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The aim to predict the macroscopic behaviour of materials with microstructure on the basis of their local

properties (homogenization) has led to a broad variety of methods. Here we discuss a technique called the

representative volume element (RVE). This volume element, small enough to be macroscopically conside-

red as a material point, and large enough to smoothen local inhomogeneities, is cut out of the macroscopic

body and subjected to simulated loading or deformation histories. We discuss some aspects of the FEM

implementation of the RVE'. Special attention is paid to the influence of boundary conditions. The iden—

tification of difi‘erent mechanisms leading to induced anisotropy in polycrystalline metals is demonstrated

by a simple computational example.

1 Introduction

The behaviour of polycrystalline metals undergoing large inelastic deformations is a field of special

interest for material scientists. Many metal forming technologies lead to large inelastic deformations

(forging, rolling, deep drawing). Experience shows, that such processes are accompanied by the

evolution of elastic and inelastic anisotropy in initially isotropic media. The monocrystalline grains

undergo considerable changes in shape and lattice orientation, resulting in a deformation texture in the

polycrystalline material. For the appropriate design of metal forming processes and estimates of the

resulting properties of the material, a material model is required. This model has to be general in the

sense that it covers all possible processes the material may undergo. Therefore, it is necessary to take

into account the basic physical mechanisms involved, and identify their dynamics.

Our objective is to simulate the behaviour of polycrytalline aggregates based on a crystal plasticity theory

for the grains which form the aggregate. The study of such simulations results in a deeper understanding

of the physical behaviour of polycrystalline solids undergiong large deformations. There are several

classical approaches to this problem, which have the common principal disadvantage of not being able to

consider the local grain interactions. The method we want to use is based on a finite element model of

a so—called representative volume element (RVE). This model enables us to consider the local crystalline

structure. The question is, how much detail must be included in the structure model. For example,

grain boundary mechanisms could be considered, but have been disregarded in the present paper. In

fact, we limit ourselves to the local single crystal constitutive model and its connection with the global

stress-strain relation. Then we consider some aspects of the finite element implementation, and finally

illustrate the application of this implementation in the context of a simple example.

2 Description of Finite Inelastic Deformations

As we want to describe material behaviour at large strains, we have to ensure the objectivity of our

constitutive relations. This is achieved identically by use of stress and strain measures invariant under a

change of reference frame or rigid body motions. These measures are defined within the intrinsic concept

of continuous bodies suggested by Noll (1972), and used extensively by Krawietz (1986), and Bertram

(1989). The main idea is to consider the material body as a differentiable manifold B of material points

P, which is mapped by the global placement KZ into Euclidean point space (observer frame) 5.

n:B—>E

Pr—>n(P) (1)
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The differential of this mapping at a point P is Kp z: dri(P), a linear mapping from the tangent space

TPB to B at P into the Euclidean vector space V (tangent to 5):

IQ:EB+V m

Let g : V —> 11* be the Euclidean metric of V, being symmetric and positive definite. An asterisk denotes

duality of linear spaces or mappings. This metric g can be pulled back to the tangent space TpB by Kp:

K)”;ng ::GP:G*p:TpB—>7}ÄB. (3)

Gp is a metric on TPB and is called the local configuration. In the following, the index P for the material

point is omitted for brevity. For materials with some special undistorted (stressfree) configuration G“ it

is reasonable to define the intrinsic strain tensor

1

EI : Tpß’ —> 7138, EI :: 5G;1(G — Gu) (4)

If we choose an undistorted placement Ku with K: g Ku : GU, this is obviously determined only up to

arbitrary rotations. The change of placement

F :: K K171 (5)

is the deformation gradient. F can be used to define the Eulerian and Lagrangean strain measures EE

(Almansi strain tensor) and EL (Green strain tensor).

EE z: 3g —<F*1>*gF‘1>=§<g — (K-1)*G„K-1>

«KJÜ“3KJI-g)

L 1 1 (6)
E z: — * F — : —ng e 2

If Q : 8 —> ä is an (isometric) change of observer frame (Q* g Q : g), then the following transformation

of K results:

K=QK
m

The transformation of the Cauchy stress tensor T under change of observer is given by

T:QTQ*
(ä

By also pulling T back by K, we define the intrinsic stress tensor

S 2: K—1T(K—1)* (9)

which turns out to be invariant under change of observer.

Corresponding to the principle of determinism, we consider the stresses to be uniquely determined by the

local values of strains, their time derivatives and a vector of internal state variables a.

s = f(G‚ Ga) (10)

If the material point is elastic, this reduces to

82MG)
an

An elastic body is called uniform if for any points P and Q there exists a material isomorphism (invertible

linear mapping) HPQ : TpB ——> TQB, such that for the elastic laws hp(G) and hQ(G) holds.

th:HWMflflthmH%. (m

The points are then said to consist of the same elastic material.

A symmetry transformation of hp is simply an automorphism Hp := Hpp, which results from setting

Q E P.

hP(O) ZHPhP(H:3.HP) H; (13)

All such symmetry transformations form the symmetry group Q of the elastic law hp.

Applying the concept of materials with isomorphic elastic ranges (Bertram 1992), the material response

is characterized by the following assumptions:
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1. Existence of elastic ranges. At any instant the configuration G lies within some elastic range e),

which is a subset of the total configuration space. That means that the stresses S are determined

by the current elastic law h]-

S : hJ-(G), (14)

as long as the configuration does not leave the range ej.

2. Isomorphy of the elastic ranges. The constitutive laws hj of different elastic ranges are mutually

isomorphic. If we arbitrarily choose one as a reference law hR, this means, that for any other elastic

range with elastic law hj there is an isomorphism Pj : TPB —) 7128 such that the following condition

of isomorphy holds:

within the intersection of their domains.

Equation (15) leads to a natural distinction between elastic and inelastic processes. A process is called

elastic if P is constant and inelastic if P changes with time. P is called inelastic transformation. A

description of inelastic deformations requires the specification of a yield criterion (limits of the elastic

ranges) and a flow rule, which is assumed to have the form

P z a(G‚G‚P‚a). (16)

A decomposition of the deformation into elastic and inelastic domains is not needed in this theory.

3 Constitutive Law for Single Crystals

A basic assumption of the present work is that the grains of a polycrystalline metal are single crystals

whose constitutive response is not directly affected by the embedding into the polycrystalline aggregate,

e.g. by grain shape or size.

Single crystals in general display an anisotropic elastic material response due to the regular arangement

of their atoms. The regular array is called lattice. The local lattice geometry may be represented by

three independent (in general non-constant) material lattice vectors is“ E Tpß, oriented along the lattice

axes. Their current length indicates the corresponding atom spacing (Krawietz 1986, p.190). They are

accessible for measurements by X—ray diffraction or resonance tests (Han, 1995).

Elastic Law. The lattice vectors appear in the current elastic law ht as directors of the elastic anisotropy.

It is generally accepted to use linear elastic laws for metals. As long as the elastic deformations are small,

the possible choices of strain and stress measure in the linear elastic law are equivalent. Thus, we choose

the intrinsic linear elastic law

s = MG) = GAG — Gui. <17)

where Q is the current fourth order elasticity tensor. For a face centered cubic (f.c.c.) crystal it has the

natural form

(Ct 2 Ctijkltti ® tij ® ttk ® tti
(18)

with the current lattice vectors t”, and (X) denoting the tensor product. The reference law analogously is

hR(GR) = CRlGR — GRu] with C3 = Cgkltai ® tRj ® tRk ® tRz (19)

Applying the condition (15) of isomorphy to equations (17), (18) and (19), we obtain the transformation

of the lattice vectors and the components of the elasticity tensor under inelastic deformations.

ta = P(tRi)

Cijkl _ Cijkl (20)

t — R

Inelastic Law. In the 1920’s, Taylor, Elam, Schmid, and others developed an approach of modelling the

inelastic deformations in single crystals by shear in slip systems. Such a slip system consists of a slip plane
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(indicated by its normal 11“ E T1213) and a slip direction da E TPB. These (co-)vectors have constant

representations as linear combinations of the current lattice vectors t” and their duals. Slip can be

considered as flow of material points relative to the lattice, thereby changing the inelastic transformation

P. For one active slip system a (single slip) with slip rate [ta the corresponding rate of P is given by the

flow rule

PP“1 z —pada ® n“ (21)

For multiple slip, this equation is summed over oz. The slip rates [la depend on the component in slip

direction of the stress vector in the slip plane. This component is called resolved shear stress (Schmid

stress) Ta, and can be calculated as

Ta 2 tr (S G da ® n“) (22)

Following the Schmid law, flow occures when the resolved shear stress reaches some limit, the critical

resolved shear stress (critical SCHMID stress) Tc. The slip rate then is determined by a one-dimensional

inelastic law.

M = f(Ta) (23)

For the computational example in the present work, we choose a rate—dependent law with the slip rate

being proportional to the overstress.

„ 1

Ma : ESgÜ-a) lTa “ Teal (24)

Combined with the lattice elasticity, this results in a constitutive response of the Bingham type.

The critical shear stresses rm are initially considered to be equal for each class of slip systems. Depending

on the adopted hardening model, the critical shear stresses can be affected by the slip in their slip system

(selfhardening) or in the other slip systems (latent hardening). For further details, see e.g. Asaro (1983),

or Havner (1992).

It is evident from pure kinematical considerations that single slip in tensile specimens leads to a rotation

of the lattice with respect to the load axis (see e.g. Asaro, 1983, p.9). This effect of lattice rotation is

essential for the development of deformation textures and therefore has to be accounted for in simulations

of finite inelastic deformations of crystalline solids.

4 Representative Volume Element

Classical Approaches. As we want to calculate the phenomenological macro-behaviour of polycry-

stalline solids from a given behaviour of the single crystalline grains, we have to average the local

strains and stresses. This process is called homogenization. There are mainly three classical approaches

corresponding to different kinematic or dynamic assumptions.

0 Taylor theory. The local strain field is assumed to be constant in space and, thus, equal to the global

strain. Each grain is uniformly deformed. The global stress is obtained by averaging over all grains.

Compatibility of the aggregate is identically preserved, but in general intergranular equilibrium is

violated.

a Sachs theory. This is the counterpart to Taylor’s theory. The local stress field is assumed to be

constant in space and equal to the global stress tensor. Again, each grain is supposed to deform

uniformly. Global strain results from averaging over the grains. Thus, the equilibrium condition is

identically fulfilled, but compatibility between grains is generally not guaranteed.

0 Ser consistent schemes. Each grain is considered to be separately embedded into a homogeneous

equivalent medium The stress and strain fields far from the inclusion are homogeneous and

their values are taken as the global ones. Deformation and stress of each grain are obtained by

solution of a separate boundary value problem. The constants of the phenomenological constitutive

law for the HEM are iterated until the HEM behaves like the average of the grains. Thus, an inverse

problem has to be solved. Compatibility and equilibrium condition are fulfilled only between single

grains and the surrounding HEM.
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The disadvantage of these approaches is their inability to account for the local texture of the material.

They consider only the distribution of some properties, e.g., lattice orientation, over the material volume.

They cannot take into account effects resulting from local interaction of neighbouring grains. This is the

motivation for the representative volume element (RVE) concept, which will be described next.

First, we cut a small volume (RVE) out of the body. For this volume, a boundary value problem is

formulated and solved using finite elements. It is subjected to difierent deformation processes in order

to obtain a global load response. The RVE has to be large enough to be really representative for the

macroscopically uniform material of the body. Particularly, the response of the RVE should be insensitive

to small variations of its boundary position, i.e. whether the next grain is still included or not. On the

other hand, the complexity is restricted by the available computational facilities.

There are basically two ways to employ the RVE. The simulation may be embedded into a macroscopic

finite element analysis, serving as a numerical constitutive model on integration point level (see e.g.

Schröder and Miehe, 1994). Alternatively, the RVE is subjected to the computational simulation of

experiments in order to determine its material response, i.e. to identify the form of the phenomenological

constitutive law.

Homogenization Procedure. Our aim is to obtain a relation between the local and global stresses

T and T respectively, and between the local deformation field F(P) and the global deformation F. By

choice of some reference point 0 E 5, we define the position vectors x and X of a material point P E B.

X(P) = 0MP E V

(25)
X(P) = 050(P E V

Then we consider the global displacement field of the RVE u(P) := n0(P)n(P) : X(P) — X(P) (with

the material at no in an undistorted state for all P E B). The basic idea is to split 11 P) E V into a part

F X(P), corresponding to a homogeneous global deformation, and a local fluctuation part w(P).

u(P) = F X(P) + w(P) (26)

The Taylor model is contained in the present model by setting w(P) : 0 VP 6 B. Assuming the displa-

cement fluctuation w to vanish or being periodic on the boundary of the RVE, the global deformation

gradient F can be shown to equal the mean value of the local deformation gradient F : die/dm), taken

over the volume in no.

N 1
F : — F(P)dvO (27)

V0 NOW)

(see Krawietz 1986, p. 363). A similar expression can be found for the Cauchy stress. Here the integral

has to be taken over the volume in It (actual placement).

~ 1

T _ V Aw) T(n)dV (28)

Homogeneous Boundary Conditions. Let the condition of vanishing boundary displacement fluctua—

tions be called homogeneous boundary conditions. In this case, the deformation of the boundary is exactly

prescribed by the global uniform deformation F. Such boundaries are less flexible than the ones that

allow fluctuations also on the boundary of the RVE7 and, therefore, can be expected to result in a global

stiffening of the RVE. This effect decays with distance from the boundary and will be less pronounced

for shapes of the RVE with small ratios of boundary affected volume to total volume. This ratio is best

for a spherical shape of the RVE and will decrease with its diameter. On the other hand, for plate—like

RVEs this effect will be more influential.

Periodic boundary conditions. Spatial periodicity of the displacement fluctuation field W(P) is

equivalent to the existence of three linearly independent constant period vectors Ax, E V such that

W(x(P)) z w(X(P) + Axi) i: 1,2,3 (29)

holds. For any region Q g B with Mg) containing exactly one period in each direction, Am, the boundary

displacement fluctuation w(ög) is periodic. Equations (27) and (28) hold with the integrals taken over

g in the corresponding placements. The simplest possible initial shape of „0(g) is a cube.
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5 Finite Element Implementation

Spatial Discretization. The calculation of the stress response to a given deformation process is done

by using a three—dimensional nonlinear finite-element—analysis. The RVE is discretized by constant strain

tetrahedral elements. A formulation for finite deformations is found in Oden (1972). Five tetrahedra,

one of them with double the volume, can form a cube in two principal ways, which differ by a rotation

of 900 around any edge. Both cube types have to be alternated in each spatial dimension in order

to ensure compatibility. Therefore, periodic boundary conditions require an even number of cubes in

each direction. The minimal number of elements is determined by the demanded accuracy. Taking one

element per grain, we obtain the maximum number of different lattice orientations without allowing

nonhomogeneous deformations in the grains. On the other hand, a fine discretization of each grain

results in prohibitively large systems, if a certain number of grains is required.

As we have boundary conditions for displacement fluctuations, the nodal displacement vectors uK are

additively decomposed according to the global placement split:

11K 2 (F—I)XK+WK

with the initial position XK of node K and the actual nodal fluctuation WK.

Reduction of the Global System. Homogeneous or periodic boundary conditions can be implemented

by appropriately reducing the global system. This is illustrated by a small two—dimensional example in

Fig. 1. The square structure is discretized by 16 nodes. For homogeneous boundary conditions, the

fluctuations of the border nodes vanish, the four interior nodes remaining free. For periodic boundary

conditions, the node fluctuations at the right border are set to the corresponding ones at the left, thus

eliminating four free nodes. The same is done for the upper and lower borders, eliminating three more

free nodes. Additionally the fluctuation of one node is set to zero in order to suppress rigid body motions

in the fluctuations. ThusLthe number of free nodes reduces to 8.

 

Figure 1. System reduction corresponding to the boundary conditions. a) unreduced system, b) homo—

geneous boundary conditions, c) periodic boundary conditions (0 free node, 0 eliminated node).

The number of structural nodes and elements determines the amount of data to be handled during pre—,

main- and postprocessing. The number of elements determines furthermore the computation time needed

for evaluating the element routines during assembly of the global stiffness. The bandwidth of the global

system for homogeneous boundary conditions depends on the number of nodes per cross section, whereas

for periodic boundary conditions it is determined by the number of surface nodes.

Deformation Control. The global deformation process is split into intervals of constant velocity gra-

dient I: = F 15—1. The actual deformation gradient Ft is calculated from some intermediate F0 by

r, = exp((t — t0) 13) F0. (31)

By this velocity control a constant global strain rate is guaranteed, which is important for the inter—

pretation of rate—dependentmaterial response. Another advantage is the possibility to exactly perform

isochoric processes (det(Ft F61) = 1) by simply taking tr(L) = 0.

For constant strain elements, the local stresses are constant within the elements. Thus the calculation of

the global Cauchy stress reduces to a sum over all elements, weighted by volume.

N OE NOE

Te Ve V : Z Ve (NOE z number of elements). (32)

1 e=1

1

T:—V M

E
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6 Isotropy Tests

Generation of Initial Isotropic State. For studying anisotropies induced by deformations, we need

an initially isotropic specimen. This includes isotropy of the elastic stiffness and of the initial yield

surface. Roughly speaking, no rigid body rotation shall be detectable by any identification of these

parameters.

Principally, such isotropy can be expected for a polycrystalline RVE with random grain growth and a

sufficiently high number of grains. For many polycrystalline metals, the grain size is so small in comparison

with the size of the structure that these conditions are fulfilled.

In the context of RVE simulations, the selection of suitable initial orientations is a difficult problem, as

the number of grains is bounded due to computational limitations.

In literature the following suggestions have been made:

1. Random generation of orientations with homogeneous distribution (Harren and Asaro, 1989; Lipin-

ski, Krier, Berveiller, 1990)

2. Measurement of the orientation in a small region of a real material (Becker, 1991; Lachner, 1995)

3. Generation of regular or quasi—regular sets of orientations

The advantage of the third method is that the number of grains needed to produce isotropy is much

smaller than for the other two. This is the reason why we used the third choice which we will describe in

more detail.

The selection of a regular set of n orientations out of the set S of all orientations is non-trivial and remains

unsolved for large prescribed numbers. Therefore, iterative numerical algorithms have been constructed

to produce at least quasi—regular orientation sets for arbitrary n. They workas follows: First, we choose a

continuous metric on S, which is isotropic, i.e. invariant under rotations. There exist infinitely many of

such metrics which, however, are all topologically equivalent. Second, we maximize the distances between

all orientations of an initially selected set in S. This leads to a non—linear optimization problem which

can be iteratively solved by standard procedures (gradient method, simplex method, etc). The result of

such a procedure is a local maximum. In most cases, it is extremely difficult to find and prove global

maximality of such a solution, but isotropy tests show us immediately, whether the solution is sufficiently

isotropic. It is important for isotropy that the grains assigned to each of these orientations cover the

same volume within the RVE. Experience shows that RVEs produced in such a way behave sufficiently

isotropic even for a rather small number n.

Transverse Isotropy. The complexity of the problem

is reduced drastically by limiting the required isotropy to

one plane (transverse isotropy). Then a one-dimensional

3 orientation distribution will be sufficient. One lattice di—

rection is fixed to the axis of isotropy (3-axis in Figure 2).

Then the lattice for each grain g is determined by an angle

gag in the plane of isotropy. The construction of an initial

orientation distribution becomes rather trivial in this ca-

se. The discrete orientations (pg form classes that cover

the total orientation space (e.g. 90° for cubic crystalli—

tes). The width of the classes A909 is set proportional to

the grain volume

   

   

cubic lat—

tice cell

plane of isotropy

 

Figure 2. Grain Lattice Position in the Plane Agog 900

of Isotropy V = V (33)

g

  

For equal grain volumes, the resulting orientation distribution is regular. However, the orientation dis—

tribution can be adjusted to any grain volume distribution.

Parameters Tested. The material behaviour has to be evaluated by tests which can be identically

performed at different stages of deformation. For the elastic~ behaviour, we consider the incremental

stiffness (ratio of stress increment AT to strain increment AtD)

AT = At Cincr [13] with D = id + ET) (34)
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This is valid only for constant velocity gradients E. For a transversly isotropic material, (C1ncr should not

change when the specimen is rotated in the isotropy plane before the test. Then, any function of (Cmor is

a circle in a polar plot over the rotation angle. With test strain rate components

N é 0 0

[D] z 0 —é 0 (35)

0 0 O

the function

ATM — AT22
G :— 36

2G<100> é At ( )

gives in the isotropic case the incremental shear modulus, normalized by the shear modulus G{100) of the

cubic single crystal.

The transverse isotropy of the yield surface is tested in a similar way. In experiments, yielding is detected

by different indicators, e.g., by the devitation of the tangent stiffness from the elastic value or by the

residual deformation after (supposedly) elastic unloading. In the RVE model, yielding can be detected

directly using the physically relevant information about the slip system activity. The ratio of dissipation

rate Pdiss to total stress power Pm,

d.“ Pdiss : fBZaTa/ladv

          

._ „ r (37)

Ptot V tr(T D)

is taken as a normalized average indicator of yielding.

P/TCO W During elastic processes, d is equal to .zero. For statio-

/ .‚w nary 1nelast1c processes (constant stram rate, constant

O‘OU3 ‚x ‚f stresses), d equals 1. As the material is viscoplastic, the

/ .5 stationary stresses are rate dependent. Fig. 3 shows ty—

O-OOZ ‚z w pical curves~of the dissipation rate and the total stress

P / j power. As L is set constant, Pmt is proportional to the

0-001 tot/j _ r, a stresses. The observed smoothness is due not only to the

i de, viscosity, but also to the successive activation of slip in

0 „‚„„‚„ „‚m„‚l" ISS differently orientated grains.

o 10 20 30 40

t (S) For testing isotropy, we compare the v. Mises—stress for

Figure 3. Dissipation Rate and Total Stress d : 2% and d : 50%. Comparing the results of isotropy

Power at the Onset of Yielding tests for deformed and undeformed states, deformation

induced elastic and inelastic anisotropy can be detected.

7 Example

RVE Specification. As an example we give some computational results obtained from a RVE with

5 x 5 X 5 nodes and periodic boundary conditions (Figure 4). Although this is a rather small structure

(320 tetrahedra, 63 free nodes), it is sufficiently isotropic. Starting from a transverse isotropic stressfree

state, we impose a constant velocity gradient until the deformation gradient components reach the values

N 3/2 0 0

[F] z 0 2/3 0 (38)

0 0 1

This means global isochoric plane strain in the plane of transverse isotropy (see Figure 4).
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Figure 4. Cubic RVE. Initial State (left), Deformed State (right).

The local constitutive law models face centered cubic single crystals, considering the elastic cubic aniso-

tropy and the octahedral slip systems with equal critical resolved shear stress TC. The one-dimensional

constitutive law on the slip system level corresponds to a linear viscous and a dry friction element, ar—

ranged in parallel (Bingham—body). For separating effects of texture and residual stresses, hardening is

not included in this example.

Texture. The texture can be visualized by a density plot of the orientation distribution in the inverse

stereographic projection with the 3—direction as pole (Figure 5).

 

Figure 5. Orientation Distribution. Initial State (left), Deformed State (right).

The density plot of the initial state illustrates the character of the transverse isotropic orientation dis—

tribution. All grains have one lattice axis fixed to the isotropy axis (3-direction). They appear as a

black point in the centre of the plot. The points corresponding to the other lattice axes are isotropically

distributed over the circumference of the plot. For three—dimensional isotropy, the directions should be

distributed in a similar way over the surface of the orientation sphere, giving a constant value everywhere

in the plot.

In the plot for the deformed state, we observe inhomogeneities along the circumference, in particular

a concentration at the four poles. The expansion of the central dark region indicates that the lattice

rotation of the grains is partially out of the isotropy (1—2) plane. The orientation distribution is no longer

transversly isotropic.

Isotropy Test. The isotropy tests at the deformed state are done after global unloading (T : O). In

order to determine the effect of texture and internal stresses, the isotropy is tested twice, once immediately

after global unloading (unloaded state), and, second, after additional relaxation of the internal stresses

(T : 0 in all grains). For an isotropy test, a series of simulations with the specimen (RVE) rotated from

0O to 360° and constant spatial velocity gradient have to be performed. For the interpretation of the

polar plots, we have to consider that a rotation angle of zero corresponds to a velocity gradient equal to

that of the preceding deformation. 90° corresponds to a reversion of the velocity gradient with respect

to the material.
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Figure 6. Normalized Shear Modulus G as Function of Rotation Angle a

Elastic Behaviour. In the plot for the normalized shear modulus as defined in equation (36), we observe

an induced anisotropy in the elastic behaviour (Figure 6). Deviations of the initial state from isotropy

are small (within the plotting accuracy). After the deformation the initial circular curves deform slightly

towards the single crystal curve. The existence of internal stresses obviously has no influence on the

global elastic behaviour. The corresponding curves nearly coincide.

Inelastic Behaviour. Figure 7 shows the induced anisotropy of the yield surface due to large inelastic

deformations. The upper plot indicates the von Mises stress, normalized by the critical resolved shear

stress at the onset of yielding (d = 2%), the lower one gives the values for an intermediate state between

onset and stationary yielding (d = 50%). Both plots show remarkable sensitivity to internal stresses. For

the relaxed state, the anisotropy at both levels of d is similar to that of the elastic behaviour in Figure 6.

This can only result from the formation of texture during the deformation. The curves for the unloaded

state show that the internal stresses delay the onset of yielding after unloading if the process is continued

in the same direction. For loading paths different from the preceding deformation, a considerable loss of

yield strength is observed. As this secondary process proceeds, the internal stress distribution changes,

and the influence of the primary internal stresses is partially reduced (compare the curves ”deforn1ed

state (unloaded)” in Figure 7). The redistribution of internal stresses occurs via inelastic deformations

comparable in size to the elastic deformations, whereas the texture development is observed only after

large inelastic deformations.

8 Conclusions

The representative volume element technique has been presented and discussed. Based on a model

for the description of finite inelastic deformations of single crystals, the objective was to simulate the

constitutive response of polycrystalline solids including the interaction of neighbouring grains. Some

details of a FE simulation were discussed with special attention paid to the boundary conditions. Some

features of deformation induced elastic and inelastic anisotropy were shown using a simple computational

example. The results illustrate the possibility to identify distinct mechanisms for the development

of anisotropy during inelastic deformations, such as residual stresses and lattice rotations (texture

development).

Once an RVE has been constructed, we are able to perform any desired simulation on the computer, and

to study any mechanism with any precision desired.

The RVE concept turns out to be versatile and promising. It is not restricted to the study of grain

interaction, but is open to include the influence of imperfections (voids, inclusions), grain boundary

mechanisms, damage, fracture development, and much more.
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Figure 7. Normalized von Mises stress 0/7’C at d : 2% (upper part) and at d = 50% (lower part) as

Function of the Angle of Rotation. As the Curves are Periodical with a Periode of 180°, the Second Half

of the Plots have been Omitted.
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