
TECHNISCHE MECHANIK, Band 16, Heft 1, (1996), 77-88

Manuskripreingang: 14. Dcmmber 1995

On Fundamental Concepts of Multiphase Micropolar Materials

S. Diebels, W. Ehlers

The kinematics and the balance equations for a multiphase micropolar material ofn constituents 90“ are

presented. Similar to mixture theories, each constituent is assigned its own motion and, due to micropo—

larity, its own micromotion. The physical meaning of deformation and strain measures is discussed using

the concept of conuected coordinates and natural basis vectors. The balance equations of mass, linear

momentum, moment of momentum and energy of the mixture are derived from Truesdell’s metaphysical

principles, thus allowing for an interpretation of the physical quantities of the mitture depending on the

properties of the constituents. Starting from a general master relation, the local form of the balance equa—

tions are derived for the mixture (,0 and for all constituents is“ by specifying the physical quantities which

are balanced, their fluxes, supplies and productions. Eringen’s “balance of microinertia” is included in

the model as a kinematic constraint which restricts the microparticles to rigid motions.

1 Introduction

The mechanical behavior of multiphase materials is of interest in several areas of engineering, e. g. in

geomechanics, soil mechanics, biomechanics, and powder metallurgy. The theoretical access to these

fields is the theory of mixtures, a macroscopic theory of superimposed continua. In this theory, the

properties of the constituents are averaged over a representative volume element occupied by the whole

mixture. Therefore, in the resulting smeared model, material points of each constituent exist at each

geometrical point. The volume fractions are introduced as scalar structural variables which describe the

local composition of the mixture. This approach was discussed with respect to porous media models

(1. e. mixtures including one solid constituent) by Bowen (1976, 1980), de Boer and Ehlers (1986), and

Ehlers (1989). An overview concerning the macroscopic porous media approach up to 1983 is presented

by Bedford and Drumheller (1983). An averaging procedure to obtain the equations on the macroscale

from the microscale is discussed in detail by Hassanizadeh and Gray (1979a, 1979b).

In the framework of continuum mechanics, the material points which are assumed to be of infinitesimal size

are carrying the local physical properties of the body under study. Then, the continuum deformation and

strain measures are defined by use of the displacement functions of the material points. If one is interested

in a more sophisticated approach to kinematics of continua, it is necessary to substitute or to identify

the material points of continuum mechanics by microparticles. If these microparticles are assumed to be

deformable, following Eringen and Kafadar (1976), the continuum is called micromorphic. Otherwise,

i. e., if the microparticles are rigid, the continuum is called micropolar. In the micropolar case, the

material point or the microparticle may undergo displacements as well as rotations. The displacements

are given by the motion of the material points, while the rotation is independently described by the

microrotation represented by an orthogonal tensor. The advantage of a micropolar theory of mixtures,

which, in reality, are discontinua on a microscale, is that the average rotation of the microparticles is

included in the macrotheory, e. g. it becomes possible to predict the local average rotation of grains of

granular materials such as powder, sand, or rock. These rotations become important in areas of strain

localization such as shear bands.

The aim of this work is to include micropolar properties of the constituents of a multiphase mixture into

the macroscopic theory, i. e. to allow for rotations of the material points in addition to the displacements.

In this case, the material points as the carriers of the physical material properties, are assumed to be rigid

bodies on the microscale. If the particles rotate independently from the continuum rotation resulting from

the polar decomposition of the deformation, the material under study should be a real discontinuum, e. g.

a granular material or a liquid crystal. In this case, the averaging procedure together with the micropolar

properties allows for the application of the usual mathematical description of the motion using differential
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formulations, even for media which are discontinuous on the microscale. For granular materials such as

soil, rock, or other geomaterials, this approach is an elegant possibility to include the mean rotation of

the grains into a macroscopic theory.

The idea to add rotational degrees of freedom to each material point stems from the work of the Cosserat

brothers (1909). The interest in micropolar continua was rapidly increased in the last decades. The

reader, who is interested in details to micropolar theories, is referred e. g. to Eringen (1964), Eringen

and Kafadar (1976), Gunther (1958), or Schaefer (1967). In the theory of shells, additional micropolar

degrees of freedom were used to describe the rotation of the cross section, Ericksen and Truesdell (1958),

Sansour and Bednarczyk (1995). While in the study of granular materials the inclusion of micropolar

properties results from physical considerations, it was found in the study of localizations, that the inclusion

of rotational degrees of freedom leads to a regularization of the problem, Tejchman and Wu (1993),

Steinmann (1994).

The kinematic relations resulting from the discussed introduction of the micromotion for each constituent

of the mixture as well as the resulting deformation and strain measures are discussed in section 2. The

contents of section 3 are the balance equations of mass, of momentum, of moment of momentum and of

energy, both for the mixture (p and for the constituents (pa.

2 Kinematics

In mixture theories, material points of each constituent 900‘, a = 1,. . . , n, occupy the same spatial point

in the actual configuration (superimposed continua). The volume element du is given by the sum of the

partial volume elements du“, which, on the microscale, are occupied by 905“ only.

d1) = i dvo‘ (1)

a:1

The scalar structural variables to describe the microstructure on the macroscopic scale are the volume

fractions, herewith defined as the ratios of the partial volume elements du“ in comparison to the bulk

volume element dv.

du“

: E
(2)

n01

The combination of equations (1) and (2) leads to the saturation constraint

Z n“ = 1 (3)

Starting from different reference positions Xa, particles X0‘ of each 900‘ follow their own motion

X = Xa(Xou t) (4)

see Figure 1.

In addition to the motion (4), each point undergoes a micromotion, which describes the total rotation of

the material points. In this case, the material points are assumed to be rigid particles on the microscale.

Therefore, each point has attached directors Ea, which are rotated by the micromotion Ra. The directors

of the actual configuration are called 50,. The micromotion or the microrotation, R6,, is represented by

an orthogonal tensor with the following properties:

5a : Raga Run; 2 I (5)

In this section, we discuss the deformation resulting from the motion and microrotation in terms of

convected coordinates and natural basis vectors. This allows for an illustrative interpretation of the

resulting deformation tensors.
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reference configuration

detail

Figure 1. Reference and actual configuration of a binary mixture. Both constituents follow their own

motions. In the actual configuration, the mixture is composed by superimposed continua. The detail

shows natural basis vectors and directors of the reference configuration.

Introducing convective coordinates represented, for each «pa, by parameter lines (93'l : 1,2,3), the

reference position Xa of the material points is given by a one—to—one mapping of the parameters (931.

Xa = X0493) ö Gä = @3091)- (6)

Note in passing, that the index a stands for 900 while Latin indices are used as counters for vector or

tensor coefficients.

The natural basis vectors hm: of the reference configuration and am- of the actual configuration are

defined as tangent vectors on the parameter lines (de Boer, 1982).

8Xa öx

hai: 8631 80112562 (7)

 

Defining the dual basis vectors by

  

,- 89; ,- _~ 66);

ha _ axa a“ ‘ 3x (8)

the following identities hold:

hia'haj26; aia-aaj=6;

where (5;: is the Kronecker symbol.

As is known from classical continuum mechanics, the deformation gradient Fa and its inverse F;1 of

each phase so“ may be expressed by

öx öx 66);

    

Fa = = . —=a.- i
axa aeg‘g’axa a @110“ (10)

F_, _ axa_axa®ae;_h @a,

a ‘ ax‘aeg ax‘c” a
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The deformation gradient maps the basis vectors ha ,- (or line elements an) from the reference configu-

ration onto the actual configuration.

Fahai: (aaj®hä) haiZaai

The left and right Cauchy-Green deformation tensors are obtained from the transport mechanisms of

squares of line elements from one configuration into the other. The squares of line elements d5?Y of the

actual configuration may be expressed by

d5: = dxa - dxa : an - CC,an (12)

where Ca z: FgFa. The same element dSä of the reference configuration is given by

c153,: an -an = dxa -B;1dx„ (13)

where BO, 2-—- FaFg. Written with respect to natural basis vectors, we find from the above definitions

Ca :aaij (11269119 Ba :h§(aai®am) (14)

with metric coefficients hfj = h; bf, and aa i]- : am ,- -aa j. Therefore, the deformation is either expressed

by the metric coefficients of the actual configuration and the basis vectors of the reference configuration or

by the metric coefiicients of the reference configuration and the basis vectors of the actual configuration.

The Green strain tensor Ea and the Almansi strain tensor Aa are defined as the difference of the actual

and the reference metric coefficients related to the reference basis and the actual basis, respectively. They

describe the difference of squares of line elements dsä — dSä related to the tensor basis of the reference

configuration or the actual configuration, respectively

Ea : (am) —ha,-,-)h;®hf, Aa : (am,- —haij)ag®ag. (15)

In addition, the microrotation Ra maps the director Ea from the reference configuration onto the director

5a of the actual configuration. Therefore, it is a two—field tensor like the deformation gradient, and may

be expressed by

Ra 2 (Ray, (a0), ® 113:5, k ® h’; z: aa ,- ® 13g, (16)

From the representation (16) of the microrotation, it is concluded that

5a = Raaa 2 (Ray). (am (a 11:) 5311m. = ggaa, (17)

Note in passing that equation (16) allows for the introduction of two new sets of basis vectors, which

either result from the summation over k or over j.

5M = (Ramh’; f1?) = (Raylean (18)

For what follows, we identify the basis vectors of the actual configuration with the directors Without loss

of generality, i. e. {a = aa i. In this case, the micromotion rotates the new basis vectors ha, onto the

basis vectors an 1; = Ea. The micropolar deformation Üa maps the basis vectors ha,- onto the reference

directors Ea z ha i, see Figure 2. On the other hand, the new basis vector 50), is mapped onto the

basis vector am- by the micropolar deformation Va, while the reference basis vector ha) is interpreted

as director Ea, and is rotated by the micromotion onto the new basis vector 5a i.
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Depending either on the first or on the second choice, the micropolar or the so-called first Cosserat

deformation tensors Ua and Va operate either on the reference or on the actual geometry, respectively.

Since Ra is an orthogonal tensor, the metric coefficients ha ij and (zu ,j coincide as well as the coefficients

äa „I and ho, Ü, see Figure 2.

The definition of the new basis vectors äa ,- and BM- leads to the introduction of two new configurations.

The transport mechanism between the reference configuration, the new configurations, and the actual

configuration are either defined by the Cosserat deformation Ua and the microrotation Ra or by the

microrotation Ra and the Cosserat deformation Va. According to Figure 2, the following decompositions

of the deformation gradient Fa in analogy to the polar decomposition are possible:

Fa = RaUa = VQRQ (19)

Note that the microrotation Ra is different from the orthogonal tensor Ra resulting from the polar

decomposition of the deformation gradient. Therefore, the Cosserat deformation tensors Üa and Va are

in general non—symmetric. They describe the Change of the scalar product between the directors and the

line elements from the reference configuration to the actual configuration, as can directly be seen form

the following scalar products:

.56, - dxa = Ea - fraan Ea - an = g -V*1dxa (20)
a Or

The Cosserat deformation measures are connected to the left and right Cauchy—Green tensors of classical

continuum mechanics by

UZQUa : Ca VaVT : Ba (21)

The Cosserat deformations may be expressed as two—field tensors composed either by ha k and h]; or by

ä]; and aa k, which follows from the representation in natural basis vectors

Üa : R514}, 2 aa fl, (11g ® 115;) Va z Far}; = hg'f (am ® 5,. k) (22)

The second Cosserat deformation measure is related to the curvature, i. e. to the gradient of the micro—

_ _ 3

motion. Starting form the identity Grada (BERG) : 0, it can be found that the curvature tensor

   

reference

configuration

actual

configuration

aori

i

80!

Figure 2. Introduction of two new configurations with basis vectors äa i and ha i.

The new basis vectors ha,- are transformed into the basis vectors of

the actual configuration by the microrotation. On the other hand,

the microrotation maps the basis vectors ha,

onto the new basis vectors am- of the new configuration.
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3 _ „ _

Ka z: Rf, GradaRa (23)

3

is skew-symmetric with respect to the first two basis vectors. If Ka is represented in terms of the basis

vectors we find

0
0

 

Ka : a, j. („a „x _ r, My) (11g ® 11; ® 115;)

(24)

= (7.. — r. Us) (11. T ® 13; ® 111;)

In equation (24) the Christoffel symbols are defined in the usual way (de Boer, 1982).

8a 4 61—1i ‚ , _

Wal: Z 7a ikT an: r = —I‘a r191 hf;

3

Due to skew symmetry, the third order curvature tensor KCY may be reduced to a second order tensor

_ 3

KO) by multiplication with the Ricci tensor E.

_ 1 3 3 2

Ka : —§(EKa)"‘ (26)

The superscript (~ - -)2 defines the association (26) to yield a second—order tensor.

In the same way as was shown for the curvature, it can be shown that the gyration tensor

(2., = R, (R35); (27)

is skew—symmetric. The symbol - : da(- - dt denotes the material time derivative following the

motion of 4,0“. The angular velocity of the directors is given via the axial vector of the gyration tensor

3 7..

ca, : $1291 (28)
a

If we assume that the material is micropolar, then the micromotion is a pure rotation. In this case,

the particles behave like rigid bodies on the microscopic scale. The distribution of the partial density

pa relative to the center of the microparticles is described by the microinertia (-3“. However, Eringen7s

(1976) balance of microinertia is not a balance in the sense of the balance of mass or momentum but it is

rather a kinematic constraint, which follows from the assumption of rigid microparticles. In this case, the

microinertia of the particles may be rotated back to the reference position by the inverse micromotion.

This back rotated microinertia must then be materially constant. Note in passing that a result of this

type is known from rigid body dynamics. It follows from (RäGaRa)a : 0 that

(ea); 2 2 sym [(20,904] (29)

The operator “sym” yields the symmetric part of its argument.

Anticipating the results from the balance of mass (39), the microinertia constraint (“balance of microin—

ertia”) for cpa reads

(/20‘6”):l + pO‘GO‘diV x’a : 2 sym [paS—ZQGQ] + We“ (30)

where the operator “div” is the divergence corresponding to “grad”, and xi} is the velocity of ch‘. Let

5c be the barycentric velocity, i. e. the mean velocity of the whole mixture, and let da be the diffusion

velocity of 900" defined by
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da = x’ — x (31)

Then, summing up the balances of all (pa leads to

Z (paoa) + Z (paoa) div 5c =

01

div z (—paG)“ ® da) + 2 symz [flag—law] + Zfiaga
OZ

(32)

The symbol - = d(- - /dt represents the time derivative following the barycentric velocity x. With the

3

definitions of the microinertia of the mixture, p G) z: zu pC‘QQ, the inertia flux Q z: — zu ,0‘3‘8CY (8) do),

the inertia supply H z: 2 zu sym [paQQGQ] and the inertia production Ö z: zu p”°‘®“‚ the “balance

of microinertia” of the whole mixture reads

3 A

(p®)'+p@divx2din+H+® (33)

The flux of microinertia of the mixture results from diffusion, which changes the compound of the local

mixture volume element, while the inertia supply H and the inertia production G directly results from

the sum of the corresponding quantities of go“, see equation (30).

3 Balance equations

In this section, the balance equations of mass, linear momentum, moment of momentum and energy are

presented for the constituents go“ and for the mixture «p. Following Truesdell’s metaphysical principles

(Truesdell, 1984), the balances of the mixture follow from the partial balances by summation, since the

mixture is the sum of its parts. In addition, the mixture does not know whether it is a mixture or not, and

therefore, the mixture balance equations must have the same form as is known from classical continuum

mechanics.

In a master balance, changes of a scalar physical quantity EI“ are balanced by fluxes d)”, supplies a”

and productions Illa. According to Haupt (1993), the master balance may be written for a body B with

volume element d1}, boundary (98, and surface element da as

da A
——/ wadu: ¢“-da+/aadu+/ \Iladv (34)

dt B an B [3

Application of the divergence theorem leads to the local balance equation for lIIO‘ in the following form:

(W); + \II”diV x; = div (1)“ + aa + $3 (35)

The balance of the mixture has the same structure, only the time derivatives are related to the barycentric

velocity x. Therefore, the local form of the mixture balance reads

IF+\IIdivx:div¢+a+\il (36)

If the balance of the mixture and the sum of the balances of the constituents have to be identical, the

following restrictions hold:

\II = zu \Ila

45 : 2a Qba _ Waldo) (37)

a : zu a“

t z zacw
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balance of \II, III d), <I> 0’, 0' 1T1, ‘i’

mass p 0 O 0

momentum px T pb 0

moment of momentum x >< px + p841: x X T + M x X pb + pm 0

energy pe+§px-x+ Ty'X—i—MTQ—q pb-x+pm~Q+pr 0

+§o - pea:

balance of EI", ‘1'” qb“, Q“ a“, a“ Ö“, xi!“

mass p“ 0 O ß“

momentum p"‘x:Y Ta pub‘Y s“

moment of momentum x X pax’a + pad; x >< T + M x x pub“ + puma m”

energy p”5" + äpax; - xg+ T" TX; + M“ Tog — q" pab” x; + puma 0a + par“ é“

+az„ - pae“o„

      

Table 1. Balance equations, corresponding physical quantities, fluxes, supplies and productions.

For vector-valued physical quantities, similar results may be obtained.

The balances of mass, momentum, moment of momentum and energy are obtained by specifying \IJ, d),

a and lII for the mixture 90 and the corresponding quantities for each constituent go“, see Table 1.

Substituting the density p : \11 into the master balance leads to the balance of mass

p+pdivx20 (38)

for the mixture. On the other hand, on obtains for (pa, with \Ila' : pa, im = p“,

(pa); + pa div X’a = ßa (39)

The mass exchange from one constituent to another due to phase changes is modeled by the mass

production ß“. According to the restrictions (37), the following relations hold:

p = Zu pa

Zu pads (40)o H

Thus, the density of the mixture p, is the sum of the partial densities p“, the sum of the diffusion mass

fluxes is zero, and the total mass of the mixture is conserved.

The balance of linear momentum of the mixture (,0 is

(pX)' + px div x = div T + pb (41)

with Cauchy stress tensor T and body forces pb, while for each constituent so”, we obtain

(paxfil); + paxfildiv x; = div T01 + paba + s“. (42)
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The required restrictions are

pi = Zapax’a

T = za(Ta—pax;,®da) (43)

pb = Zapab“

0 : Eds“

including the definition of the barycentric velocity 5:, the total stress tensor T as the sum of the partial

stresses minus the diffusion of momentum (comparable to the Reynolds stresses in turbulence theories)

and the body forces of the mixture. The last restriction, (43)4, guarantees that the momentum of the

mixture is conserved.

If the results of the balance of mass (38) and (39) are taken into account, we find

pi : div T + pb (44)

and

paxg, : div Ta + pO‘bo‘ + äa — flax/a (45)

For the balance of moment of momentum, we find from Table 1,

(x pr+p®cD)' +(xpr+p®ü)divX:div (xx T+M)+x><pb+pm (46)

and for (0“

(x >< paxg, + pO‘GO‘Qa); + (x X po‘x:Dz + po‘Gaüa) div X’a

(47)
:div (x X Ta-l—Ma) +x >< paba +p‘1mCY +rho‘

leading to the restrictions

p 643 = Ea pa®acva

M : 20, (Ma _ paaawa ® da) (48)

p m = 2a pama

0 : Ea In”

The spin of the mixture p 6 ä), results from the sum of the partial spins. The couple stresses M can be

derived in the same way as was done for the stresses T, namely, as the sum of the partial couple stresses

minus a correction according to the diffusion. The total spin of the mixture is conserved due to the fact

that the sum of the production terms is zero.

Taking into account the balances of mass (38), of momentum (44), and the “balance of microinertia”

(33), the above equation (46) reduces to

3 A

p®d221xT+divM+pm—<din+H+®>dJ (49)

for the mixture. Equivalently, with equations (39), (45), and (30), we obtain for (‚Da
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moaned); = I >< Ta + div M(1 + pama — 2 sym [pafiaoal 0a (50)

+th — ”36‘100, — x x ea

The Cauchy stress tensor T as well as the partial stress tensors T“ are non—symmetric as is not known

in classical continuum mechanics context. In the static case, the skew—symmetric parts expressed by the

axial vectors I X T are balanced by the couple stresses M and the volume moments p m (Ma, panic“,

and rha for 4,0“).

Finally, we obtain the balance of energy for the mixture (,0

(p5+%px-x+%EJ-p®u7)'+(pe+%px-x+%dz-p®®)divx

(51)
=div (TTX+MTGJ—q) +pb~5<+pm~u7+pr

and for the constituents cp"

(pager +äpax:1‚x2y+ä_üa . paeawa);

+ (paso‘ + äp‘le1 -x'a + äüa -pa®aüa) div x; (52)

: div (Ta Tx'a + Ma TOO, — q“) + pc'bot .x’a + puma «Do, + par“ + é”

The restrictions require that

p 8 = 2a (paea + äpada - da + ävQ -p“@“I/a)
1 313

q — 5 (CITE!) (I) z Zn (qo‘ + ‚Wg-ad,1 + %p”‘(dCY ~ da)da

1 , ‚

+504, - paeauama — Ta Tda — M“ 7 ya) (03)

‘
c g

I zu (para + paba' _ da + puma _ Va)

z zu éa

where 1/0, = Ga — L3 is the angular diffusion velocity. It can be seen, that the internal energy of the

mixture is not only the sum of the internal energies of the constituents, but contains kinetic energies

of the diffusive motion, which may be interpreted in the same manner as Brown’s molecular motion.

3

The heat flux of the mixture is modified by a term resulting from the inertia flux of the mixture, Q.

3

Note that the microinertia flux Q vanishes according to equation (40)2, if all constituents have the same

microinertia, i. e. (-9“ = G) Va. The total heat flux of the mixture results from the heat fluxes of the

constituents, the diffusion of the internal energy of 4p“, the diffusion of the kinetic diffusion energies,

and the diffusion power of the stresses and couple stresses. The energy supply of the mixture, i. e. the

radiation, also contains terms resulting from the power of the diffusive motion.

These equations can be reduced by the balance of mass (38), (39), microinertia (33), (30), momentum

(44), (45), and moment of momentum (49), (50). We obtain for the mixture

3 A

pézT-L-i-M-W—Ca-(IxT)—divq+pr+%®- ((din)+H+®>GJ (54)

with the spatial velocity gradient, L = grad x, and the spatial gradient of the angular velocity, W :

grad Ca. The result for (pa reads
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p“(ea)’a : T‘1 - LO, + M“ - WC, — 62,, - (I x Ta) — div q“ + para

+610, -sym [pC‘QQGQ] (DO, + éCt — has“ — ä“ -xf,, + äfiax’a 'x’a (55)

—r‘n" - 52a + (x x s0) «3., + äwa areas...

4 Conclusions

The kinematic relations and the balance equations for a mixture of n micropolar constituents are pre—

sented. The deformation measures are based on squares of line elements which can be expressed as

scalar products of natural basis vectors. In addition to the constituent’s motion x z Xa(Xa‚ t), each

constituent (pa is assigned a micromotion Ra which rotates a director from the reference configuration

into the actual configuration. The micromotion Ra may be written as two—field tensor which allows to

introduce two new configurations, resulting either from the transport of the reference basis vectors by

the micromotion or of the actual basis vectors by the inverse micromotion. The Cosserat deformation

tensors are found to map these new configurations onto the reference or the actual configuration. The

deformation gradient may be decomposed similarly to the polar decomposition into the non-symmetric

Cosserat deformation tensors and the micromotion, Fa : RaÜm or, vice versa, Fa z VQRQ. In terms

of the natural basis vectors, the curvature, which represents the second Cosserat deformation measure,

may be interpreted as generalized Christoffel symbols. Therefore, it represents the spatial variation of

the basis vectors introduced with the new configurations.

The balance equations of mass, momentum, moment of momentum and energy are derived from a master

balance by specifying the physical quantity, as well as its flux, supply, and production terms. From

Truesdell’s metaphysical principles it is concluded that the sum of the balances of the constituents gives

the corresponding balance of the mixture. These balances must have the same structure as have the

balances of classical continuum mechanics. This restriction allows to compute the physical quantities,

their fluxes, supplies and productions of the mixture from the quantities of the constituents. Including

rotational degrees of freedom into the theory leads to changes in the balance of moment of momentum

and of energy while the balance of mass and momentum remain unchanged compared with the non-

polar theory. In general, the partial stress tensors may be non—symmetric as a result of the balance of

moment of momentum, the balance of energy contains additional terms resulting from the angular velocity

corresponding to the micromotion in combination with the microinertia. Eringen’s balance of microinertia

is interpreted as kinematic constraint, which results from the assumption of rigid microparticles in the

framework of micropolar theories.

The balance equations presented in this article must be completed by constitutive laws which connect the

motion and the micromotion of each constituent with the stress tensor and the couple stress tensor. In

addition, the heat flux and the production terms must be given by constitutive assumptions. These con-

stitutive assumptions must not violate the second law of thermodynamics. In a next step, an appropriate

form of the second law of thermodynamics must be developed from which the necessary restrictions may

be derived.
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