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Softening Solids: Reality or Misinterpretation?

L.V. Nikitin

The behaviour ofa solid rod revealing a descending branch on theforce-displacement diagram is discussed. It

is shown that static equilibrium ofa softening rate-insensitive elasto—plastic rod is unstable. Instability leads to

strain localisation and a dynamic process ofpropagation ofshock waves of unloading and reloading. Based on

the elasto—visco~plastic model of a softening solid, the evolution of strain localisation is studied. To describe

the behaviour of rock—type brittle "softening" materials, a new constitutive model with structural

transformation is proposed and analysed.

1 Introduction

In some cases the force—displacement diagram recorded in the uniaxial test of solids possesses a descending

part. It takes place in material tests of mild steels, of aluminium alloys, and most often of different kinds of

rocks. The process of deformation becomes unstable since the equilibrium for increasing deformations is

associated with a decreasing force. Analogous phenomena are observed in the so-called Van der Waals gas and

in an electric circuit with negative resistance. However, existence of the descending part in the force—

displacement diagram does not mean that the material itself is softening, i.e. the stress—strain diagram has a

descending branch. Inspection of specimens enduring the postcritical deformation shows that in all cases

substantional geometrical or structural transformations took place. In most cases, the stress and strain state of

specimens becomes nonhomogeneous. In mild steels, a neck appears, in brittle aluminium alloys crack—type

defects are formed, in rocks both cracks and shear bands emerge. As a result the descending part of the force—

displacement diagram is not reproducible, in that it depends on the type and rate of loading. The specimen

cannot be considered as an element of a materia1,and calculation of the stress-strain relation from the force-

displacement diagram becomes questionable (Read and Hegemier, 1984). Only in the extreme case, when

numerous defects or structural changes take place, the damaged solids may be considered as a continuum, and

it is possible to perform homogenisation of stress and strain states. In this case, structural transformation takes

place which results in the formation of a material with new mechanical properties and a natural stress—free

state.

However, there exists a common opinion that in a rigid testing machine, i.e. in a test with displacement control,

it is possible to record the descending part of the stress-strain diagram. Models of softening materials may be

found in the literature, they are used for the solution of practical problems. For this reason, although there is no

direct evidence of the existence of a softening material, we suggest that such a hypothetical solid does exist, and

study how it would behave in the displacement control test. We consider also alternative models of materials

which may lead to a descending part on the force-displacement diagram. The first, broadly used elasto—visco—

plastic model (Sokolovsky, 1948), even when its limiting static stress-strain diagram has a discending branch,

leads to a hyperbolic set of equations for which the considered problems are well-posed. The second is a newly

suggested model with a discontinuous stress-strain diagram. It describes phase transformations in rocks due to

the rupture of internal structure.

2 Softening Elasto-Plastic Solid

First we consider a hypothetic solid which is described by the rate—insensitive elasto-plastic model. For a

uniaxial stress 6 and corresponding strain 8 the stress-strain relationship for active loading has the form

o=f(8) E(e)=dfd—(:) (1)

Here f (8) is the nonmonotonic function shown by the curve OMmS in Figure l, e M is strain at the peak value

of stress 0 M , E(e) is the tangent modulus, and an upper dot means differentiation with respect to time or any
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other parameter controlling the evolution of the process. For the active process e>0, E(e)>0 when

£<eM, andE(e)<0 when e>eM.

Unloading, which in the case under consideration is the process accompanied by a decreasing strain, is

conventionally assumed to be elastic, with the initial modulus 13(0)

6—6 :E(O)(e—8„) é<0 (2)
u

where G“ and eu are stress and strain at the start of the unloading, respectively.
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Figure 1. Stress—strain Diagram Figure 2. Wave Fronts and Shape of Stress Pulse

OMmS — for softening solid

OMmH - for solid with secondary hardening

0M + 8*H - for solid with structural transformation

Consider a test of a rod specimen made of this solid. Let a specimen with initial length l be quasi—statically

elongated in the rigid test machine up to the length l+u0 such that so = uO/l > 8M . It is assumed that the

stress—strain state in the specimen is homogeneous o 2 0‘0, 8 = 80 . Let us investigate whether this stress—strain

state is stable. Let us refer the rod to the axis x and take its origin at the end of the rod. Let us also assume that

at some moment of time t: O, the motion described by velocity v0 (x) has begun in the rod. To study the

stability of the suggested homogeneous stress-state we consider the evolution in time of the kinetic energy K(t)

of the rod. If the kinetic energy K(0) given at the momentt = 0 decreases in time, then the state of the rod is

stable, in the opposite case it is unstable.

The equation of motion of a rod has the form

8v_80‘
—_— 3

par ax U

where p is the material density, assumed to be constant. Using equation (1) and relation of displacement u

with strain a = Bit/Bx and velocity v = öu/öt we arrive at the next equation.

2 2

63% = 3—? with a2 = —E(g) (4)
x t P
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The initial conditions are

6(x,0) = 60 e(x‚0) = so v(x,0) = v0(x) (5)

The boundary conditions are

u(0‚ t) = 0 u(l,z) = uO (6)

We expand the kinetic energy K(1‘) into a series with respect to time t.

K0) = ‘PJV2(x)dX = K(0) + K(0)t + %K(0)t2 +
(7)

Here

K(0) = épJ- vä(x)dx

0

For K(O) according to equation (3) we have

l

K(0) = pJ-de = 0

o

Thus stability of the homogeneous state is determined by the sign of for which in View of equations (3)

t0 (6),

I  l I l . l

-- _ .. .2 _ Bo _ 8(v0) . ave
— 2‘). pvvdx + 1'; pl} dx — 1! V WK? —— J; ax dx — E’; Öde

(8)

1 1 2

. 88 a av x
= 110's — {E635 3:ng = -‘([E(E) dx

In view of equation (1) for 8 > e M there exists a vO (x) for which I? > 0 . For instance, it willztake place if

  

v0(x)=0tx 0<x<x* vo(x)=ß(l—x) x*<x<l

x = ßl g:_ 5(0)

* 0c+ß ß E030)

This proves instability of the static equilibrium of the homogeneous stress—strain state at the descending part of

the stress—strain diagram. Note that the criterion of stability used is in accordance with the Hill (1958)

quasistatic criterion, which was applied earlier in similar problems (Nikitin and Ryzhak, 1986; Ryzhak, 1993).

Since the static equilibrium is unstable, the dynamic process has to start when the stress reaches its peak value

csM . The dynamic process is governed by equation (4). When the material is hardening, E (a) > 0 , the velocity

of propagation of small disturbances is a. When the material is softening, E < 0, equation (4) becomes elliptic

and it seems that the problem with initial conditions becomes ill-posed. It has a homogeneous solution obeying

the initial and boundary conditions (5) and (6), which is unstable as shown above. The velocity of propagation

of disturbances vanishes when the strain reaches the value 8 M , while for 8 > eM propagation of disturbances

does not exist. However, when the relative displacement of the rod ends is uo > e Ml the postcritical strains

8 > E M must unavoidably appear somewhere in the rod. The only possibility to accommodate the postcritical
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strains under conditions that they cannot be distributed along any distance and cannot propagate, is to suggest

that they are stationary localised at one or a number of cross sections. The location of cross—sections of

localisation cannot be found from this analysis. Stress drops at these cross-sections, a circumstance that

produces waves of unloading propagating with elastic velocity a0 = (E(0)/p)l/2 . Thus the ill—posedness of the

problem turns out to be apparent. Regions of validity of the elliptic equation turn out to be a set of zero

measure. Localisation of strains leads to the well-posed dynamic problem.

Consider now a dynamic process in the vicinity of one of these cross—sections x = x0. For generality we assume

that starting from 6 = cm, 8 = am the material again becomes hardening, according to curve OMmH in

Figure 1.

E(e)>0 e>em ä>0 (9)

At the cross—section x = x0 softening takes place and therefore the stress drops there. For the rate-insensitive

material the stress drop from 0'M down to cm occurs instantaneously. Of course it is possible to account for an

influence of viscosity, as was done by Loret and Prevost (1990), Slemrod (1989) and Suliciu (1990), or involve

a kinetic equation at the wave front as was postulated by Abeyaratne and Knowles (1991). We restrict our

consideration to the simplest suggestion.

At the moment of localisation, we take as initial condition everywhere, except at the cross—section x: x0,

stresses at the peak value 0‘ = 0' M and velocity is absent. Due to symmetry, we restrict our consideration to

cross-sections lying right next to x0 . Then

6(x,0) = 6M v(x,0) = O for x > x0

(10)

6(X0 ,0) = cm

The problem under consideration does not contain any characteristic length or time, and therefore, is self-

similar, Stress, velocity and strain between fronts of waves depend on the ratio x/at only, but in our case they

are constant.

An instantaneous stress drop at x=x0 produces a wave of unloading, Figure 2, from the state

0:0M, 8:8 M, which in accordance with equation (2) propagates at an elastic velocity

1 2

a = a0 E (Ep)/ . The law of momentum conservation yields at the front x = x0 + aot of this wave

apV1=GM—Gm (11)

Equation (11) determines velocity in the region behind the front x = x0 +a0t. After the stress drops down to

Cm and the strain increases to 8m at x = x0, resistance to deformation in this cross—section is recovered. This

produces a wave of loading, Figure 2, corresponding to the branch 8 > 8m of the secondary hardening.

Velocity b of the front x = x0 +bt of this wave as well as stress 62 behind this front are unknown, and are to be

found from the solution. Due to symmetry, the cross-section x = x0 is at rest, and therefore v2 = O . Unknowns

b and 02 are found from the conditions of displacement discontinuity at the front x = x0 +bt .

b(el—82)+v1=0 6m—62+bpv1 =0 (12)

Equations (12) along with equation (5 = f (a) from equation (1) and with equation (11) form the system of non-

linear equations for the determination of b,62,€2 . Assume that equation (5 = f (e) is piecewise linear
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G:E(O)e for e<eM and o=E,(e—e,) for e>a (13)
m

where E5 is the modulus of secondary hardening, and 8A. is a material parameter. Then equations (12) and

(13) give

I

_(((1—oc) (im+c5s)2+4oc(c5M«2,32)2 — (l—oc) (Sm—o,

2

a0 2(GM —Gm)

 

(14)

b

G2 26m +——(GM —Gm)

Here OL = ES/EO, 0', = ESE, . The wave scheme adopted (Figure 2) is valid if only b < aO . With the help of

the first of equations (14) it may be shown that b<a0 if oM >6”, and 0 < E, < Do. The first of these

conditions means existence of softening, the second-existence of the secondary hardening. Both these

conditions are adopted in the formulation of the problem. For stability of the shock wave x = x0 +bt or its

"evolutionarity" (Kulikovsky, 1988) it is necessary to obey the inequality

b<a„ = Es/p (15)

which for the

softening material G M > cm is always met. In Figure 2 stress distribution along the rod at some moment of

Inequality (15) with the help of equations (14) may be reduced to inequality emEO >G‚„‚

time t = t1 for a material with linear secondary hardening is shown. Material parameters are taken as follows:

4 . . . .
0M = 26m ‚ 0c =1/4, am =58M. In this case, from equat1ons (14), b/aO =1/3. It is worth noting that the

solution does not depend on details of softening, so that from the test data it is possible to determine only the

peak values of the corresponding stresses and strains. Transfer from the unloaded state

G 2 cm, 8 = EM ~(6M —om to the state 62 < GM at the branch of secondary hardening has to pass

through the peak value 6 = cm. This takes place inside the shock front of the wave of secondary loading, and

is shown in Figure 2.

3 Elasto-visco-plastic Softening Solid

Dynamic process and sharp localisation are not observed for polycrystalline solids. It means that the

constitutive equation (16) does not describe their behaviour. One of the reasons may be the rate sensitivity of

the material. To account for rate sensitivity of real solids we adopt the elasto—visco—plastic model proposed by

V. Sokolovsky (1948). For the infinitesimal deformations the deviator e of the total strain tensor may be

expressed as the sum of elastic part e6 and plastic part e” , e = e” +e” . The constitutive equations of the

elasto-Visco-plastic solids for the arbitrary stress-strain state may be written in the form (Nikitin, 1957)

2W =S

(16)

. S

pa” = K?H(r—f(y))

where

H(z)=0 for z<0 H(z)=z for z>0

Here S is the deviator of the stress tensor, “c and y are the second invariants of the stress and strain tensors,

respectively, I = f (Y) is the asymptotic limit of the stress—strain diagram when 7 —> 0, and K is a material

constant.
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For this solid, we consider stretching of a semi—infinite rod at the end of which constant velocity or constant

stress are applied. Softening is assumed to be ideal, i.e. for the uniaxial positive stress the constitutive equation

has a form

Eé=o for o<om or E<8M

(17)

Eé=o+K(o—om) for o>o or e>s
m m

where om = const < 6M .

When stress at the end of the rod reaches the peak value 0M, due to the softening even in the case of

quasistatic loading a dynamic process starts which is governed by equation (3) of motion, the constitutive

equation (17) and the equations of compatibility

8v 80 8v 80 av 38

— =— E— =— — — =— 18

p at ax ax at ”(G 6'") Bx a: ( )

The system (3.3) preserves hyperbolicity for the softening material and has been solved by the standard method

of characteristics for the cases v(0,t)= v0 and O(O,t)= GO. Shock waves do not arise. However, at some

distance x = x,k from the end, a stationary discontinuity arises. Plastic strains are localised near the end within

a zone of width x... . The magnitude x,. does not change in time and vanishes when v0 —> 0. In the case when a

constant stress 0'0 is applied at the end of the rod, localisation of deformation also takes place, but it is not

severe, and the width of the plastic zone increases approximately linearly in time.

4 Phase 0r Structural Transformation

In some cases, due to internal rupture or shear band formation, the mesostructure of a solid is changing when

the stress reaches some critical state. If after this change the material may be considered as continuous, the

process may be interpreted as phase or structural transformation under the action of stress. One solid is

transformed into another one which possesses different mechanical properties and natural free stress state,

branches 0M and 8*H in Figure 1. Both parental and damaged solids are hardening and rheologically stable.

Consider again uniaxial stretching of a rod. As a reference configuration we choose the natural free—of—stress

configuration of the parental material. In the simplest case, when both solids are elastic the free energy and

stress—strain relation for the parental material have forms

_ 2 _
Ap—Epe o—Eps (19)

where Ep is Young’s modulus of the parental solid. In the natural configuration of the parental solid the

damaged solid is not stress free. Besides, the structural transformation is a process consuming some energy.

Therefore, the free energy of the damaged material must contain zero and first order terms in terms of a .

1

Ad =A*—Ede*8+5udez G=Ed(E—8*) (20)

Here Ed is the Young’s modulus of the damaged material, A... is the energy of the structural transformation

and 7* is the kinematic characteristic of the structural transformation. Structural transformation takes place

when the stress reaches the critical value 6 = (Sc, . Thus, the structural transformation is characterised by the 3

material parameters Gc„A* and 8*. The process of deformation becomes unstable when G = (SC, . The same

reasonings as for the softening solid show that strains are localised at some cross—sections, and a dynamic

process starts. Stress drops at the localisation at, say, x = x0 to some level (51 < (Sc, which is to be found in the
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process of solution. The wave pattern is similar to that for the softening solid. As above, the wave of structural

transformation x = x0 +bt is preceded by the wave of elastic unloading of the parental solid x = x0 +apt. At

the front of the structural transformation, in addition to the law of momentum conservation and the condition of

displacement discontinuity, the law of energy conservation is to be met. This results in the next set of

simultaneous equations for the determination of unknowns (51, v1, 62 and b

ol—oc,+appv1=0 GZ—Gl—bvl=0

(21)

1

17(82 ‘£])—V1 z 0 b[Ap _Ad ~Epv12j—01v1=0

The shape of stress distribution along the distance is similar to that for the softening solid which is shown in

Figure 2. Table 1 gives values of b/ap,.81 and82 for different 0t=Ed/Ep,£u=EdE*/Gcr and,

A0 = 2EdA4 / OZ, , obtained from the solution of the simultaneous equations (21).

     

we, 40:0 40:1 40:2 A0=3

b/a„ 0,492 0,146 0,005

1"7.1,8 e] 0,183 0,731 0,987

82 1,842 2,580 3,450

b/a„ 0,297 0,143 0,055

“4/178 21 0 0,223 0,628 0,832

82 2,601 3,225 3,866

b/a„ 0,334 0,199 0,108

l"VI/4 a, 0 0,141 0,447 0,662

82 2,712 3,228 3,795

       

Table 1. Velocity of the Front of the Wave of Structural Transformation b and Strains Ahead (81)

and Behind (82)

5 Conclusions

Common opinion that the descending branch of the stress—strain diagram of a softening solid (would such a

solid exist) may be recorded in a displacement—controlled test is questionable. Structures made of softening rate-

insensitive materials lose stability when loads reach some critical value. Postcritical behaviour does not lead to

the ill-posed problem as it first seems but rather to a well—posed dynamic problem. Strain corresponding to the

descending branch of the stress-strain diagram is localised at surfaces with one dimension less than the

problem under consideration.

The model of the rate-sensitive softening solid permits the calculation of the evolution in time of the strain

localisation.

A new constitutive model with structural transformation is suggested. This model describes apparent softening.
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