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Numerical Methods versus Asymptotic Expansion for Torsion of

Hollow Elastic Beams

K. Frischmuth, M. Hanler, F. dell’Isola

We consider the torsion problem for a hollow elastic beam. Based on a uniform methodfor the derivation of

the classical formulas for the torsional rigidity by Bredt, Prandtl and Vlasov derived previously using an

asymptotic expansion, we show that this expansion yields useful approximations for torsional rigidity if

properly applied. We note that it does not converge in general. For the evaluation we use a numerical solution

obtained by a Finite Difference Method. Finally, we examine the results of both methods for two sample

domains.

1 Introduction

In Saint Venant’s theory of torsion there occurs a pair of 2D elliptic boundary value problems, one for the

warping function u, another for the Prandtl function v. The warping function u describes the displacement

along the axis of the beam, it satisfies Neumann type boundary conditions. For the Prandtl function v

componentwise constant Dirichlet boundary conditions are posed. While in the case of a simply connected cross

section the boundary value of the Prandtl function is meaningless, the choice of the constants in the case of

multiply connected cross sections is important. Conditions for the integrability of a first order PDE for the

warping function u — integrals of the tangential derivatives of u along contours surrounding each of the holes

should vanish - fix the value of the flux of the gradient of the Prandtl function. In this way it is uniquely

determined up to an additive constant.

For closed hollow cross sections of annular type (cf. dell’Isola et al., 1994) a transformation to arclength-

thickness coordinates (s, z) proved useful. The PDE for v contains a small parameter c describing the thickness

of the section. An expansion with respect to powers of 8 reduces the 2D elliptic problem to a sequence of 1D

boundary value problems in z-direction for each value of s. The four first approximations yield all known

explicit solutions to special cases and the classical formulas for the torsional rigidity (dell’Isola et 211„ 1996).

However, until now there was no proof of the convergence of the method.

The plan of the present paper is as follows: In Section 2 we develop a recurrence scheme for the terms of the

asymptotic expansion. In Section 3 we present a numerical method for the solution of the original boundary

value problem with special emphasis on the integrability condition. In Section 4 we give an estimate for the

partial sum of the expansion. Then we choose two test domains for which the asymptotic expansion (in the

present form) does not converge and compare the results of both analytical and numerical approach.

2 Asymptotic Expansion

We restrict ourself to cross sections Q of the annular type. In this case we have Q = Q1 \ £20 with 90 c Q], both

QO and Q1 simply connected, bounded domains, and the Prandtl function v is defined by the following BDVP

—Av = 2 in Q (1)

v = 0 on F1 (2)

v = c on F0 (3)

inn ds = — 2A (4)
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Here we denote by F an arbitrary Jordan curve in Q not homotopic to a point, F0 = 890, and H = 891, while A

is the area inside F, n is the outer normal unit vector to the domain inside F. We consider a family of plane

domains for the Prandtl problem parametrized by e. The domain (28 will be obtained as the union of z—lifted

curves from the given curve F0. The latter is defined by

r : s 1—) r(s) s e[0, 1) r(s) e R2 (5)

where s is the arclength of the curve, i. e.,

 

98 = {r(s, z) := r(s) — Qr’(s)z e 5(5) 0 < z <1 o s s <1} (6)

. . . . 0 1 .
In our notation 6(5) 1s the thlckness of Q in the point of the coordinate s along F0 and Q = 1 0 1s a -1r/2

rotation matrix which maps the tangent vector r'(s) onto the normal vector.

Figure 1. Test Domain, cf. Section 4

Introducing a formal asymptotic expansion for the Prandtl function

v€=ZenvnzflgHR (7)

n=0

and using the expansion of equation (1) computed in dell’Isola et al. (1996a) we get the following recurrence

scheme to determine the second derivative with respect to z of the function v„.:

I

n—Lzz n—2‚.\x\' _ 2166 Vn72,z‚v
Vn,zz : — {2(pn + (317W + Ävnflyz) + (52 V

+ 12m2 + 5'2)v + (2zö’2 — zöö” + 2z7»2)vn_2’z )
n—Zizz

(3)

+ (zözkam — 21266'xv„_3‚„ + 2303 +mam“

— 3331mle + z2(2>„ö’2 + x3 —62(6'K’))v„„3‚z ) }
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where K = K (s) is the curvature along F0, 7» = 5K and

(9)

3

(p _ ( 2)6"K"‘Zz"‘2 for n=2...5

n ‘- n —

0 otherwise

corresponds to the right—hand side of equation (1). The function vn itself is obtained by making use of the

expansion of the boundary conditions

v„(s‚1) = O V se[0‚l)

V„(s,0) = C” V se[0,l)

 

(10)

av ds

”—2 O V $1

dz 5(5) n

I‘0

BLÄL: 2A

F az 6(5)

Starting with v,1 = O V n S O we obtain that v” is of polynomial structure in z.

I’L

w z): 2a„„-(s)zi <11)
i:0

With the help of equations (8) to (11) we find the recurrence formula for the coefficients elm-(s).

_1 - - 2 ll - I I

am)“ :m{önjbn+1 + (3] — 2)]Mm +5 awrju ‘ 2(1 ‘1)5 uni/>1

+ (1'0 _ 06,2 + (3j " 4)(j‘1)x2 _ (j — 1)65”)an—1,j—1

+ 62M;/_2’j_2 _ (63K, + —- 2)öö’7\«)a‚1_2‚j__2

+ [(1 - 3273 +(J — 2)(J'—1)ö'27L * (j “ 2)52(5'K)ljan~2,/72 }

V n 21 1S j S j S n

1 n+l ds

a :—— an ~ S — V1121
n+l,0 I] +l,_](

0

n+1

an+1,1 Z _ 2/1ij _ “mm V n 21 (12)

./:2

with önj the Kronecker symbol, aw: O for n S O v j S 0 and
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To compare this approach with numerical results the recurrence formula (12) is implemented in Mathematica.

The results for two test domains will be discussed in Section 4.

3 Numerical Solution

The determination of the constant c in equation (3) from the integral condition (4) is the most crucial problem

connected with the numerical solution of the problem (equations (1) to (4)). With c given, the problem

(equations (1) to (3)) does not cause serious trouble.

Hence, we solve the problem in three steps. Since the integral on the left—hand side of equation (4) is an affine

scalar function in c, say ¢(c) = (1)0 + (inc, we determine the coefficients (1)0, (1)1 of the function by calculating two

suitable auxiliary functions v0 and v1. Then we solve equation (4) for c and obtain the solution of equations (1)

to (4) as a linear combination of v0 and v1. The auxiliary problems are

—Av0 = 2 mo (13)

v0 = O on 852 (14)

and

—Av1 = 0 mo (15)

v1 : 0 on F1 (16)

v1 = 1 on F0 (17)

As we have

v = v0 + CV1 (18)

and

¢0 = ffrvvodn q)1 zefrvvldn (19)

for c we obtain the value

_2A_

C: (1)0
20(1)1 ( )

Remark 1 For the choice F = F0 we obtain as a matter of course the inequalities (1)0 > 0, (1)1 < O. Further,

(131 is independent of the Choice of F, as it is the (through F) of the divergence free field V121. Hence 0 is

well defined and positive. It is also independent of F.

For the discretization of the above BVPs we introduce a uniform rectangular grid with stepsize h, Zh = h Z 2

{hi I i e Z}. Given any curve y, we define yh by

x‚-‚- = h (zzj) = (ih‚jh) e w if 3x 6 y : dist (xi, x) < h/2
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here we use the metric dist (x, y) = max (le — yll, lxz — yzl).

That way we define H, To)“ and F1 h, and prescribe the boundary values to the discrete functions v0 and v1 on the

corresponding gridded contours. For the discretization of the Laplacian we use the standard 5 point stencil

1

1—41

1

while the right-hand side is simply discretized by f‚-j = 0 or fU- = -2, respectively. Since the right-hand side of

equation (1) is constant we obtain the same system of equations by FDM and by linear finite elements on a

standard triangulation,

The discrete equations are solved very effectively by iterative methods. We choose SOR with the overrelaxation

parameter 0) = 1.85. Because of the special geometry of the considered domains and the constant boundary

conditions we observed very quick convergence. The number of iterations needed to achieve a given error

reduction is 0(h) as typical in 1D problems, rather than 0(h2), We solved problems with up to 105 equations

with about 250 iterations, the error bound for the reminder being 10"0.

Given a numerical solution vh to equations (13) and (14) or (15) to (17), the integration (19) has to be carried

out. It is not advisable to choose F as one of the components of the boundary because of the rough

approximation there and the restriction to one-sided approximations for the normal derivative. Instead, we

prefer a contour Ph composed entirely of inner points from Qh.

Let xi,- and (XI-7,) be neighbouring grid points on 1),. Then the four points x), i y, x1.le iy with

y : h(j’ — j, —i’ + i) lie in Qh U 1‘”, uFOh . We obtain a numerical approximation of the contour integral as

the sum of the differences between the value of vh at the first two and at the second two of them, added up over

all of l"), and divided by four. By Gauss’ theorem, we calculate 2A by summing h2 (i(j’ — j) — j(i’ — . Thus

the numerical calculation of c by equation (20) and finally v by equation (18) is now straightforward.

Remark 2 In order to obtain reasonable results the step size h should be at least 10 times smaller than the

minimum of the section thickness. Consequently, for larger perimeter-to-thickness ratios (> 100) the above

method might result in very large systems of equations. However, in those cases the solution is almost perfectly

linear in the direction normal to the contour, and the classical Bredtformulas should be applied.

A FEM with much better approximation of the boundaries and considerably smaller systems of equations will

be studied in a forthcoming paper.

4 (Non-)Convergence of e— Expansion

We consider again the family 98 of domains introduced in Section 2. With w: we denote the partial sum of the

formal expansion of vs, i.e.

w; = Zeivi (21)

i:0

An estimate for the difference between partial sum and true solution of equations (1) to (4) gives the following

Lemma 1 Let 5(s), K(s) e C"+2(R) l— periodic and F0 smooth. Then there holds

    

where C„ = C„(ö‚ K, F0).
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Proof: We denote w n = vE — w: . Using the expansion of the Laplacian from dell’Isola et al. (1996b) we get

AWn :gnfn in 98

(22)

wn =0 on 852€

with

fn = (pm-l + 3ZÄ’anz + Ävmz + 0(8)

where (pn = 0 for n 2 5 (see equation (8)), As it is easily seen from equation (12) v" depends only on To and on

5(s), K(s) and their derivatives up to order n. Thus we have under the given smoothness assumptions

iifniiqgg) S C"

with some suitable constant. This together with equation (22) implies immediately the above inequality.

Remark 3 The sequence of constants C,1 of Lemma 1 may grow very fast. Thus for practical applications the

above result is not useful since the thickness ofa given domain is fixed. For a class of thickness functions 6(5)

it is possible to show that the formal expansion will not convergefor anyfixed 8.

We now consider domains of the following type:

Q={(x,y):r£wlx2+y2 Sr+5(s)} (23)

with

5(5) 2 01 + czsin(ks/r) c1> c; > 0 k e 75

In this case F0 is simply a circle and K(s) = 1/r is a constant. The following picture shows the behaviour of the

coefficients ant/(s) in the asymptotic expansions (7) and (11) for the domain Q with r = 0.9; k = 7; c1 = 0.2; c2 =

0.05.
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Figure 2. Logarithmic Plot of the Coefficients in the Asymptotic for s = 0.2
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Figure 4. Functions vn of the Expansion Series for s = 0.2

In the left part we see a cut at arclength s = 0.2 for the functions v], v2, v3 and in the right part for v13, v14, 125.

We notice that the functions v,l are very small for n = 4 ‚...‚ l2. For bigger n they grow rapidly.

Nevertheless, the next picture shows that we obtain from the e—expansion for this domain useful results for

torsional rigidity D. The line represents the value obtained from the numerical method.
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Figure 5. Torsional Rigidity for k = 7
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For a domain with 13 humps, i.e. k = 13, we get the following picture:

D, 0.62 .

0.52 -

 

Figure 6, Torsional Rigidity for k = 13

Finally, we present the numerical solution for the domain Q with 7 humps.

 

Figure 7. Numerical Solution
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5 Conclusions

We proved that for not simply connected cross sections also a direct numerical calculation of the Prandtl

function is possible — contrary to assertions in Wang (1995). Even a very rough and simple approach gives

accurate results at a reasonably low computational cost. On the other hand, analytical formulas as derived by

the asymptotic method are always very appealing. However, despite the elegance, the cost for deriving higher

order formulas, and for calculating numerical results from them, often exceeds the cost of the direct numerical

approach. Further, it is essential to take the right number of terms in the power series. For ,,good natured

domains“ there is a first interval of apparent convergence, we can pick any small number, say 3, 4 or 5, to

obtain a good approximation. For domains the thickness of which varies with high frequency, however, there is

no stable behaviour at all.

Generally, the first term (Bredt formula) underestimates the torsional rigidity, the second usually overshoots it.

Considering cost and accuracy, we recommend the third as a reasonable compromise, if no numerical

procedure is desired or at hand. In such cases, 6. g. for shape optimization we strongly suggest to check for the

given class of sections the behaviour of the chosen approximation with a numerical solution. Finally, we want

to stress that our aim was not to diminish the value of asymptotic methods, but rather to learn about their

behaviour in a simple test case with easily available numerical solution before applying them to a 3D problem.

In that case we assume that an advantage of the expansion method is quite possible.
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