + AW X z A„(1 — D.) (6)

In what follows, the process of growth of microcracks in a real material is assumed to be quasi—static,

therefore, the simplified homogeneous form of equation(5) may be considered.

1 d dT 1 dh dT

—— Aeq— —_.. €4.— -‚ =
r dr (r dr) h dr)‘ dr- + ql O (7)

where

W : ‚\0(1 — D.) + 0504DTT3AT (8)

2.2 General Concept of Thermo-Damage Coupling

The essence of thermo—damage coupling is to develop the reciprocal relationship between processes of

creep, microcrack growth and evolution of thermal field.
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Table 1. Concept of Coupling between Creep, Damage and Thermal Properties

Two of the proposals of coupling, based on the flow rule, the time hardening hypothesis and a modified

equation of heat transfer are presented in Table 1 (Ganczarski and Skrzypek, 1995, 1997; Kachanov, 1986;

Tanigawa, 1995; Skrzypek and Ganczarski, 1998). Two consistent formulations, the scalar as well as the

orthotropic, are demonstrated. The orthotropic case results from the general tensorial formulation, when

the principal directions of the damage tensor are materially stationary and coincide with the principal

directions of stress orthotropy (no shear effects taken into account). On the other hand, in order to take

into account the effect of deterioration on the distribution of the thermal field, an extension of the Kassir

concept of a thermally nonhomogeneous body to the case of time—dependent thermal non-homogeneity

is suggested (Tanigawa, 1995). It is postulated, that the evolution of coefficients of thermal conductivity

and the phenomenon of radiation in an extended equation of heat transfer through a partly damaged

body are associated with corresponding components of the damage tensor (Ganczarski and Skrzypek,

1995, 1997, 1998).

2.3 General Equations of the Mechanical State

Let us consider the general formulation of an axisymmetric plane stress problem. The geometrically

linear theory of small displacements and decomposition of total strains into elastic, creep, and thermal

parts: 5 : 56 + EC + 6th are assumed. The general mixed approach, originally derived for the plate under

combined membrane—bending state, where the equation for the membrane state is written by the use of

the Airy function, whereas the equation for the bending state is written by the use of the appropriate

deflection function (cf. Ganczarski, Skrzypek, 1994), is applied. When membrane—bending equations are

reduced to the case of the disk and the following definition of the Airy function n, : (F’/r) + U,

n9 : FH + U, and potential of body forces U, : —gw2rh are introduced, where prime symbol stands for

the derivative with respect to r, we obtain

 

HF] + (1 — v)ß(r)v‘2 + (1 — 1/2)B(r)aV2T = o} for T Z O ( )

"c _ VT-Lc U ‚C _ ‚C
9

+ (1 — 1/2)B(r)aV2T + B(7’)V2 + 1+B(r)dir [n%(r;T] : 0} for 7' > 0

where the differential operator .7 as well as the auxiliary operators V2, V4, which are independent
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of the circumferential coordinate, take the form

 

d 1 d3... 2—I/d2... 1 d... d2 1 d2... yd...
_ 4 _ __ __ _ __ __ __ _ _ _____

_ V +B(T)dr [13(7)] (2 dr3 + 7’ dr2 7:2 dr) ‘i—.B(T)dr2 [8(7)] (dr2 r dr) (10)

v2 _ d2... 1d... V4 _ d4 _2_d5... _ _1_d2... +

_ (w + F? _ dr4 r dr3 r2 dr2 7'3 d7-

 

The inelastic membrane forces expressed in terms of inelastic strains and membrane stiffness are defined

as follows:

mm z Bend/swear) 60») = (11>

2.4 Constitutive Equations for Coupled Creep-damage Problem

In general, as loadings are nonproportional, an orthotropic damage rule causes the creep process to

be orthotropic as well (damage included creep orthotropy). Hence, the strong formulation of the creep

damage coupling, where net-stress components are used instead of simple stress components, and the time

hardening hypothesis governs the creep strain-rate intensity, is required (cf. discussion by Ganczarski

and Skrzypek7 1994):

3 5’ t > t m(T) ' „1 2 Ur/e (Te/r
_ Z 71,6, : _nc : _ — k l : ‘

2 3 57, (07. ) f(7') ‘Sr/Ö 3 _1_ Dr/g —-—2(1_ Dö/T) , 7’, 9(12)

The orthotropic damage—growth rule is applied to describe damage accumulation (Kachanov, 1986):

 

_ a nk(T)

13,, = 0m) (1 _’°Dk> (13)

Symbol f (7') denotes a given time function, Macauley bracket, whereas the strain rate intensity, and

the net stress intensity, are defined by the following formulae (Ganczarski and Skrzypek, (1991)):

.. 2. . m 0r 2 Ua 2 Ur 00
*9 : — C C ‚1' ’: —a; V 35mg“ Uz ¢(1_DT) + 1_D9 1—D„ l—Dg ( )

The orthotropic damage is described, in general, by different material functions 0;, (T), nk(T) and in-

dependently cumulating principal components of the damage tensor Dk. In what follows we consider

material isotropy CT 2 Ce 2 C’ and nr : n9 : n, but admit for independent evolution of microcracks

for both principal directions Dr, D9. The other problem arises when the temperature dependence of

creep rupture functions m(T), C (T), n(T)‚ which introduces material nonhomogeneity in the inelastic

range, is considered (Ganczarski and Skrzypek, (1991)). Following Ganczarski and Skrzypek (1991) it

is required in the present paper the quantities m(T), n(T) to be linearly interpolated, whereas C(T)7

which strongly depends on local temperature, logarithmically interpolated.

     

2.5 Formulation of Thermo-Mechanical Boundary Problems

Suppose a disk of variable thickness, which is thin enough to assure the plane state of stress, is considered.

The disk is subject to constant (in time) temperature at the outer edge, its upper and lower faces are

cooled by a stream of fluid, and a centrifugal body force as well as stretching by a constant force at the

edge, are applied (Figure 2).

The mechanical state fulfills equations (9) and the following boundary conditions:

nT(0) : n9(0) nT(R) = paha for 7' : 0

mm) : mm) mm) 0 for 7' > 0
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Radial stress is always predominant and non-negative, hence, the corresponding radial component of the

damage tensor Dr plays an essential role in the equation of heat transfer. The equation of heat transfer

(10) requires an explicit formula for the inner heat source intensity:

  

q.” (lg-f _ Q1) : _

dV rdßhdr

where the surface element and its slope are

l

dA z Tdadr (30519 = —1—— : —— (17)

60519 \/1 + tan2 «9 i/1 + (db/(fir)?

To express the overall efiect of convection through both disk faces, the Classical Newton law of cooling

is applied (Holman, 1990):

 

Qt z Mme—Too) (18)

free convection  
po

Figure 2. Rotating Disk of Variable Thickness (versus Constant Thickness Disk of the Same Volume)

Streched at Periphery and Cooled through Faces

It furnishes the final formula for the inner heat source intensity

q'u = —2fi————WW(T—Too) (19)
h

The appropriate boundary conditions of the thermal problem are

dir/dm:0 = 0 T(R) = To for T : o

dT/drl = o T(R) = o for 'r > o
r=0

(20)

In case of an initial elastic solution (T : 0, Dr E 0) and a constant disk thickness (h,(7") E h0) the

boundary problem of heat transfer (7), (20) can easily be recognized as the classical cylindrical problem

of the associated Bessel equation of order zero.
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3 Problem of Optimization

3.1 Optimality Criterion

Structures of the uniform creep strength must satisfy the following local condition:

TI

Cm + 1) / [gradWflp d7 = 1 (21)

0

for all points r.) E V, or at least, along appropriate lines or surfaces to produce a rupture mechanism

(cf. Zyczkowski, 1988). In case when the condition (21) is simultaneously fulfilled at all points of the

structure, first macrocracks appear simultaneously everywhere, which defines structures of uniform creep

strength with respect to brittle rupture. On the other hand, assuming the orthotropic damage law, the

structures of uniform creep strength fulfil the condition:

sup E 1 for 7' : 7'1 (22)

VTEV

3.2 Constraints

The above formulated optimality criterion requires appropriate constraints, which may take the following

form (cf. Ganczarski and Skrzypek, 1994):

The geometric constraint of the maximum and minimum thicknesses

hmax Z 2 hmin

The constraint of maximum local gradient of temperature assuring the assumption of small displacements

max{dT/d7‘} g (dT/dT)max (24)

The condition of constant volume

R R

V : 27r/h(r)rdr : const or (W : 27T/Öh(r)rdr : 0 (25)

(J 0

3.3 Decision Variable

The distribution of disk thickness Mr) is considered as the decision variable.

3.4 Optimization Methods

The procedure of optimization, based on iterative corrections of the decision variable, has been suggested.

When the optimization with respect to uniform creep strength under constant volume of a structure

is performed, increments of decision variable are proportionally chosen to the level of the dominant

component of the damage tensor (cf. Ganczarski and Skrzypek, 1994)

Ah, : PADj—Ahm AD) : sup{D‚r/9}J. (26)

where the average correction Ahm must satisfy the constant volume condition

,- 73131947“

j 9

whereas the step factor 73 should be chosen experimentally. The process of damage equalization is

continued until the following condition is fulfilled:

sup{Dr/9}j g EPS E 1 Vj (28)
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The suggested procedure is essentially relevant to the concept of the fully damage design method. This

method leads to exact solutions (optimal with respect to maximal lifetime) when the structure is statically

determinate, single loadings are applied, the geometry changes are neglected. If the above assumptions

are exceeded, the uniform creep strength solution may occur to be non-optimal. An exact solution may

be obtained when more rigorous optimization approaches are used.

4 Numerical Algorithm for Thermo-Creep-Damage Problem

To solve the complete coupled initial—boundary problem we discretize time by inserting the ordered

number of N time—intervals Ark, where To : 0, A77, : 77C —Tk„1 and TN : TR (rupture). Hence, the initial-

boundary coupled problem is reduced to a sequence of quasistatic boundary—value problems, the solution

of which determines unknown functions at a given time 7],, e.g. F0371.) 2 F190“), T0“, 7k) = T“ (r), etc.

To account for primary and tertiary creep regimes a dynamically controlled time step Ark is required,

the length of which is defined by the bounded maximum damage increment:

ADZ‘W” 3 max i A779} g ADI‘W” (29)

(MW)

Discretizing also the radial coordinate n, by inserting an equal mesh A7" : n — 17,1, and rewriting

equations (7) and (9) for a time step T}, in terms of finite differences of T,- and E; with respect to the r,-

coordinate, we furnish at each time step Tk the equation for the thermal state

2 +25 1+(—2Ar

(my A554 h,-

  

[ 1 _ —)‘gg1 + Ägi1 —hz’71 + hi+1 1 1

( ZAEqAr 2/1,;Ar ; 2Arl TF1 —

 

2

„ ’hi—1+hi+

+ 1 + —)\:31 ‘l‘ —h‚j_1 + hi+1 +1 1 _ _ 1 + (——ZAT 1)

(my mam 2mm 7» 2m 2“ " A331 h,

and for the differential operators of the mechanical state

4 z -1—_& . . ___4__ L . _6_ ___1_._

V F ‘ [(myl 4m — Ammwl F”; + l (A104 + 7mm] F“ + [mm4 + 2(r — A7") X

1 4 2_________ I _ — 1 47" + 3Ar

X (r + Ammy} F" + l (A714 7mm (my! + 4m + mammal F“

  

F71+1 + [

8d 1 2d3F 2-1/d2F ldF E —hH+hH1

dr 13 d7'3 r d7'2 r—2dr _~ 2b,;AT

E,» 2 2— 1 2—

Xi:—( 2 +< + V ‘l' )qu_1—2’—‘_—I{—qu+

  

Ar)3 (AM3 r(Ar)2 27'2Ar r(Ar)2

2 2 — 1/ 1 Fi+2

+ (”uns + r(Ar)2 ' mm) F7“ + (Anal

 

i l _ Kg g (—hiil + h«71+1)2 _ hiil ' 2m + hi+1

dr2 B dm2 7' dr H 2hf(Ar)2 h,(Ar)2

 

X + ’ (Azszi + ((Ahz “ mum)
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Figure 3. Numerical Algorithm for Coupled Thermo—Mechanical Problem

The numerical procedure begins when the elastic solution of the thermal and mechanical coupled pro-

blems is known. Assuming an initially constant thickness of a structure [hlj E ha, and initial components

of the damage tensor [Dr/913‘ E O, the elastic solution is obtained in the following way. Applying stage

algorithm (cf. Figure 3), first, the equation of heat transfer, which is linear for the elastic problem, is sol—

ved and the distribution of temperature is found [T]j. Then, equations of the mechanical state are solved,

providing the distribution of the Airy function [Fh, and the vector of the elastic state [Tami/6, (Ii/9}]-

is determined. Next, the program enters the creep loop, which requires the vector of net stress intensity,

and the components of damage tensor and strain rates [0?”‚Dr/9,äf/9]j are computed. The thermal

problem is now non—linear, hence, by inserting the previous solution for temperature [T *]j to the substi—

tutive coefficient of thermal conductivity A” the solution of equation (30) provides the new temperature

distribution [T}j, considered next as an aproximate solution for A“? and subsequent temperature sub-

iteration. The procedure is repeated until the calculated functions [Tl]. differs from [T*]j by a given

amount. In consequence, when rates of change of both the temperature j and the rates of inelastic

forces are known Mb, the rates of the Airy function b- are found, and, finally the vector of state
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can be determined {T,71/,r/6,(j',r/g]j. In the next time step, applying the Runge—Kutta II method for the

thermal state and the mechanical state, the ‘new’ vector of state is computed, and the program jumps

to the beginning of the creep loop. This numerical procedure is repeated until the highest value of the

damage tensor reaches a certain level, then the program quits the loop, via the conditional statement.

5 Results

All numerical examples presented in this chapter deal with disks made of the ASTM-321 stainless steel

(rolled 18 Cr, 8 Ni, 0.45 Si, 0.40 Mn, 0.1 C, Ti/Nb stabilized, austenitic, annealed at 1343K (10700C), air

cooled) of the following mechanical and thermal properties (cf. Holman, 1990): E z 17.0 >< 103kG/mm2,

(70,2 : 12.0 kG/mmz, 11:03, 9 : 7850kG/m3, a : 1.85 x 10’51/K, A0220W/mK, fi:15W/m2K,

R : 1.0m, h0 : 0.05m, p0 : 0.1 >< am, w : 1005“, To : 798K (525°C), ToO : 773K (5000C),

a : 5.669 >< 10’8W/n12K4‚ 6020.5. The temperature dependent material functions for creep rupture are

      

T m n 05B C

(K) i (OC) (kG/mmz) (kc—“571)

773 500 5.6 3.9 21 4.97 >< 10-19

873 600 4.5 3.1 10 4.27 x 10*lb

923 650 4.0 2.8 0 7.67 >< 10—14

       

Table 2. Temperature Dependent Material Functions

where 023 denotes the stress necessary to cause creep rupture after 105 h. The disk of uniform creep

strength, the disk of constant thickness as well as the disk of uniform elastic strength (in sense of the

Galileo hypothesis) are shown in Figure 4.
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Figure 4. Optimal Profiles of Disks

In case of the disk of uniform creep strength where the thermo-damage coupling is disregarded 111,650“, :

0, co : 0), and the disk of uniform creep strength where the thermo-damage coupling is taken into account

huchxo 75 0,60 ¢ 0), differences between optimal profiles are barely noticeable (window in Figure 4).

However, essential differences of lifetime are observed.
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Figure 6. Distribution of Continuity Tensor Components in Disk of Uniform Creep Strength
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Two rupture mechanisms accompany the process of disk design. In case of the disk of constant thickness

h0()\0 75 0, so i 0), the distribution of the continuity components at the instant of rupture is presented

in Figure 5. The damage accumulation with respect to the circumferential component \Ilg is concentra—

ted near the centre. Other rupture mechanism, the uniform damage accumulation with respect to the

radial component ‘11,, and accompanying the narrow zone of damage with respect to the circumferential

component We near the centre, appears in a disk optimally designed hucs()\o # 0, 60 ¢ 0) (cf. Figure 6).

Corresponding distributions of temperature versus initial temperature in a disk of constant thickness are

shown in Figure 7. During the creep-damage process the local temperature decreases, lowering damage

accumulation, which leads to longer lifetime compared to the case when the thermo-damage coupling is

disregarded h„„(/\O : 0, 60 O). Lifetime of all previously discussed cases are compared in Table 3.

             

constant thickness uniform elastic strength uniform creep strength

z he hues($) hucs($)

no coupling coupling coupling no coupling coupling

ÄÜ:O‚50:O /\Ü#O‚eg7—60 A0750‚e(‚;fi0 /\020‚60:0 /\0750,60750

I life time II 71 I 1.0177 I 1.0371 I 4.4371 I 4.7071 I

Table 3. Comparison of Lifetime for Optimally Designed Disks
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Symbols

Mechanical Quantities

B membrane stiffness

Ck(T),nk(T) constants in damage law

D, D damage parameter and second-order damage tensor

E, I/ Young’s modulus, Poisson’s ratio

8, 57-, strain tensor and strain intensity

f (’1') given time function

F Airy’s function

h, h0 thickness and reference thickness

m(T) exponent in creep law

71,, n9 components of membrane force

p0 uniform radial stretching

\11 \II continuity parameter and second—order continuity tensor

7', 9 polar coordinates

R radius of disk

g mass density

5, a stress deviator and stress tensor

0, stress intensity

T time

U potential of body forces

V volume of disk

w angular velocity
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Thermal Quantities

a coefficient of thermal expansion

ß coeflicient of free convection

on specific heat

60 emissivity of a gray body

thermal conductivity of virgin solid

eqivalent thermal conductivity

thermal conductivity of damaged solid

Stefan—Boltzmann’s constant

absolute temperature

temperature at outer edge

TOO temperature of cooling fluid stream

g
a
r
a
q
w
é
g
y

Additionally, superscript ‘0’ denotes an inelastic (creep) quantity, superscript ‘net7 refers to a quantity

with deterioration taken into account, a dot above symbol denotes derivative with respect to time.
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