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Eontinuiim—Meaianics off fl

Elastic and Inelastic Simple Materials

B. Svendsen

The purpose of this short paper is to briefly review some basic aspects of the continuum mechanics of

elastic and inelastic simple materials from a local difierential-geometric point of view, both in Euclidean

space and with respect to the body manifold.

1 Mathematical Preliminaries

We begin with a brief review of some mathematical concepts to be used in the continuum mechanical

formulation to follow. Most, if not all, of these can be found, e.g., in Noll (1972, 1973), Wang and

Truesdell (1973), Bowen and Wang (1976), Marsden and Hughes (1983), or Abraham et al. (1988).

Let W and Z be finite-dimensional linear spaces, and R the set of all real numbers. A linear mapping

between W and Z is a mapping L: W —> Z | w 1—) z : L(w) satisfying the condition

L(a1w1 + (12102): a1L('w1) + a2L(w2) VuJ1,w2 e W and Va1,a2 E R (1.1)

(the symbol V stands for “for all”). For any such linear mapping, it is a common simplifying convention to

write the value L(w) of L at w simply as Lw, i.e., to discard the parentheses. Let Lin(W, Z) represent

the set of all linear mappings between W and Z, itself a linear space. If W and Z have the same

dimension, i.e., if dim(W) : dim(Z) holds, then we can also talk about linear mappings between W

and Z which are invertible. In this case, let Lbj(W, Z) C Lin(W, Z) represent the set of all mappings

between W and Z which are both linear and invertible (“Lbj” stands for “linear bijection”).

A particular case of Lin(W,Z) arises when we choose Z to be the set [R of all real numbers. The

corresponding linear space W"= := Lin(W,R) is called the dual space of, or to, W, and its elements

77 e W* are called covectors (the symbol “ 2: ” stands for “is defined equal to”). Note that any ze Z

and 77 E W* induce a linear mapping (2 ® 77) e Lin(W, Z) called the tensor or dyadic product of z E Z and

77 e W*‚ defined by (z (8 17)w z: (nw) z for all we W. Since W*, like W, is a linear space, it possesses

a dual space as well, i.e., WM z: Lin(W*‚1R), sometimes called the second dual space of, or to, W.

Now, by definition, any 77 E W* maps any w E W to the real number nw e R (remember nw : n(w) by

convention). On the other hand, we can also think of 'w e W as inducing the linear mapping n 1—) nw of

77 e W* to 1710 E R, in which case this mapping is an element of W”. Consequently, each w E W induces

a unique element zu 6 WM of W”, defined by zur] :: 1711) for all n E W*. Because of this, we can identify

any element of WM uniquely with one of W; such a natural identification (i.e., one based on the given

structures of WW and W alone) is signified by writing WM E W (i.e., zu E w). It is important to

emphasize that this does not mean that WM and W are equal, or the same, but rather, that we can

always express mathematical relations involving the elements of one of these spaces uniquely in terms of

elements of the other. Unfortunately, no such natural identification exists between W* and W in general;

with the help of additional structure (i.e., an inner product), however, such an identification is induced,

as discussed briefly below.

Any linear mapping L E Lin(W, Z) induces a corresponding linear mapping L* e Lin(Z*, W*)‚ called its

dual (linear mapping), defined by

(L*cr)’w ::o-(Lw) ‘v’weW and VO'EZ* (1.2)
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ew" EZ



Let b 2: (b1,b2,...,bdim(W)) be a basis of W, and ß z: (ß1,ß2,...,ßdimlw)) one of W*. Two such

bases are called dual if 2bjßZ = fizbj : öij (i,j : 1,. . .,dim(W)) holds, where 61]- is Kronecker’s delta,

i.e., 63 : 1 for i : j and 63. = 0 for i 7€ j. Let these two bases be dual, c z: (61,62,...,Cdim(z)) be

a basis of Z, and '7 z: (71,72,...,1dim(z)) one of 2* dual to c. Relative to such bases, we have the

component representations L = cm (83‘ and L* = ZkflL’lhk fit ® 2ck. Using these and (1.2)

yields the relation [L*]ji : 2bj(L*7i) : (L*'yi)bj : 7i(Lbj) : [LY]. between the components of L* and

L, implying that the component matrix of L" is the transpose of that of L (with respect to dual bases).

Let dim(W) : n be the dimension of W, and k g n. A k-maltilinear mapping of W into R is one

a: Wk —> R | (w1,...,wk) +—> ,a(w1,...,wk) of Wk z: W >< X W (k times) into R which is

separately linear in each argument, i.e., a(w1,...,a1u,- + a2vi,...,wk) = a1‚u(w1,...,ui,...,wk) +

a2 a(w1,...,v,-,...,wk) holds for all i : 1,...,k. Such a linear mapping is in addition completely

skew—symmetric if „(1171,.‚.‚wi,...,'wj,...,'wk) : :l:‚u(w1,...,wj,...,wi,...,wk) holds for all i,j :

1,. . . , k, i 7E j, where + obtains when the permutation is even, and — when it is odd. In particular, the

non—zero elements of the one—dimensional linear space Skw,,(Wn, R) of all completely skew-symmetric

n—multilinear mappings of W into R are called volume covectors. Perhaps the best—known example of

such a volume covector is the standard Euclidean volume covector of three—dimensional Euclidean vector

space (see (1.10) below). Using such volume covectors, we can define for example the determinant

,u(Mw1,...,M’wn)

det :2—— (1-3)
M(w17"'7wn)

of any M E Lin(W,W) for all linearly independent vectors w1,.. .‚wn EW and any volume covector

a e Skw„(W", R). As indicated by the notation, this definition is independent of the choice ‚u e Skwn(Wn

R). On the basis of this definition, one can show in particular that

7

detW*(M*) : detW(L’1M*L) : detW(M) (1.4)

holds for all L e Lbj(W, W*) and ME Lin(W, Now, any two volume covectors ,a,w E Skwn(Wn, R)

are equivalent if there exists a positive real number a > 0 such that a : aw holds, i.e., ii(w1, . . . ,wn) :

aw(w1, . . . ,wn) for all 2171,. . .,'w„ e W. An equivalence class [to] z: {a E Skwn(Wn, R) | there exists an

a > 0 such that ‚u : aw} of such volume covectors determines an orientation of W. Since Skw,,(Wn, R)

is one—dimensional, there are two such orientations, i,e., [w] and [—w]. By convention, the chosen ori—

entation is called positive, and the other negative. A linear space W endowed with a given (i.e., fixed)

orientation is called oriented. For W and Z oriented with orientations [wW] and [Mg], respectively, and

dim(W) : dim(Z), any LELin(W,Z) is called orientation-preserving if, for any we [LUZ], the corre—

sponding volume covector wL eSkW„(Wn,R) induced by L €Lin(W,Z) on W belongs to [Law], where

wL('w1,...,w„) z: w(Lw1,...,Lw„) for all linearly independent w1,...,'w,,eW. Since wLelwW]

can in fact hold only when LELin(W,Z) is one-to—one (i.e., injective), any orientation-preserving

LELin(W,Z) is also invertible (since dim(W) = dim(Z)). Let Lin+(W,Z) C Lbj(W,Z) represent

the set of all such orientation-preserving, linear mappings between two oriented linear spaces W and Z.

In particular, elements of the set

Uni+(W,W) z: {Me Lin(W,W) | detW(M) = +1} (1.5)

of unimodular linear mappings ME Lin(W, W) with positive determinant are orientation-preserving.

A linear mapping L €Lin(W,W*) is called positive-definite if (L'w)w > 0 holds for all we W except

the zero element 0 e W. A (positive-definite) metric tensor on a finite-dimensional linear space W is an

element of the set

Spd(W,W*) z: {GELin(W,W*) | G'* E G and G positive—definite} (1.6)

of all symmetric positive—definite linear mappings between W and W*. Since dim(W) = dim(W*), and

any element of Spd(W,W*) is one-to-one (i.e., injective), we have Spd (W, W*) C Lbj(W, W*).

Any ME Lin(W, W) is called symmetric {skew-symmetric) with respect to G E Spd(W, W*) when M" =

GMG“lL (M* : —GMG—1) holds. In addition, any MeLin(W,W) is called orthogonal with respect

to GESpd(W,W*) if M*GM = G. This latter condition holds in fact only if M is one-to-one (i.e.,



injective), in which case it is also invertible (since W is finite-dimensional), and so M* = GM—IG—1

also holds. Let

SymG(W,W) z: {MeLin(W‚W) | M* = GMG—l}

SpdG(W,W) :: {MeLin(W,W) ; GMespd(W,W*)}

swam/W) z: {MeLin(W,W) | M* = —GMG*1} (1'7)

orthg(W,W) z: {Me Lin+(W,W) | M* = GM‘IG"1}

denote the sets of all symmetric, symmetric positive-definite, skew—symmetric, and orientation-preserving

orthogonal, linear mappings of W onto itself, respectively, again with respect to G E Spd(W, W*). In par—

ticular, note that detW(G_1M*G) : detW(M) = detW(M_1) : 1/detW(M) for any ME OrthäO/V,

W) from (1.4), i.e., detW(M) : 1.

If we (can) single out a particular (positive-definite) metric G E Spd(V, V*) on a finite—dimensional linear

space V, this metric induces the structure of a (positive-definite) inner product space on V. In particular,

G induces the inner product '01 - 02 z: (G'ul)v2 of any two v1,v2 E V. Being linear and invertible, G

maps any basis b of V to one Gb :: (Gb1,Gb2, . . .) of V*‚ representing the reciprocal basis of b. Since

the components [Ch]. z: (Gb,)bj of G with respect to b are in general not equal to 61-], Gb is in general

not a dual basis of b; but if this is in fact the case, i.e., if [Ghj : 6”- holds, then b is called orthogonal.

In addition, we have the transpose

LT z: G’1L*G (1.8)

of any LELin(V,V). With respect to a basis b of V, and one ß of V* dual to b, we have [LT]1J- :

[G—1]ik{L*]km[G]mj : [G-lfk [L]",‘c [G]m,, and in particular [LTfj : [Lfl if ß : Gb, i.e., if b is

orthogonal. On the basis of (1.7) and (1.8), we have the usual forms

Sym(V,V) z: {LELin(V,V) | LT : L}

Spd(V,V) :: {L ESym(V,V) | Lv -v > 0 v1; 75 0}

Skw(V,V) :: {L eLin(V‚V) | LT = —L} (1'9)

Orth+(V,V) z: {L eLin+(V,V) | LT = L_1}

for the sets of all symmetric, skew-symmetric, and orientation—preserving orthogonal, linear mappings of

the inner product space V onto itself. Since the metric is fixed in the case of an inner product space, it

does not appear in the notation for these sets in (1.9), in contrast to the more general case defined in

(1.7).

Since G is linear and invertible, it induces the natural identification V* E” V (1/ E G_1V), i.e., any

covector u E V* can be identified or associated with a unique vector G_1u e V. Via linearity and duality,

this identification can be extended to tensors as well. In particular, G itself can be identified or associated

with the identity linear mapping IE Lin(V, V) on V, i.e., G E I, induced via I = GG—l, for example; we

emphasize that this does not mean that G and I are equal, or the same, something that would make no

mathematical sense. To avoid the confusion on this point sometimes found in the literature, we dispense

here with the identification V* E V, and deal instead directly and explicitly with G in the formulation.

Perhaps the most well—known example of such an inner product space is the vector (translation) space of

three—dimensional Euclidean space, i.e., the mathematical model for “space” in classical physics, and so

continuum mechanics. To be more precise, the Euclidean space of classical physics is a three—dimensional

affine space (E,V), where E is the point space, and V the corresponding translation (vector) space

endowed with the Euclidean metric tensor G and compatible Euclidean norm |vl z: for all p E V.

The fact that (E, V) is an affine space means, roughly speaking, that any two points p, q E E of E can be

“connected” by an element a E V of V, in which case one writes q = p + a or a = q — p. Among other

things, G induces the standard (compatible) Euclidean volume covector wG e Skw3(V3‚ lR), which in turn

induces the cross product 711 X v2 of any two 111,02 e V, such that

wG('”1:”2/U3) = (U1 X ”2) '1’3 (1-10)

holds for all 111,112, '03 E V.



2 Material Body and Euclidean Space

Any material is idealized in continuum mechanics via the notion of a material body. The kinematics

of such a material body is represented in E with the help of regions B,i C E of E which the body

may occupy, for example, during its motion and corresponding time-dependent deformation in E. The

mathematical properties of such regions depends on the type of material body being considered. In the

case of a classical material body, e. g., one not containing cracks or other macroscopic discontinuities,

N011 and Virga (1988) showed that the corresponding classical regions can be modeled by the so-called

fit regions of E, i.e., subsets P of E that (1) are bounded, (2) are regularly open (i.e., each equal to the

interior of its closure), (3) have finite perimeter, and (4) have boundary of volume measure zero (i.e., zero

volume). As shown by Del Piero and Owen (1993), fit regions are no longer adequate as mathematical

models for the regions occupied by a material body when the body in question contains “two-dimensional”

macroscopic discontinuities (6.g., unopened cracks or fractures), and must be replaced by piecewise fit

regions, representing finite unions of fit regions, the individual fit regions of the union being separated,

roughly speaking, by the two-dimensional discontinuities in question.

On the basis of fit regions, one can formulate the classical notion of deformation (relative to these).

Indeed, a deformation from one fit region P C E into a second fit region Q C E takes the form of a

mapping

{IP—>62 I p’—>q:€(p) (2-1)

representing then (mathematically) a morphism of such regions in E, 2.6., a C1 diffeomorphism of E

restricted to such regions. This being the case, it is still useful to briefly discuss the physical constraints

lying behind such a mathematical model for classical deformations. For example, we have the physical

notion that a given part of a classical material body usually cannot merge with or pass through another

part of the same body in a deformation, representing the impenetrability of matter. As a restriction on

g, this takes the form

€091) =E(p2) => 191 =p2 VpllpgeP (2-2)

in terms of material points, i.e., f can neither “create” nor “destroy” material points. Since the opening

or closing of a macroscopic crack or other discontinuity does just that, i.e., makes two material points out

of one, or makes one out of two, respectively, f would not satisfy (2.2) in this case. Mathematically, (2.2)

requires { to be one—to-one, or injectioe. Beyond impenetrability, we have the notion that a deformation

of a classical material body simply changes the shape of the body, i.e., no material is gained by, or lost

from, the body in a deformation. The corresponding restriction on f is given by

€[P] = Q (2.3)

such that f is onto, or surjective. Together, (2.2) and (2.3) require f to be one-to—one and onto, or

bijective, i.e., invertible. Finally, in the context of the theory of simple materials (6.9., N011, 1972), f is

required to be continuously differentiable at each pe P, 2.6.,

(Dpf)v z: li_r}r[1J imp + w) — £(p)] E V exists V'v e V at each peP (2.4)

yielding the Fréchet derivative (Dpf) eLbj(V,V) of E at each pEP, i.e., the deformation gradient. To—

gether, (2.2)—(2.4) require 5 to be a C1 diffeomorphism of P onto Q.

To obtain yet a further restriction on f, and in particular on (Dpf) €Lin(V,V), consider three linear—

ly independent vectors 111,712,1J3 E V which are positively—oriented (i.e., wG(v1,v2,v3) > O). These can

be though of as being “attached” to pEP (in a way that will be made precise below). On the ba-

sis of this association, such vectors span a “linear” (infinitesimal) neighborhood of pEP with volume

wG(v1,v2,v3). Now, such vectors are deformed into vectors (Dp§)v1,(Dp§)v2,(Dp€)v3 e V by f. These

vectors will analogously span a linear neighborhood of f(p) E Q if they are linearly independent, which is

the case only if (Dpf) is invertible, i.e., only if (Dpf) e Lbj(V, V). In this case, the corresponding volume

wG((Dp§)vl, (Dp§)v2, (Dp§)v3), or equivalently, detV(Dp£) via (1.3), is non-zero. Furthermore, since vo—

lume as a physical concept only makes sense when it is represented as a positive quantity, it would seem

reasonable to require wG((Dp£)vl, (Dp§)v2, (Dp€)v3) > 0, or equivalently detv(Dp§) > 0, again via (1.3),

for each pEP, i.e.,

(D1096 Lin+(V, V) at each pe P (2.5)



Conditions (2.2) and (2.3) require E to be bijectioe, while (2.2)—(2.5) imply that f is an orientation-

preseroing, Cl difi‘eomorphism of P onto Q.

Up to now, we have dealt primarily with the mathematical representation for the regions occupied by a

classical material body in E, as well as that for a deformation between these, subject to certain physical

requirements such as the impenetrability of matter. The material (body) itself, however, can also be

represented mathematically, i.e., as a set B which is connected with the regions it occupies in E via

mappings

m:B—>B,€CE | br——>p=ls(b) (2.6)

called placements of B into E. The corresponding image BR :: n[B] represents a region in E occupied by

B via a. In general, BR need not be classical, i.e., a fit region of E. Equivalence classes of such placements

induce all mathematical structure(s) of physical relevance on B from E. Conceptually speaking, note

that such placements are not “coordinate charts” on B, but rather mappings between manifolds. To

this author’s knowledge, the term “placement” was first introduced by Noll (1972) for the concept which

had been referred to previously as “configuration,” which he restricted to equivalence classes of such

placements inducing the same metric structure on B. Using an alternative approach, such equivalence

classes can also be introduced locally, as shown in §4 below.

Let Pla(B, E) represent the set of all placements of B into E. Any two placements my 6 Pla(B, E) are

said to be (C1) compatible at bEB if the induced mapping f: BH —> B, (with 'y = ion) between BE

and B, is an orientation-preserving, C1 diffeomorphism of some neighborhood of n(b) GBR onto one of

7(1)) e B,. In particular, these neighborhoods could be fit regions of E. Compatibility at b E B induces an

equivalence relation between elements of Pla(B, E) at be B via the corresponding dilfeomorphisms; let

[Mb C Pla(B, E) represent the corresponding equivalence class with respect to n E Pla(B, A stronger

form of compatibility between any two 5,7 6 Pla(B,E) arises when they are compatible at each be U

in some subset U C B of B, something one could refer to as compatibility in U C B. In particular, if

U = B, we could call this simply local compatibility. The strongest form of compatibility between any two

H, 7 e Pla(B, E) arises when the corresponding deformation E : BK —> B, is an orientation—preserving, C1

diffeomorphism of B,i onto B,; in particular, this arises when BR and B, are fit regions of E, as discussed

above. Such compatibility could be called global or classical compatibility. As with compatibility at a

point, both compatibility in any subset of B, and global compatibility, induce corresponding equivalence

relations between the elements of Pla(B, Clearly, all globally compatible placements are both compa-

tible in any U C B and compatible at each b E B, while all placements compatible in any U C B are also

compatible at each b e U, but the converses are in general not true. In this context, a simple deformation,

as introduced by Del Piero and Owen (1993), connects two elements of my €Pla(B,E) compatible in

some proper subset U C B of B when in addition Is[U] C BR and 7W] C B, are piecewise fit regions of

E.

Generally speaking, compatibility of placements is an issue relevant to the material body as a whole,

having to do for example with whether or not the material body is inhomogeneous (i.e., contains dislo—

cations, cracks, glide systems, and so on; see Noll, 1967, or Del Piero and Owen, 1993). In what follows,

however, we will be interested in the material behaviour of a single material point b E B, and as such in

the weakest form of compatibility between placements of B, i.e., an equivalence class [It],J of compatible

placements of B at b.

3 Curves and Deformation at a Point in E

To investigate the notion of a classical deformation 5 z P a Q further, and in particular that of the

deformation gradient, consider a curve at a point pe P, i.e., a C1 map cp: I0 —+ P with cp(0) = p for

0 e I0 C R, with IO a time interval. Such a curve is deformed to one

Cap) ‘2 5°01»: Io —> Q (3.1)

at f (p) in Q. The derivative of this last relation yields

C'g(p)(0) = (Dp€) c'p(0) (3-2)

at p = cp(0), with c'p(0) := limsnn %[cp(5) — cp(0)] G V the tangent vector to C1, at p : cp(0). On

the basis of (3.2), one sees that the classical deformation gradient (Dpf) e Lin+(V‚ V) at pe P represent



the deformation of tangent vectors to curves there; in fact, to equivalence classes of curves, i.e., two

curves cp and kp at pEP are equivalent if kp(0) : c'p(0) hold. The corresponding equivalence classes

[cpl :: {kp I kp ~ cp} all possess the same tangent vector 'v = cp(0) EV. On this basis, we have the

natural identification

[Cpl 3 (IM!) E {P} >< V (3-3)

at peP. Note that each equivalence class also induces a classical line element dX z: 'p(0) d3 E V at

peP with respect to any one-dimensional line element d5 61R. In afiine spaces, the pair up z: (p‚'U) is

also refered to as a tangent vector (in the differential-geometric sense), and the set of all these is the

tangent space

1;,E z: {p} >< V (3.4)

to E at pEP. Note that (3.3) implies that each [cp] is represented uniquely by an element op eTpE of

TPE. The definition (3.4) suggests the interpretation of @E as V “attached to” 136 E. In this context,

it is common to describe the elements of V as being “free” vectors, and those of TpE as being “bound”

vectors. On this basis, we can rewrite (3.2) in the classical form

u z (ng) v (35)

relative to v = c'p(0) and u : {3€(p)(0), or in the modern form

um) : (Tpf) up (3.6)

relative to 'vp z: (13,17) and nap) := (€(p),u), where the tangent linear form (TpE) eLin+ (TpE, Tng)

of E at pEP is related to the corresponding Fréchet derivative (Dpf) E Lin+ (V,V) of g via the natural

orientation-preserving linear map

- + _ _
Aq eLin (V, ZqE) | a r—> aq _ (q,a) — Aqa (3.7)

between V and CCIE at each qe E, i.e.,

Tpg

TpE ——_“—> Tng

A: ) (Tpo = Am.) (13.:) A: Ame) (3-8)

V —————-——> V

ng

Note that (3.7) induces the Euclidean parallelism

qu z: ApAq—l eLin+(TqE‚TpE) | a, +—> up = quaq (3.9)

for all p, q e E, often refered to as the “shifter” (see, e. g., Marsden and Hughes, 1983).

4 Body Element at a Point in B

The same consideration using curves at any point b E B of the body manifold can be carried out with the

help of the placements K, E Pla(B, E) of B. Because there exists no intrinsic differential structure on B

analogous to that on E, however, this can be done only with the help of the placements of B into E.

Indeed, two curves Cb, kb : I0 —> B at b e B are equivalent (at b) if there exists a placement K e Pla(B‚ E)

such that ch) ~ ICH“) at 5(1)) 6 BH as defined above, where cm“) z: K? o cb: IO ——> BK. In fact, if on“) ~ kn“)

for K, E Pla(B, E), then c7“) ~ Icy“) for all 7 6 [Mb via the definition of [n]b and the chain rule. Indeed,

with ‚y = 5m, and so cyan-z gocm), we have c7(b)(0) : (DK(,)g)éK(,)(0), and so (37(1))(0) = 197(17) (0) =>

(DK(b){)c'N(b)(0) : (Dn(b)€)kfi(b)(0) => c'„(0) : kK(b)(0) since (DKUÜE) E Lin+(V, V) is invertible. Since the

equivalence relation is then independent of the choice of the element of [n]b, the corresponding equivalence

class [ab] of curves at beB depends only on [n]b. Since [ab] is arbitrary, however, [Cb] depends in fact

only on the existence of such a class (which always does on a differentiable manifold). Consequently,

we can “forget” which [Mb we used to define it, and just work with [Cb] as “given.” By analogy with



the Euclidean case above, then, we can then interpret each [Cb] as a tangent vector Vb : [ab] at b e B; in

contrast to the Euclidean case, however, each such tangent vector does not split naturally into b plus a

vector part. Indeed, this can be done only with respect to some 7 E Pla(B, E) (see below). The set of all

such vectors, i.e., equivalence classes of curves, at be B, is, analogous to the Euclidean case above, the

tangent space TbB to B at b E B, which N011 (1972) calls the body element at b e B (the tangent space at

a point of a manifold can also be based on other kinds of equivalence classes; see, e.g., Abraham et al.,

1988). Now, by definition of [Cb], any 7 e [n]b induces a mapping of [Cb] to [am], and so of vb eTbB to

um) ETVUOE, i.e.,

(Tn) = 113 -> T„(b)E I Vb H (703M) 20m) = (Trim (4-1)

representing the so—called tangent linear map to 7’ at b. In a general manifold setting, it is this tangent

map that represents the notion of derivative, and the one we would need to work with to formulate a

generalized concept of “deformation gradient” in this case. Euclidean space, however, possesses much

more (additional) structure than a normal manifold; in particular, we have the natural orientation—

preserving, invertible linear mapping (3.7), which transforms the tangent map of any 7 E [1€],7 into

the difierential

(db’Y) i: A;(1b)(Tb'Y) 1 TbB —> V l Vb ’—> v = (db7)Vb (4-2)

of 7 at b E B, mapping each vb to its vector part 1) E V relative to 7. Since, via the Euclidean parallelism

(3.9), this vector part can be “shifted” or “parallel—transported” to any other point in E, it is in fact

this vector part, and not the corresponding tangent vector, that is central in a Euclidean space setting

(something recognized a long time ago, 6.9., by N011, 1972, 1973).

Now, for all 7€[n]b, (db7) = (DN(b)€)(db/<a) holds via 7 2 £05 and the chain rule, with (DKUÜE) e

Lin+(V‚V). In particular, we could have (DEMO = I, i.e., (db7) : (db/s), representing a second

equivalence relation between 7 and a subordinate to the one defining [n], Let (Mb C [n]b repre—

sent the corresponding equivalence class. Any such <l$>b induces the operations of vector addition

ub + vb z: (dbli)—1(’U‚ + 'u) and scalar multiplication avb :: (dba)_1(au) on 12B via the corresponding

operations on V, and so endows 12B with the structure of a three-dimensional linear (vector) space. As

such, we can orient this space, and require that the differential (db7) of any 7 e [5],, be an orientation

preserving, linear invertible mapping, i.e., (db7) 6 Lin+(1;,B, V). Analogous to placements a E Pla(B, E)

of B into E, the elements of Lin+(TbB, V) can be thought of as placements of TbB into V. By defini-

tion of ILB (i.e., via any [ab and equivalent curves at b), as well as the equivalence classes (Mb, any

K €Lin+(TbB,V) is induced by some (It)b via K : (db/t).

Note that TbB inherits only the linear structure of V in the above fashion, i.e., it does not inherit the

inner product structure of V in this way. Unlike V, then, TbB is not an inner product space, i.e., there

exists no special or “canonical” element of Spd(TbB, I},*B) analogous to the Euclidean metric tensor G of

V. On the other hand, each K e Lin+(TbB, V) does induce a metric tensor

GK : K*GK E Spd(TbB,Tb*B) (4.3)

and volume covector

wKESkW3((TbB)3>R) l (V1>V27V3) HWG(KV12KV2:KV3) :: WK(V1aV2aV3) (4-4)

on TbB. As discussed by N011 (1972, §3), elements of Spd(1},B, TfB) can be interpreted as configurations

of TbB. From the point of View of these configurations, two placements J, K E Lin+(TbB, V) of TbB are

equivalent if they induce the same configuration of EB, i.e.,

J ~ K ::> GJ = GK <=> JK’l e Orth+(V,V) (4.5)

Each corresponding equivalence class

[K] 2: {J eLin+(TbB,V) | J ~ K} c Lin+(TbB,V) (4.6)

induces a unique configuration

and volume covector

w[K] 2: by VJE[K] (4.8)



of TbB. The former holds by definition of the equivalence class [K], while the latter follows from the

result w, = detv(JK’1)wK for all J,KeLin+(T,B,V)‚ and the fact that detv(JK—1) = 1, i.e.,

JK-1 e Orth+(V, V), for all J 6 [K].

5 Simple Kinematics of a Material Point

A classical motion of B with respect to, or in, E, during the time interval I C R, can be represented as

a curve in Pla(B, E), i.e.,

C: I —) Pla(B,E) | ti——-> (t z: ((t) (5.1)

such that C, [B] C E a fit region for all t E I. With the help of the differential of C at each t6 I (see (4.2)),

the corresponding dynamic (i.e., time-dependent) deformation gradient at b e B takes the form of a curve

F: I —> Lin+(:l;‚B‚V) l tI—> (dbct) z: F(t) (5.2)

in Lin+(TbB,V). In the context of the interpretation of the element of Lin+(I;,B, V) as placements of

TbB in V, a comparison of (5.1) and (5.2) implies that F can be interpreted as a motion of 12B in V.

The standard or usual form of the deformation gradient is in the current context one relative to some

reference placement K €Lin+(I;,B, V), i.e.,

FK: I —> Lin+(V,V) | ti—> F(t)K_1 :: FK(t) (5.3)

In contrast to this “referential” form of the dynamic deformation gradient, we might call (5.2) its “ma—

terial” form, meaning that it is independent of any K e Lin+(TbB, V). In any case, it is this form that

most clearly represents the “two—point” tensor character of the deformation gradient.

Beyond the various restrictions placed by the impenetrability of matter on the concept of deformation

discussed in §2, there is one further with respect to FK : I —> Lin+(V, V) worth mentioning here. Assume

for the moment that detV(FK) : I —> R starts out positive, but could become negative during the motion

of the body. Since C z I ——> P1a(B, E) is assumed continuous, and detv : Lin(V, V) —> R is continuous, the

only way this could happen is if detV(FK(s)) : O for some s E I. As discussed in §2 with respect to the

concept of deformation, this would mean in the current context that the volume of the linear neighborhood

around Ct(b) would go to zero, in which case two distinct material points could become one during C , and

so violate (2.2). Consequently, the impenetrability of matter in fact requires detv(FK): I —> 1121+, i.e.,

FK: I —-> Lin+(V,V), in the “dynamic” case, consistent with the “static” case discussed in §2.

6 Simple Elastic Materials

In the theory of simple materials (Noll, 1972), one assumes the dependence of the material behaviour of

any b e B on deformation is confined to the deformation of an infinitesimal or “linear” neighborhood of

b E B, i.e., to that of 11,3, as represented by the deformation gradient (5.2). In this case, the dependent

constitutive fields such as the Cauchy stress T(t, (t(b)) e Sym(V, V) (for non—polar materials) associated

with the motion of b E B are assumed to depend in general only on the histories of F and temperature

at b E B. In the simplest case, i.e., that of purely thermoelastic behaviour, this reduces to a dependence

on the current values of these alone, i.e.,

T = £K(FK) (6-1)

with respect to some local placement K e Lin+(’l},B, V) of TbB, where 5 stands for “elastic.” As done in

this last relation, we leave temperature out of the notation in what follows for simplicity.

To insure that constitutive relations such as 5K, and so the material behaviour, do not depend on the

choice of (Euclidean) observer, they are subject to the requirement of material frame-indifference (e.g.,

Truesdell and N011, 1965; Wang and Truesdell, 1973; Marsden and Hughes, 1983; Truesdell, 1993). In

particular, this requirement reduces 8K to the form

5K(FK) Z FKRK(CK) F13 (5-2)

(e.g., Truesdell and N011, 1965), where

CK z: FIEFK : I —> Spd(V,V) (6.3)



represents the right or referential Cauchy-Green tensor relative to K, and R stands for “reduced.” On

the basis of (6.2), material frame-indifference clearly restricts the general dependence of 5K on FK to a

particular form in which the constitutive function ’RK of CK determines the material behaviour.

With the help of the relation FIE = G71FI’} G from (1.8), we obtain the form

CK z G414};GFK = G“1K‘*F* GFK-1 =K6,1,},GFK—1 (6.4)

for CK from (4.3), (4.7), (5.3) and (6.3), where

GF z: F*GF : I ——> spd(T,B,T;B) (6.5)

represents the “deformation process” determined by F (in the terminology of Noll, 1972, §5). Since

G—lGF: I —> SpdG(TbB,TbB) for any GeSpd(TbB,Z;,*B), GüäGF is directly analogous to the right or

referential Cauchy—Green tensor CK: I —> Spd(V, V). Using the form (6.4) of CK, (6.2) becomes

5K(FK)G‘1 = F[K-1 RK(K 6,}{116FK-1) K 6,1,},16“ = F[R(G[;{1,GF) G[}{1]]F* (6.6)

via (1.8), (4.7), (5.3), (6.2), (6.4), and the “material” or “intrinsic” form R of RK, where

RJ(H) = J R(J—1HJ) J‘1 (6.7)

holds for all H E Lin(V, V) and all referential placements J €Lin+(TbB,V). In the terminology of Noll

(1972), an “intrinsic” quantity is one independent of the “frame space” V. Since [K], and so Gm], is

arbitrary, we may replace Gm] by an arbitrary reference configuration G of TbB on the right—hand side

of (6.6), obtaining finally the reduced form

T6?“ = £K(FK) G—1 = £G(F) (6.8)

of the elastic constitutive relative (6.1) relative to G e SpdCZ‘bB, Tb*B), with

and

MG(GJ) 2: 72(6*16J) 6‘1 (6.10)

for all J eLin+(TbB, V), where M stands for “material.” Since, from a physical point of view, we have

merely “rewritten” (6.2) in the material form (6.8) via (6.4)—(6.7), (6.9) and (6.10), the reduced “elastic”

form (6.8) for TG—l, as wellthe dependence of the constitutive part MG of this on a (time-dependent)

metric, 126., on GF, follow directly from the requirement of material frame indifference. In addition,

note that the dependence of the reduced constitutive form RK on an arbitrary local reference placement

K e Lin+ (TbB, V) of QB is transformed to one on an arbitrary reference configuration G E Spd(TbB, Tb*B)

of 112B in the material case. Lastly, note that (6.8) can be written in the purely material form

5F: MG<GF> (6.11)

via (6.9), where

5J .z J-1(TG-1)J—* esym(T,*B,TbB) (6-12)

represents the material or intrinsic stress tensor of Noll (1972, §6) with respect to J e Lin+(TbB, V).

In many materials (6. g., metals, alloys, fiber-reinforced materials), one often observes that the material

response depends on the direction in which the material is loaded; in this case, one says that the material

behaves anisotropically. On the other hand, if the material response is independent of direction, the

material is said to behave isotropically. If anisotropic material behaviour is present, it must be accounted

for in the form of the constitutive relations in question, 6.9., in the form of MG. Abstractly, changes of

(material) direction are effected by by elements of the set Lin+(TbB,TbB) of all orientation-preserving,

linear invertible transformations or mappings of 71,3 onto itself, representing the connected subgroup of

the general linear group Lbj(TbB, TbB) on TbB. In particular, all changes of direction H e Lin+(7;,B, TbB)

leaving the form of MG, 216., the material behaviour, unchanged, belong to the material symmetry group

05(MG) z: {H eLin+(T„B‚T„B) 12HMG = M6} (6.13)



of MG, where

(aHMG)(GJ) i: HMG(H*GJ H) H* (6-14)

represents the action of H €Lin+(TbB,I},B) (i.e., of Lin+(TbB,TbB)) on MG for all J eLin+ (TgB,V).

Classically, a material behaves as a simple elastic fluid if 05(MG) : Uni+(7;‚B, TbB) for some, and hence

any, G, as a simple anisotropic elastic solid with respect to G if there exists a G such that @(MG) is

a proper subgroup of Orch(1},B,I},B), and as a simple isotropic elastic solid with respect to G if there

exists a G such that 05(MG) : OrthaTbBflzB). In this latter case, for example, M G takes the simple

form

MG(GF) = c, 6—1 + c, (G_1GF) 6—1 + c3 (crlc;1‚—)2G*1 (6.15)

where 012,3 are all isotropic functions of G_1GF, i.e., of the invariants of G‘lGF. With G z Gm] for

some local placement K, the material form (615) of an isotropic elastic constitutive relation can be

transformed into the equivalent referential (i.e., classical) form

Z Cl I + C2 CK + C3

via (6.7), (6.10) and (6.15) relative to CK, where now the coefficients cm,3 are all isotropic functions of

CK, i.e., of the invariants of CK. Substituting the referential form (6.16) into (6.2) yields the equivalent

spatial form

£K(FK) = [01 I + c2 BK + c3 BflBK (6.17)

of the isotropic elastic constitutive relation with respect to the spatial or left Cauchy-Green tensor

BK ;: FKFIE : 1 m» Spd(V,V) (6.18)

relative to K (actually, both CK and BK depend only on [K Since the invariants of 6’1 GF, CK and

BK are the same, the coefficients c112,3 remain unchanged. As such, (6.15)—(6.17) are simply different

representations of the same constitutive relation, i.e., the same material behaviour.

If anisotropic material behaviour is present, one can represent it explicitly in the constitutive relation

with the help of so—called “structure” tensors (6. g., Boehler, 1978; Liu, 1982; Boehler, 1987; Zhang and

Ryschlewski, 1990; Svendsen, 1994), i.e.,

MG(GF) = 86(GFa 6) (6.19)

where 6 is a material tensor (i.e., one on TbB), or a set of such tensors, representing the anisotropy

involved, and 86 is an isotropic function of its arguments with respect to G. For example, in the

case of transverse isotropy, the material response is isotropic in a given plane of the material, and

otherwise anisotropic. The corresponding structure tensor is given by the perpendicular to this plane,

i.e., its orientation, represented mathematically by the tensor product of the unit normal Gn e LIFB (with

respect to G) to this plane at b with nE QB, representing an element N t: n® (Gn) E Uni+(TbB, 12B) of

Uni+(TbB,I},B), i.e., trnB(N) = (Gn)n = 1. As such, (6.19) takes the form

5c;(GF‚ N) = c1 G‘1 + C2(G—1GF) G‘1 + C3 (646,926—1

+ c4 NG—1

(6.20)

+ 05 [(G‘1GF)N+ N(G—1GF)] 6‘1

+ c6 [(G-1GF)2N+ N(G-IGF)2] G—1

where the coefficients c,_6 are now isotropic functions of G_1GF and N.

7 Inelastic Simple Materials and Elastic Material Isomorphism

Additional variables appear in constitutive relations such as (6.11) when the material response is affected

by processes other than elastic deformation and temperature changes, e.g., inelastic processes, or damage.

Many such processes can be described by so—called “internal variables,” which, being “internal,” represent

material fields or quantities. Consider for example the case of inelastic processes. Here, the internal

variable in question at bEB is the inelastic transformation P: I —> Lin+(TbB,I},B). When inelastic
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processes occur, the material response, and so the constitutive fields in question, such as the Cauchy

stress T, could depend in general on the total deformation of the material (as usual) as well as the

inelastic processes, 2.6.,

TG-1 : CG(F‚ P) (7.1)

Analogous to the elastic case (6.8)—(6.9), the requirement of material frame-indifference reduces CG to the

form

CG(F,P) = FIG(GF,P)F* (7.2)

where the constitutive part IG of CC is analogous to MG in the elastic case. A further restriction on

the form of IG arises on the basis of observations, which imply that inelastic processes do not markedly

influence the purely elastic behaviour of the material, meaning here that P does not alter the form of the

material elastic constitutive relation M G. This will in fact be the case when IG takes the special form

IG(GF2P):(ap—1MG)(GF)= P—l Mal/3"“ GFP_1) P" (7-3)

via (6.14), in which IG depends on P only the action of its inverse on MG, which indeed preserves the

form of MG (this action is expressed relative to P—1 rather than P merely in order to simplify comparison

of the current formulation with the standard one in what follows). In this case, P represents a material

isomorphism of M6 (6.9., Noll, 1972; Bertram and Kraslca, 1995). In terms of the “elastic part"

E := FP‘l : I —> L1n+(T,B,V) (7.4)

of F, (7.2) and (7.3) take the simpler forms

CG(F‚ P) = E MdGE) E,“ = 56(E) (7-5)

and

ZGain/3) =(ap-1MG)(GF) = P—l MG(GE) P“ (7-6)

respectively, via (6.10) and (6.5), respectively, with GE :: E*GE the deformation process induced by

E. Although the interpretation of E as the elastic part of F can also be motivated on micromechanical

grounds (6.g.‚ in crystal plasticity), it is the result (7.5)2 that motivates this interpretation of E in the

current continuum mechanical context.

From the definition (6.13) of @(MG), as well as (6.14), we see from (7.3) that, when P is in fact an

elastic material isomorphism, it is not unique with respect to ©(MG), 2.6., a(HP)_1MG = aP_,MG for

all H 6 @(MG). This non-uniqueness is usually expressed with respect to E = FP”, 2.6., F 2 EP z

(E H_1)(HP) for all H eLin+(C[;‚B‚TbB)‚ and so for all H EQXMG). In particular, if the material is

isotropic, i.e., if ©(MG) = Orch—(TbBJ‘bB), then (7.3) actually depends only on the symmetric part U

of P, 2.6.,

IG(GF, P) = (aU_,MG)(GF) = U“1 MG(U"*GFU‘1)U’* (7.7)

via the polar decomposition P : RU of P with respect to G, where R: I —> Orch-(TbB, CILB) and

U: I —> SpdG(Z},B,I})B).

The inelastic form F 2 EP for F from (7.4) is reminiscent of the standard elastoplastic multiplicative

decomposition FK :: of the classic deformation gradient FK (6. 9., Lee and Liu, 1967) relative to

K E Lin+(TbB, V). In fact, the relation between FK and F given in (5.3), as well as the definition (7.4)

of E, imply the correspondences F}; = EK = ER"1 and FIT} 2 PK = KPK—l.

As usual, the material model is completed by the specification of an evolution constitutive relation for P

(or just its symmetric part U in the case of elastic isotropy), 2.6., a so—called flow rule, which takes the

general form

P = f(P, GF, CF) (78)

As usual, in the rate-independent, 2.6., elastoplastic, case, J: is a homogeneous function of CF, and

independent of GF in the rate—dependent, 2.6., elastoviscoplastic, case. For an example of such a material

or intrinsic flow rule appropriate for crystal plasticity, see Bertram and Kraska (1995).

Finally, we note that not all cases of “internal variables” involve material isomorphisms. For example,

in contrast to the case of inelastic deformation, processes such as damage or cracking are observed to
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influence the elastic behaviour of the material, and so could not in general be described by such material

isomorphisms.
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