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Complete Solution for Stresses in Terms of Stress Functions

Part I: Derivation from the Principle of Virtual Work

I. Kozak, Gy. Szeidl

In the first part of the paper it is proved that for solid bodies the general and complete solution of equi-

librium equations in terms of stress functions can be derived from the general primal form of the virtual

work principle provided that the necessary and sufficient conditions for the strains to be hinematically

admissible are known. This result is of methodological significance since the line of thought can be applied

to every case for which the sufiicient and necessary conditions of kinematical admissibility of strains are

clarified.

1 Introduction

1.1 The general solution of the two dimensional equilibrium equations in terms of a stress function

was found by Airy (1863). Three dimensional generalizations of Airy’s function are the stress function

solutions obtained by Maxwell (1870) and Morera (1892) (cf. e.g. Gurtin, 1972) who established two

alternative solutions, each involving a triplet of stress functions. Beltrami (1892) observed that these

solutions represent two special cases of setting equal to zero three components of the stress function

tensor involved in his solution.

Completeness proofs for Beltrami’s solution, which were given among others by Ornstein (1954), Gunther

(1954) and Dorn and Schield (1956), are valid only for those regions whose boundary consists of a single

closed surface. This fact was noticed by Rieder (1960) who observed that for regions bordered by more

than one closed surface (multiple—bordered region) Beltrami’s solution is totally self—equilibrated on each

surface therefore it can not be complete. By supplementing Beltrami’s solution but independently of each

other Schaefer (1953) and Gurtin (1963) found formally different but complete solutions.

According to the papers cited introduction of stress functions took place intuitively. In this respect a

step ahead was made by Tonti (1967) who derived the incomplete Beltrami solution from a variational

principle. Although the paper by Stippes (1966) derived the complete solution, like Tonti he assumed

that there are no body forces. It is a further problem that both Tonti and Stippes used the six Saint

Venant compatibility conditions as side conditions although these are not independent of each other.

Consequently the solution involves six stress functions (As it is well known any state of stress can be

given in terms of three stress functions). This contradiction is the dual counterpart of the paradox found

by Southwell (1938) who gave the statically admissible stresses in terms of three stress functions and got

only three (instead of six) compatibility equations from the principle of minimum complementary energy

— he did not know that the six compatibility equations are not independent. It is also worthy of mention

that the surface integrals obtained during the mathematical transformations are completely left out of

consideration. In addition both Stippes and Tonti assumed that there are no body forces.

The book (1978) written by Abovski, Andreev and Deruga (1978) provides a detailed description of

variational principles in classical elastostatics including those variational principles where the solutions

of the equilibrium equations in terms of stress functions appear as Euler equations. In comparison with

the papers by Tonti (1967) and Stippes (1966) there is a step ahead in the treatment of the boundary
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Figurel. Body with Two Single Closed Surfaces

surface but all the terms needed for a complete solution on multiple-bordered regions are missing. The

reason for this is the assumption that the particular solutions of equilibrium equations are assumed to

be known therefore the difference between homogeneous and particular solutions, i.e., self-equilibrated

stresses are given by the above mentioned Euler equations.

1.2 In a View of the foregoing the aims in the first part of our paper are as follows:

7 Derivation of the general and complete solution of equilibrium equations in terms of three stress

functions from the principle of virtual work by solving in this way the dual counterpart of the

Southwell paradox.

w To point out clearly in connection with the first aim how important a role the side conditions 7

three independent comptibility conditions on the volume and the so called strain (or kinematic)

boundary conditions a play.

v To show how the integrals taken on the boundary can be transformed into a suitable form and

what mechanical meaning the resulting boundary integrals and boundary conditions have.

In section 2 we give the notations and notational conventions and collect some preliminary results.

Section 3 is devoted to the derivation of the complete solution of equilibrium equations from the principle

of virtual work. Section 4 is a summary of the results. The last section is an Appendix, i.e., a collection

of some longer transformations.

In the second part of the paper the modification of the corresponding variational principles and the dual

pairs of the strain boundary conditions are presented.

2 Preliminaries

2.1 The bounded region of three-dimensional space occupied by the body and the surface of the body

are denoted respectively by V and S. For the sake of simplicity We shall assume that the region V

is simple-connected. The surface S may7 however7 consist of not only one but more closed surfaces 7

a multiple—bordered region 7 as well. The surface S is divided into parts Su and St whose common

bounding curve is denoted by g. The body represented in Figurel. is bordered by two single closed

surfaces.

If the body is bordered by N closed regular surfaces SW : 1,...‚N; N 2 2) and each surface is

divided into two parts SS), Sim separated from each other by a bounding curve 9”) then Sm St and g are

148



the unions of the subsurfaces SS) and SE” and the bounding curves g“ respectively. Any of the surfaces

[S1,] {819)} or [St] {39} may be an empty set.

Indicial notations and three coordinate systems

7 the (y1y2y3) Cartesian

7 the (x1x2x3) curvilinear and

w the (515253) curvilinear, defined on the surface S,

are employed throughout this paper. Scalars and tensors, unless the opposite is stated, are denoted

independently of the coordinate system by the same letter. Distinction is aided by the indication of the

arguments y, a: and g being used to denote the totality of the corresponding coordinates.

Volume integrals W except the formula (2.8) i and surface integrals are considered, respectively, in the

coordinate systems (2711:2273) and (£15253), see Figure 2. Consequently, in the case of integrals, arguments

are omitted

 

Figure 2. Coordinate System

In accordance with the general rules of indicial notations summation over repeated indices is implied and

subscripts preceded by a semicolon denote covariant differentiation with respect to the corresponding

subscripts. Latin and Greek indices range over the integers 1, 2, 3 and 1, 2, respectively. eklm and epqr

stand for the permutation tensors; 65€ is the Kronecker delta. In the Cartesian system (y1y2y3) e1‚ (-32

and e3 are the base vectors while the covariant and contravariant components of tensors are coinciding.

In the system of coordinates (2711132273) gk and gl are the covariant and contravariant base vectors. The

corresponding metric tensors are denoted by gkl and gpq.

We assume that there exists a one-to-one relationship yk = yk(x1,x2,$3) between the Cartesian coor-

dinate yk and the curvilinear coordinates m1, :52 and :173 where yk is differentiable with respect to xl as

many times as required. Consequently

 

öyk

Jim =ZIE§ET 750

Contravariant and covariant vector fields Bl and C’b are transformed in accordance with the rules

6gp 8:3]g

CM) = Cp(y) 31%) = Bp(y) (2.1)
Barb 83/?

Equations and calculations can be better understood by introducing a suitable surface oriented coordinate

system. The equation of a boundary surface is written as 33k = mk(§1, £2) where 51 and £2 are the surface

coordinates Let 53 be the distance measured on the outward unit normal n to the surface. On 5’ £3 : 0.

[Base vectors] {Metric tensors} on S are denoted by [ak and ak] {am and am}. In the coordinate system

(§1€2§3)

n=a3=a3 H321 and H7720

If |§3| /(min{|R1|, |Rg|}) < l in which R1 and R2 are the principal radii of curvature on S then the

relationship xi“ 2 33k (£1,§2,E3) is always one—to—one. Under this condition the functional determinant is

not vanishing.

ark

Jfié : 8—51 720
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Upon change of coordinates (231,:E2‚:1:3) and (51,52,?) a tensor D51 of the second order follows the

transformation rules

a k ö q a P a p

Dm) = D?q(x)a—:pö—”; 195(22) = lama—3%,; (2.2)

where axk a?) p

871% Z l

We shall assume that the vector and tensor fields involved in the investigations are sufficiently smooth.

2.2 Let uk be the displacement field (or displacements for brevity’s sake). Further let em be the strain

tensor (or strains for brevity’s sake). By tkl we denote the stress tensor (or stresses for brevity’s sake).

Displacements and strains will be assumed to be small.

Boundary conditions —— inasmuch as there are any boundary conditions prescribed — have the following

forms:

Displacement boundary condition:

Mk : 71k. £6 Sn (2.3)

Stress boundary condition:

nktkl : i’ g e 5„ (2.4)

where ük and f’ are the prescribed displacements and tractions.

Kozak (1980) systematizes [the general primal forms]{the primal forms ordered to prescribed boundary

conditions}of the principle of virtual work, the corresponding assertions and7 in addition to this, it

gives the missing [general dual forms] {dual forms ordered to prescribed boundary conditions} and dual

assertions together with their proofs.

The line of thought of the present section is based on a well known assertion related to the general primal

form of the principle of virtual work and on a proper choice of the corresponding subsidiary conditions.

2.3 The strains ekl($) are said to be [compatible] {kinematically admissible} if the differential equations

6161(7)) = (Ulm + uk;‚)/2 Z uuäk) J? E V (2.5)

have a single—valued solution — irrespective of a rigid body motion 7 for the displacements ul(x) :12 E V and

the solution [does not satisfy other conditions] {satisfies the displacement boundary conditions (2.3)}.

Accordingly, the displacements uh are [compatible] {kinematically admissible} if they are differentiable

at least twice and meet [no other conditions[{the displacement boundary condition (2.3)}.

2.4 Let b1 be the body forces. The stresses 7?“ £1: E V will be referred to as [equilibrated[{statically

admissible} if they satisfy the equilibrium equations

tffikcn) + b1 = 0 x e V (2.6)

and [meet no other c0nditi0ns]{the stress boundary conditions (2.4)}.

For a linearly elastic body the boundary conditions (2.3) and (2.4) and field equations (2.5) and (2.6)

should be supplemented by the stress—strain relations. Assuming anisotropic material the stress strain

relations have the form

kl _ klpq
t —— C epq

where Cklpq is the tensor of elastic coefficients.

2.5 According to a fundamental result of potential theory (Gurtin, 1972) the body forces bl always admit

the representation

bl 2 —AB‘ = —gqu_l;Pq xEV (2.7)
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where Bl(:t) is obtained from the transformation formulas (2.1) provided that the integral

r _ i Viz/“KPH
3113/ (C2)] — 47T/V Iys(P)_ys(Q)|de QeV (2.8)

have been determined first. With reference to the above result we shall assume that the vector field Bl

is known. Repeated application of (2.7) results in bl also admitting the representation

bl = —AA\1/l: _gpqgmnqfl er (2.9)
.;mnpq'

In what follows we shall assume that the vector field \Ill is also known.

3 Derivation of the Stress Function Solution from the Principle of Virtual Work

3.1 Equation

/ tklekldV— f bluldV— f ngtgluldA = 0 (3.1)

V V S

is the general primal form of principle of virtual work. The above equation is associated with the following

direct assertion: Suppose that the strains ekl are obtained from equation (2.5). If the equation (3.1)

holds for any compatible displacements uk then the stresses t“ are equilibrated.

By substituting the kinematic equations ( 2.5) as subsidiary conditions and performing partial integrations

the assertion can easily be proved. Really, upon substitution of the integral

f tk’u(‚;k)dV = / n3t3luldA + / tffékuldv

V s V ’

into ( 3.1) and a subsequent rearrangement there follows the fulfillment of the equilibrium equations if

we take into consideration that the coefficient uk in the resulting equation

/(t(ffk+bl)uldV = 0

V

is arbitrary in V.

3.2 It can be expected that the above assertion will remain valid when the subsidiary conditions (2.5) are

replaced by such side conditions which have a different mathematical form but are otherwise equivalent

to (2.5).

3.3 Representations (2.7) and (2.9) enable us to rewrite the volume integral

[5,3 = — / b’uldV

V

involved in the principle of virtual work into

[51 = fABlude I52 = /AA\IlluldV (3.2)

V V

Our aim is to transform them into such a form that the strain tensor is involved instead of the displacement

field With (A27) and (A29), integral 151 changes into

151 = — /V (quBfiq + gqufiq — gP‘Bfik) e”, dV + / n3 (a3quW + aquiq — aBIBfik) u; dA (3.3)

S

Upon substitution of (3.3) for the second volume integral in (3.1) we obtain

fvwfi — (quBQq + gquIfgq — gP‘B’gkn elp dV — /S n3 [t3l — (anng + aquiq _ 5,13%] u; dA = 0

(3.4)
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With the aid of (A30) and (A32) it can easily be shown that

152 = -(g”qA‘I’l.;q + QMM/Kg - gpqgml‘l’ikmq) ezp dV

+ fsng (aqume + alqu/iq — agqamlqllikmq) u; dA (3.5)

Substitution of (3.5) for the second volume integral in (3.1) yields

/VW — (gem/l... + gem/2. — yer/Wm...» dv

)1 u; dA (3.6)7 f n3 [7531 7 (a3qAIIIl_;q + alquliq 7 agqamfi’fikmq

S

Paragraphs 3.4 to 3.6 are devoted to the problem of how to find a proper form of the side conditions.

3.4 Equations (3.4) and (3.6) are the general primal forms of the principle of virtual work provided that

the body forces are given in terms of the potential functions Bl and ‘111 respectively. Observe that

in the above forms of the principle of virtual work the kinematic variables u; and em appear either on

the boundary S only as it is the case for ul or on the volume V as it is the case for ekl. Keeping this

circumstance in mind and recalling all that has been said about the side conditions in paragraph 8.2, one

has to raise the following two questions:

(a) Under what conditions the strains em a: E V are compatible?

(b) What further conditions should be satisfied if we want the displacements u; 3: E V obtained

from the compatible strains em to coincide with those appearing in the surface integral in (3.4)

or (3.6), i.e.‚ with displacements given on S?

3.5 Solution to problem (a) is presented herein on the basis of papers by Kozak (1980b7 c). To begin

with, we have to introduce some new notations. The index pairs which range over a subset of the nine

possible values will be capitalized. Let aab be a sufficiently smooth otherwise arbitrary symmetric tensor

field in V. Further let 111(x) be an unknown vector field on V. By AB we denote those subsets of the

possible values of index pairs ab for which the differential equation

1

5(UA;B +UB;A) Z OzAB($) J? E V

always has a solution for the vector field It is clear that the index pairs AB may have only three

different values. Let RS be the supplementary subset of index pairs whose union with AB is the set of

index pairs ab. Obviously7 the index pairs Rs may have six distinct values. Because of the symmetry7

however, the corresponding tensor components aRS represent three distinct functions only.

The tensor of incompatibility nab is defined by the equation

b77a : 6‚akmEblpeklmw z. E V

Returning to question (a) the independent necessary and suflicient conditions for the strains ekl to be

compatible in a simply connected region V are the fulfilment of differential equations of compatibility

77*” = ekaeslpeklmp : O x E V (3.7-a)

and that of boundary conditions of compatibility

3b : n363km€dlpekl;mp : n33“eldpemlmK = 0 {E S (3.7-b)nunab : n37}

Observe that (3.7-a) and (3.7-b) are equivalent to three—three scalar equations.

3.6 Referring again to Kozak (1980b, 0) solution for problem (b) is provided by the following assertion:

Suppose that the strains 6k; fulfill the kinematic (or strain) boundary conditions

6A,; 2 MO“) Z uowc) E E S (3.8-3)

(e311 _ “3|K)H>\ + b§(ecm “ Halle) — (en/M3 “ eABm) Z O £6 S

where bi” is the tensor of curvature, index pairs in parentheses stand for the symmetric part of a tensor of

order two while surface covariant derivative and covariant derivative on surface are respectively denoted

by HA and lit. (See paragraphs 5.1. to 5.4. for further details.) Then, on one hand,
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i the boundary conditions of compatibility (3.7-b) are fulfilled

and on the other hand

7 the displacement field uk(f) f E S can be determined from ekl(€) by integrations.

the papers by Kozak (1980b, 0) cited above do not contain the whole proof of the assertion. For this

reason a short proof is presented in paragraphs 3.7 and 3.8. During the transformations we shall need

the equation

1

6mm - exmn = ifimu—mmhm + bw(€3A-U3u) — bA„(6n3-U3|K) (3-9)

whose validity is proved in paragraph 513 .

3.7 First we shall consider the boundary conditions of compatibility. What we are going to prove is the

identical fulfilment of

7137733 : eWeWemW : 0 5€ S (3.10)

and

„3773/3 z 63Kp€ßÄ3(em\;3/u _ BR3;M) : 0 £6 S (311)

provided that u; meets the kinematic (or strain) boundary conditions (3.8-a) and (3.8-b). With the aid

of (A.10) it follows from (3.10) and (3.11) that

7237733 = €BWE3MK€KMMM — bAMe/c3l7r — bmenml Z 0 5 E S (3‘12)

77/3773fl Z €3W€m31(€m\;3 — €H3M)Ht + ÖZ(€„‚\\V - €5.49] = 0 5€ S (313)

With regard to the identity

—€3A7TbAH€K3(7r : 63A7Tb„„6‚€3|‚\

obtained by interchanging the indices A, 7r we can substitute the condition (3.8—a) into both (3.12) and

(3.13). Then substituting condition (3.8-b) and performing further transformations we find that the

equations (3.11) and (3.12) are indeed fulfilled identically.

These manipulations are presented in paragraphs 5.14 and 5.15 . However, the crux of the matter is

inherent in the circumstance that uk : uk(€)‚ i.e. uk is given on S ‚ consequently all its derivatives should

be taken on S.

3.8 Now we shall prove that uk = uk(£) can be determined by direct integrations from ekl(£) provided

that ck¢(§) meets the conditions (3.8—a) and (3.8—b).

Let L be a sufficiently smooth otherwise arbitrary curve on S (Figure 3). Since dr 2 dE‘a” 5 E L in

view of (A26) one can write for the rotation tensor that

leakallg : /L(ekml — el„;k)akal d5“

= /L{(enu;‚\ — 6,\M;;.;)8LK3LA + (Bans — egmn)a"a3 + (63m,\ —— e‚\„;3)a3a’\}d5“ (3.15)

Upon substitution of (3,9) and (3.12) we obtain from (3.15) that

9m akal S Z (Ugo — und”). + bw(€3‚\ — U3\,\) - (MACK?) - HandlafiaA

+[(€3„ — mm“). + 6":(6WC — u,,(,€)]a””a3 — [(eg‚\ — “3(‚\)((„ + b;(el,,\ — u„|‚\)]a3a>‘}d{““ (3.16)

By making use of the derivatives of base vectors (A.6) and taking the kinematic boundary condition

(3.8-a) into consideration, equation (3.16) can be transformed into the form

Ö 1

kaakallä =/ fil‘wem — “Alida—K3} + (6K3 — “adamag — (6A3 — U3|A)aga’\ld5”

L 35” 2

from which, performing the integration and omitting the distinguishing letter P we have

1

le(f)akal : ERMA —— u‚\|K)a“a>‘ + (6K3 — u3|‚„„„)a"a3 — (e‚\3 — u3|‚\)a3a’\ (3.17)
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(1)

5(1)

 

Figure 3. An Arbitrary Curve L on Surface S

The displacement field can also be determined by integration performed along the curve L. In view of

the decomposition (A24) we can write

u”; : /L(uk;lakal) - dr z /Lak (6m + Qk,\)d§A

Substituting (3.17) for QM and utilizing the condition (3.8-a) we arrive at

“lg : [Ja/C [6M + äum - tun/31+ agIeBA — (6A3 — 113191}de

[L alkuk1 Ä (15* = /L 8%;(akukmgA (3.18)

The last formula really proves that the fulfillment of kinematic boundary conditions (3.8-a) and (38-h)

enables us to determine the displacement field uk(§) on the surface S.

3.9 In order to cast those integrals involving the side conditions * these are discussed in paragraph 3.10 w

into a proper form we shall need the following assertion: Suppose that the kinematic boundary conditions

(3.8-a,b) hold. Then

6mm + 6mm — (“Mano - u3|Ab19K = 0 5€ 3 (3-19)

In other words the above equation is not an independent condition. The proof is presented in paragraph

5.16.

3.10 On the basis of paragraphs 3.5 to 3.9 we can draw the following inference: Let 6k; be a strain

field on V. Let further ul(§) be a displacement field on S. If ekl satisfies the differential equations of

compatibility (3,7—a) as well as the kinematic boundary conditions (3.8-a) and (3.8-b) then the kinematic

equations (2.5) have a solution for u; and the solution coincides with the displacement field given

on the surface S. In addition to this, condition (3.19) is an identity.

In other words conditions (3.7—a), (3.8-a) and (3.8—b) are the side conditions sought. For simplicity in the

further transformations identity (3.19) will also be taken into consideration when those integrals involving

the side conditions are being set up.
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Since the conditions mentioned cannot be substituted directly into the general primal forms (3.4) and

(3.6) of the principle of virtual work Lagrange’s method of undetermined multipliers should be used. Let

Hlk : HM x E V

H7719 2 H197, f E 3

377193 = Hens {6 S (3-20)

H773 : H37, E 56 S

and N

H33 E 0 56 S’

be the undetermined Lagrange multipliers. Suppose that the side conditions (3.7—a) and (3.8-a,b) hold.

Then the integrals If and If are identically vanishing.

11V z f ekae‘glpeklmpHdeV z 0 (3.21-a)

V

and

If = [gmémfimfiem - “(Mmmnm

+[(e3„ — u3|l€>H/\ + bi‘(eom — Halt) — (6ms - 6mm) — 1%ng — U(A]n))]1:[m$

Henw + BMW - (mm - U3|Aba9dÜn3 — lame” — u(,\|5))1:133} dA E 0 (3.21-b)

Consequently, the sum of the above integrals is also vanishing:

1‘1’3 = [IV + If E 0 (3.22)

Since the integral form of the side conditions on S is not obvious NOTEs 1 to 7 are aimed to interpret

our choice from which after long and hard transformations and taking into account the other integrals

there follows the correctness of the resulting surface integrals.

NOTE 1: It is temporarily assumed that the Lagrange multipliers 1:17,3 2 H377 and do not vanish.

Later on it will turn out that their values do not affect the stresses on the boundary and can therefore

be set to zero.

NOTE 2: As regards its mathematical form multiplier £17,193 2 figmg is a covariant derivative. With the

formulae (A4)7 (A6) and (A.7) we have

Hm 2 HM, + bgfilw + bgHm, g e S

where 3,0193 is regarded as an arbitrary function. Consequently, without any loss of generality one can

assume that H7763 is independent of H1719 ‚E E S. (Keep in mind that we are on S and ngß is the

derivative taken along the normal to S

NOTE 3: With regard to the circumstance that the differential equations of compatibility (3.7-a) involve

three independent equations identified by the superscripts RS we can conclude that the necessary number

of multipliers Hk, is also three and these are identified again by the same indices 33 being considered as

subscripts. In other words multipliers HAB can be set to zero.

NOTE 4.: Enlarging the coefficient of multiplier H.119 by the member

—bg(€m — Mom) f E S

we add zero to it since (3.8-a) holds.

NOTE 5: Coefficient of H773 is the identity (3.19).

NOTE 6: Coefficient of H33 is nothing but a scalar product which involves the kinematic boundary

condition (3.8—a).
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NOTE 7: In the light of NOTE 5 and NOTE 6 the following interpretation belongs to NOTE 1: From

the point of view of the transformations aimed to bring [1VS into a suitable form it is unimportant whether

H773 and H33 vanish or not. In paragraph 3.12 however, it is proved that Hng and H33 can always be set

to zero.

3.11 Now forms with no side conditions of the principle of virtual work can be obtained if we subtract

IIVS from (3.4) and (3.6).

/V[tpl _ (gqung + 91‘131.33] _ gplBicng 61117

— /S 713 [233‘ — (a3qBfiq + aquiq — cf’113’3k)]ul dA — 11VS = 0 (3.23-a)

.gkmq/V W” — (gqu‘Illw + glqA‘P’Lq — 9%?”ka )l 6111 W

— / n3 [t3l — (aquqll_;q + (#ququ — agqamlm’:kmq)] ul dA — 11VS : 0 (3.23-b)

S

To attain a more suitable form it is expedient to transform I1VS by performing partial integrations before

actually carrying out the subtraction. When transforming [1V we replace HRS by HH and rename some

dummy indices bearing in mind7 however, that HAB is obviously equal to zero.

By separating those terms involving strains 6k; and displacements u; and observing that

n3€Kn3€A193u3mbq9ÄfNL73 = 0 E E S

we can write

11VS : [f + 11V 2 IfU + 15E + IYE (3,24)

in which

s 3 M93 N
In] : —/ 7136”” e u(A‘K)Hn.9;3dA

s

+/ n36”"36’\"93[—uMKH‚9FI„3 — U(/\‘K)b77„91:133 + (bgumK) — b§UQIK)Hm§] (1/1

S

+/ ”3€KU3€ÄÖB[*U3MAÜW - Ugmbüngsn ~ U31Kbq9AHn3ldA (3-25)

S

IigE : / n36”"36’\193{emHn.9;3 + (en/“'19 + GAKH79)1£I773

s

+(63KHÄ + View — 8mm + 6mm — bgemflflnn + bnnemgss} dA (326-61)

and

IYE: / Ekrmelspemmlede (3.26-b)

V

Transformation of integral (3.25) requires the repeated application of the Green theorem which should

be associated with suitable rearrangements. As regards the details we refer to paragraph 5.17. Finally

we obtain from (A50) that

[EU : ’— / n363nneldendeul

S

NOTE 8: Let 1711(5) and 1221;3(5) be two sufficiently smooth vector and tensor fields on S. Recalling the

definition of covariant derivatives one can consider ’üjl;3(f) as the covariant derivative taken along the

normal to the surface of a vector field 1221(33) which is considered as an unknown for all points x ¢ S .

Substituting

1%(5) — Ü}(k;z)(f) for Hkl(£) E E S (3.28)
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we do not change the value of (3.27) since

3K7] ldp ~ 1 3K.77 ldp ~ 1 3577 ldp ~

6 6 w(md);pl< : fife 6 wn;d);pK + §(€ ‘5 wde);P

l „ 1 s „

= E<€3m€3mwm6flm + 563“ (EAgwwnflw + €M3wm7r3)w E 0 5 E 3

Observe that the expressions in parentheses do not require determination of derivatives higher than wkfln

if one takes into consideration the interchangeability of covariant derivatives. At the same time WM)

can always be chosen in such a way that the relation

Hkg—Ü(3;k):0 €65

is fulfilled. This proves the correctness of the assumption H713 : [:1377 : Ügg = 0 .

3.12 With regard to all that has been said in NOTE 8 one can really assume that the structure of 1:]M

meets the preconditions . This choice does not affect the integral IigE since the left expression in (3.28)

can itself be renamed into Hkl.

Transformations of integrals (3.26—a,b) are similar to that of integral (3.25) and are presented in para-

graphs 5.18 and 5.19. As regards the result of the transformations mentioned it follows from (A.56)‚(A.58-a)

and (A60) that

[13E 2 f "3€Hp36Ä793(—H‚\K6pq9;3 +HÄng3€p19)dA (3.29)

s

and

11V}; =/ epykeldrHydmrem dV +/ n3€Kp3€M3(HM€m9;3 — Hm3em9) dA (330)
V S

By making use of (3.27)‚(3.29)‚(3.30) and (3.24) we can perform the subtraction in (3.23-a).

/Vltpl _ (EpykeldTHyd;kr + gqul.;q + gquILI _ gplBlikfl ell”

— / n3 [im — (EgnKeldende + a‚3qu_;q + alqRiq — 0.31R72k)] 71.; (1A

s

+/ 7136KP36M93[—(H,\K — HÄ„)epß;3 + (Hymg — HAK33)GP§] dA Z 0

3

Since in (3.31) n0 conditions for

€kl($) ZU E V

ep19(€)7 epfl;3(£) £6 S

and

uz(€) g E S

are set down they are arbitrary. Consequently, from the vanishing of (3.31) there follows the fulfilment

of

the field equations

tPl : gpykeld’Hydäk. + quBägq + g’qBI;q — gPlBijk ace V (3.32)

and the boundary conditions

1:1)”; — HAK Z 0 ÜAK;3 — HAmg = 0 {ES (3.33)

and

tgp : ngepdpfikdmfi + aquflq + aquiq — 0’ngme

= 63*”(ep3fifn3m — 6P3KHWM + a3qBfiq + anBiq — a3PB’3k 5€ S (3.34-a)

7:33 : E3WG3WHMWÖ + a3qBiq + a3qBäq — a33B72k g E S (3.34-b)
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in which with regard to (3.20)3,4, (AA), (A.6) and (A.7):

HA3,” Z HA3)»: = HAM — ragga — FQKHM = ÖZÜAp 5€ S (3-35'3)

HAW = HAW = Hmup — bÄp-ÜBK — limping = Hymn/2 {e S (3.35-13)

NOTE 9: In view to the relation involved in NOTE 2 and equations (3.35-a,b) it can readily be shown

by using (A8), (A9) and (A.10) that covariant derivatives with respect to 19 V see equations. (3.34-a)

and (3.34-b) 7 can also be given in terms of HM and HM}

If we now substitute (3.33a,b) into (3.34—a,b) and compare the result to (3.32) we shall find that the

stresses tpl can be calculated in the same way both in V and on S, i.e., by the formula (3.32). However,

it should be emphasized that following from (3.33a,b) and (3.34—a,b) determination of stresses on S does

not require the knowledge of H103(5) and H1635 It can also be checked by a simple substitution into

the equilibrium equations and by using (2.7) that the representation of stresses in terms of the Lagrange

multipliers HM and B1 is equilibrated. In addition to that it coincides with the complete solution found

by Schaefer (1953). For this reason multipliers HM will be referred to as stress functions.

Using the form (3.23-b) of principle of the virtual work and repeating the line of thought presented in

paragraph 2.26 we find that

/VW — + 9mm... + (‚im/7:. - gmgmlwikmm dv

— /S n3 [153‘ — (6377”6‘dplf1nd,“ + (£5qu!” + (#ququ — aäqamlqlk u; dA
.;kmq

+/ n3€Kp36M93[-(H‚\K - Hm)€pa9;3 + (ng; - ÜÄng3)ep19]dA (336)

S

from which it follows that equilibrated stresses can be calculated both in V and on S by means of the

formula

15‘” : epykeldrHyd;kr + gqu\Il(;q + glqu/flq — gpqgmlqllikmq x E V (3.37)

The above stress function solution, which was established by Gurtin (1972), is also complete, i.e., not

self-equilibrated on closed boundary surfaces.

NOTE 10: It is worthy of special mention — with reference to NOTE 3 — that because of the structure

of the tensor of incompatibility or what is the same thing because of the structure of the differential

equations of compatibility Hkl involve three scalar functions since HAB E 0. Inasmuch as HM is of six

components, fulfilment of the mentioned conditions can always be ensured by an appropriate choice of a

vector field vl(x) :13 E V, essentially by the solution of differential equations

1

§(UA;B + UB;A) = HAB II? E V

because the stress functions

v 1

Hkl = Hkl - 5011“: + Uwe) 376V

involve only three scalar functions since HAB E 0. Observe that the stress functions vac,” cause no

stresses. This result is that of Finzi (1934). Observe further that the index pairs AB are to be chosen in

the same way as before — see paragraph 3.5.

4 Concluding Remarks

4.1 The main result of the present work has been the proof of the possibility, that for solid bodies the

general and complete solution of equilibrium equations in terms of stress functions — valid therefore not

only for a self-equilibrated case, i.e. on multiply bordered bodies as well a can be derived from the general

primal form of the principle of virtual work provided that the necessary and sufficient conditions for the

158"



strains to be kinematically admissible are known. Since these conditions (as side conditions) can not be

substituted directly into the principle of virtual work, the Lagrange method of undetermined multipliers

should be applied.

4.2 Since the side conditions involve three field equations any state of stress can be given in terms of

three stress functions. Consequently three components of the corresponding stress function tensor HM

can be set to zero. In this way a solution is given to the dual counterpart of the Southwell paradox.

4.3 The long and hard transformations leading to an appropriate form of the surface integrals taken on

S are also presented. It is proved that the stresses in terms of stress functions should be calculated in

the same way both in V and on S .

4.4 We note that the line of thought presented herein is of methodological significance and can be applied

to other cases, including the micropolar one (Szeidl, 1991), provided that the necessary and sufficient

conditions of compatibility are known.

5 Appendix

5.1 It is well known that

ElpTETSt : 65}; = 6,36; — 6%;

Every tensor dkm admits the unique decomposition

dlp : dUr) + dllpl (Al)

in which dam and dUp] are the symmetric and skew parts of the tensor dlp.

dUP) = (dlp + dpl)/2 and dUpl = (le — dpl)/2 (A2)

It is obvious that

dup] Z EZPTETStdst/2

5.2 The covariant derivative with respect to the subscript s of a tensor dlflm is defined by

dlflmm : dämß + _ Flgdlfipm, _

where

Pp]: : gkm ' gs (A5)

is the Christoffel symbol of the second order. Equations (Al-A5) are valid in any curvilinear coordinate

system. ‘

5.3 On the surface S

baß(€) = Fig = aafl'ag and bg(f) : —F3“ß : agß - a” E E S (A6)

are the non-identically vanishing Christoffel symbols while

r91; = r33}, : r333 : 0 g e S (A.7)

Here bag and bf, denote the covariant and mixed forms of the tensor of curvature.

5.4 The covariant derivative of the tensor dam on the surface S is defined by

dime = dtmme = diam,” + midi... — midi... — Mada. 56 S (A8)

Being parts of the tensor d7me the tensors d’fw, din, . . . ,d?_’33 considered on the surface S are referred to

as subtensors of order three7 two,....,zero. Let the surface covariant derivative of the subtensor dim be

dlanoQ) = dlkpfl + FWKUdTTÄp — Ffadinp _ PJUdS/Vr £6 S
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Upon substitution of (A.9) and (A.6) into (A.8) we obtain

d?z\/‚L;J(f) : déAMaAg) = difÄ/‚LIIO‘ — bgdgÄp. + bÄUdPB/‚L + bHUdéA3 EG S

In the sequel the above equation is considered as a rule which relates surface covariant derivative to

covariant derivative on the surface. Observe that changes along E3do not affect d’ÄMHa.

5.5 Let sie be a sufficiently smooth tensor field on S. By making use of (A.9) it can be shown that

50:611qu — flaws Z ‘57TßRÜTm — 3?!lequ f E 3 (All)

in which 7T 7r

R7? 2 arm _ arflq9

ß“ 63:19 6212*

is the Riemann—Christoffel tensor on the surface. It can easily be proved (Connel, 1957) that

  

+ rgurg.A — rag/519 g e S (A.12)

R’fßm = bäbßx - Wm 75 0 £6 5 (A.13)

Regarding (All) as a rule and applying it to the covariant derivatives of displacement u; we can write

that

“EMMA _ uKHAp : uy(beKÄ _ ben'u) S

and

(“AHIJHWM _ (UAHKMMW = bzbmr(uu||/\ ’_ uAHu) £6 S

(63A - WWW — (63A — WNW = (63V — u3lu)(b:b/\I~t - 5115M) 56 5(A—15-b)

where (A.13) was also taken into consideration. Relations (A14) and (A.15-a,b) show that the order of

surface covariant derivatives is not interchangeable. It can also be proved that

bag”; — ba‚\||ß = 0 or in other form 63m bat-‚MA = 0 £6 S (A.16)

The above equations are known as Mainardi-Codazzi formulae (Connel, 1957).

5.6 Covariant derivatives of metric and permutation tensors are identically zero.

gklw : 0 Z 0 : 0 6klm§5 : 0 624.77.35 : 0 x e V

and

any“, 2 ME = 0 a’fja = af‘jlg : 0 6:,“ 2 62M” z 0 g e S (A.18—a)

€K./\3)0 : EKÄ3HU Z 0 Jfig : Eftpj‘g : 0 f E S

5.7 Consider the product dlflm;k(x) clm(a7) 3: E V. Applying the Green-Gauss theorem (cf. Kellog,

1957) one can readily prove that

/ d’fhmk clm dV = / ngdi’jlm elm dA — / d’ym clf’fgk dV (A.19)

V S V

5.8 Let So be an arbitrary open surface closed by the directed boundary curve go. Further let the

positive direction on go be taken so that 711,713 and Va 7 11a is the normal to the boundary curve 90 that

lies in the tangent plane i form a right hand triad (Figure 4). Let b; (f) and cl(f) be surface tensors.

Applying the Stokes theorem it can be shown that

/ n36377abof_lncldA : ß balclTads — / H363nabal‘cllndA (A20)

SC U SO

5.9 By making use of the Green theorem relating surface to boundary integrals (cf. Mason, 1980) one

can readily check the validity of transformation

/Sbl7_7anldA : f I/„bficlds — /S bflclHndA (A21)
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Figure 4. An Open Surface

If 50 is closed the line integrals in (A20) and (A21) vanish. Equations (A19) to (A21) are the rules of

partial integration.

5.10 The rigid body rotation cf is defined by

erstut;S LI} e V (A22)

from which multiplying throughout by —61p,~ and using (A1) we obtain

T 1

—€lp‚„w : E (um, — um) : uum] = 9110 a: E V (A23)

where QM is the rotation tensor. With (A23) and (2.5), substitution of ulmfor dip in (A2) givcs

“im = ezp — 6,2:er = as + 91p 90 e V (A.24)

Since 6T“qu : 0 with regard to (2.5) it follows from (A22) that

‚r.

w-w ‘-

[
\
3
I
r
—
t

67"“(umqs + ums) = es” etqgs :1: E V (A25)

Upon multiplying throughout by 6pm and using (A.1) one obtains from (A25)

eplrwzp = 61qu — epqgl : 91pm :1: E V (A26)

5.11 Now we shall transform the integral 1510f equation (32—a) into a more suitable form. These

manipulations require, however, more steps detailed as follows:

(a) Substitution of (2.11) for AB’ and partial integration by the use of rule (A19)

(b) Substitution of resolution (A24) for the gradient um, and partial integration of the term that

involves w’"

(c) Substitution of (A25) for our“) and partial integrations with respect to those terms involving the

gradients elqm and epqfl.

After carrying out the steps (a), (b) and (c) and renaming some dummy indices we have

[VB1 = — f (quBQq + g‘qugq — gP‘Bfikmp dV + / 713$thqu dA + 151 (A27)

V s

where

[51 z —/n3a3pBleplsw3 dA + /(n3 aqulelq — n3 aqusepq)dA (A28)

s s

To obtain the final form of I51 we shall transform the surface integral 121. During the transformations

use has been made of the equations

kvl

n3 angl epls aus = nq aqul 6,315 es 2
“wk (a)
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t k 1
n3 a3‘1Blelq — 713 apqßgepq = nk (lqu 6,,” es “E (um; + qu) (b)

and

rab

nkuvgq _ nquvflc Z Eque no. uv;b (C)

whose validity can easily be shown if one takes (2.2)7 (A.1) and (A.18—a, b) into consideration.

Substitution of (a) and (b) into (A28) and a subsequent rearrangement enables us to utilize

1 1

[£131 Z 5 / anBleplsESkv(nkUv;q — nquv-Jcl dA + 5 [71k aqulEplsESkvqu dA

S . S

Observe that each of the integrands involve the gradient of displacements. To complete the transformation

we apply the rule for partial integrations (A20) to the result with the aim of obtaining terms linear in

the displacements. When doing the integration we keep in mind (A17) and (A.18-a, b) and remember

that the surface S is closed. All these manipulations yield

1 1

[fl r. —§/n3 ($2an eplsesm’ equembBlwukd —§/n3 52 apqeplsesmBlwuq dA

s s

z j n3(a’qB?q—ang’fk)uldA (A29)

s

where the identity (A.1) has also been used.

5.12 Transformation of integral I52 of equation (3.2—b) is very similar to that of integral 151. During

the transformation, which requires more steps,

(a) we substitute (2.9) for AAW and carry out the first partial integration

(b) then we utilize the resolution (A24) and integrate partially the terms involving of

(c) and finally we substitute (A25) for wan and integrate those terms involving elmq and eqnfl.

After renaming some dummy indices and a subsequent rearrangement we have

[52 : — /V(gqu\I/l;q + glqullfq —— gpqgmülfkmq) elp dV + [9713 anamnAW‘n u; dA + IE2 (A30)

where

IE2 : —/Sn3ap’1a3m\lll_;mqeplswsdA + /(n3a3qam”\11l;mq ein — ngamamnüämq epn)dA (A.31)

' 3

To get the final form of I52 one should transform the integral 122. It can be shown in the same way as

above that

pq 3m l s __ pq mn l suv _

n3 a a \II im“? 67,15 w — nn a a \1/ WW epls 6 2 um) (d)

and

311 mn‘ l _ pq mn l __ pq Tim I suvl

n3 a a II .;mqel„ mg a a \Ilvmqepn _ nu a a \IIWLq epls 6 5 (uvm + um”) (e)

With (d) and (e), we get

B _ pq mn l suv 1 J 7 n l ‚ su

[A2 _ / GI a ‘11 .;1nq€Pls€ (nw’U/vm “ nuuvm) dA + IZ‘ nu“,q“ n ‘1’ 411111571136 “Una: (1/4

S S

[
O
h
—
k

Substituting emnGrabnauwzJ for the term in the parentheses and repeating the line of thought leading to

(A29) we arrive at

1 1

122 : ——§ [Sn362apqam"\I/l'smqbeplsesuvemnembuv dA — E Lngéiapqam" \llllmquplseswun dA

= /n3(alqA\I/iq —- agqamlülf;kmq)ul dA (A32)

s

5.13 Proof of equation (3.9)

By making use of (A10) one can write that

emulA _ eApIn 2 emiHA "‘ eApHn —' preHB + bwceßA E6 S
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The first two terms in the right hand side can be transformed further if we substitute (3.8-a) and utilize

the rule (A.10) again:

11

ex);le — eAHHK z 5(U’KHMÄ _ uAHun) + ä(uullm\ _ U’HHKA) _ (bwuu3)H/\ + (bÄMUBM/‘t E e S (A34)

By interchanging the order of surface covariant derivatives in (A.14) we obtain

UAW“; = HANK); + ’UJV(ÖZÖK„\ — ÖZÖML) 6€ S (A.35-a)

and

“Mum — “mm = Uuwzbm — bib/m) 56 5 (A3543)

In addition to this it follows from the Mainardi-Codazzi formula (A.16b) that

-(bwus)nA + (bAyU3)un = bmuuanx + bÄMUEHK 5 E 5 (A36)

Substituting (A.14), (A.35-a, b) and (A36) into (A34) and the result obtained into (A33) we arrive at

(3.18) if we also take into consideration the rule (A10).

5.14 Proof of fulfilment of equation (3.10.).

Keeping (3.14) in mind let us substitute emß from (3.8-b) into (3.12) and apply the rule (A.10) to the

first term within the braces.

M7733 : 63"“~€3)"'{(emw,r — bmegxhw — b„„[(eg‚\ — 163(Ä)HK + b:(e„‚\ — mu)” 5 E 8' (A37)

Now we can substitute (3.8-a). If in addition to this we apply (A.10) again and take into consideration

both the identity

—63KH(bK-,r€3>\)llll z €3KM(Ö„7F€3>\)HK g E S

obtained by interchanging Ii, p and the Mainardi—Codazzi formula (A.16-b) we get

1
33 = 63Ku63)\7r{5

71377 (“Km + “influx” - bnxugnw + blflr1u3||>m + (bKuuMd

1

+ buvrÖZEWVHA — UAW} f G 5 (A38)

In what follows we utilize

— the identity

EEKILESAWbKAUQJHWH Z 63KH€3ÄWÖMTU3HAK f E S

obtained by interchanging the index pairs It, A and ‚u, 7r

and

w the transformation

€3KH63/\1f(

mm = 63”“63WWMIQHM — beMquIA — “Mull 5 E S (A40)

which follows from (A.15—a).

Upon substitution of (A39) and (A40) into (A38) we have

. 7r 1 U
7137733 = c3““63’\ {EWKHAM + uMInpn') + bp.7r(b‚\uu)[|n} £6 3 (A41)

Making use of the identity

1
BKpESA'K __ 63Ky63A7T~sweamunnxw __ 2015"” — ualmlllu E E S6 HANK)” = 6

obtained by renaming some indices and taking (A.14) into consideration we find that

1
”37133 : €3Iw€3x\71’{§[at/(11K?)MT ~ bzbnAHHM + by“ (bKuVMK)

1
= 63”“63A"{§luu(bibm + bibmllnu - bm(bKuv)IIu} "=’ 0 5€ S (A42)
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if we also substitute (A.16b).

515 Proof of fulfilment of equation (3.11)

Upon substitution of (3.8-b) and (3.9) into (3.11) and a subsequent rearrangement we have

”3773/3 = 63”“63fi"{(63x — U3|A)||w + {bzw - uulxlllln

1

19:15pr — Uu|‚\)||„ + bAK(63u - usw) - bm(€3,\ — Haml} E E S

In order to reach the desirable result one should substitute into» (A42)

— the expression

€3Ku(

68A w “3|A)||1w — (63A “ u3lxlllun]

1

63A _ uSIÄ)|[Ku : 63m3“

1

= 63"“§<e3u — umbsz — bzw) = —e3w<e3u — um) e e 8

obtained by making use of (A.15-b),

# the Mainardi-Codazzi formula 63K“I)ZHM E 0 [See (A.16b)],

i the transformation

\ 1

63““bä(€m — MIA)le Z —€3““§bi(uw — umhin 5 E 5

whose proof requires the use of (2.22a) and the interchange of indices K and u

and finally

— the identity 63””beW E 0 which expresses that the tensor of curvature is symmetric.

After the substitutions we have that the right hand side of (A42) vanishes.

77.37735 E 0 {ES

5.16 Proof of identity (3.19)

Substituting (3.8—a) into (3.19) and applying the rule (A.10) we obtain

Ewglwnu + unnhw - (16mm - usubak]

= Ewglunuw — (bnwshm — (“aux + him/Wm] 5 E 5 (A43)

Using

~— the identity

1

éwgumum = G’W35(UK||A19 - Ham) EG 5

obtained by renaming and interchanging indices

— the transformation (A.14) with a suitable renaming of indices

and

— the Mainardi—Codazzi formula (A14) with a suitable renaming of indices

we get from (A43) that

1

€Ä193[-2—u„(bäbw — bäbnA) — bKlegllg — Ugllkbfix —— ubebflK] E 0 SE S

since the expression in the brackets is symmetric in A, 19.

5.17 Transformation of integral [EU of equation (3.25).

For the sake of some further transformations concerning variational principles here and in paragraphs 5.18

and 5.19 we shall assume that the surface is open — see Figure 4 for details. During the transformations

use has been made of

164



—— the identities

ngem‘O’eMBuWK}Hng;3 E 0, g E S (A44—a)

713€K7736M93U[A|K1bn191:133 E 0 E E S (A.44-b)

and N

7136K773€ÄÜSU[A|K]ÖEHW9 E 0 f E S (A.44-C)

Where the latter two follow from the equation

657736A193 N 3 ” 19 3 3 “ _
u{A|K]H1719;3 = 6Kn36A1936AK3w H7719;3 Z —€ n w Hmsfi : 0 g E S

if one substitute bmg or HW for Ümgß ‚

w the manipulation

7136"”36’W3(bguM,g — bffualnflflmg : 713€K773€M93(—6Zf)uambg1:1na

: ’I‘Lg6m73EaßBEUÄgEÜAguaMbanÜ : n3€Kn3€M93UMKb5HTIV 6 E S

obtained by utilizingv(A.1) and interchanging index pairs A, 19 —4 a, ß and 19, /\ ——> 1/, 19,

and

— the equations

3 M3 N 3 A193 N
—/ ngéml 6 uleHang 7136m] 6 UAIKHnqug

so SO

+2! n36“"3TAu,\(KH,73 ds (A46)

and

— / ”SGWBGM?’(UBIK)IIAHW dA: f 713€K773€WBU3|KÜ1119HA4A
So So

—?{ nge”"3T"ug|Kng d3 (A47)

90

derived by means of the Green theorem (A21) and the relation

T = --6 1/19 f 6 go (A48)

bearing in mind that n3 = 1.

After enlarging the first surface integral in (3.25) by (A44-a) and the second one by (A44-b) and (A44—c)

one can substitute (A45), (A46) and (A347). Upon a subsequent rearrangement we find that

S _ 3 A193 " 3 A93 7 “ "

[1U — -/ 7136'“, E uMKngß +/ 71,36,677 6 1 u‚\|‚{(H‚73|w — bm9H33 + banufilA

So 0

+/ n36”"36’\193u3|„(H‚719||>„ — bnxgas - bflAHn3)dA

So

+f 713€K773T19(U191KH773 —— u3|KHm9) d5 (A49)

g

if the identity

W36A193,

uslAbflanß = 713€KU3EM937136 'u3|„b‚9‚\1f[‚73 g E S

has also been taken into consideration. Upon substitution of the relations

Hn3fi = gnaw — bnflfiss + b51517“, 56 S

Humx = Emmi - bnxflzas - baAÜns EG S
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obtained from (A.10) into the second and third surface integral and a subsequent rearrangement we can

apply the Stokes theorem to the sum of the three surface integrals.

—/ “BEKUBE’WSKHnflfi + Ün3;19)uz\;n + flu/V0153!” dA : —/ 713€Kn3€ldpulwgndäp dA

o o

: —/ ngegmeldl’Hndeu; — Tnéldendmul d8

So go

Rewriting the result into (A49) we have:

[EU z -—/ n363’7“€ld7”1}nd;p„ul (1A +f 7136“”3T19(u19|„1:1„3 - Uglnflng) d3

Sa 90

—j{ T’leldpfindmul ds (A50)

90

If the surface is closed ile. So E S then the line integrals vanish and the above equation reduces to (3.27).

5.18 Transformation of integral 1fE of equation (3.26-a).

Utilizing

— the manipulation

6”"36Ä’93(—bge‚\„ + bi‘ean)flmg : 6“"36"T3(e„„b: —— bgem)Ü„„

= 6""3EW3633eMbgFIW E E S

: EKüBEAÜBEUTgel/TEEÄKÖZPNIUU : €Kfl3€A193eAKb5Hm}

obtained by interchanging indices A —> T, ‚Ü —> U, 19 —+ 1/ and using (A.1),

—- the equation

Cum = 8mm + Ödem + bÄöeKE E E S

that follows from (A.10)

and finally

—— the integral transformations

/ 7136“"36m363KIIAHm9dA: — / 7136‘"36“9363„Hm9ll‚\dz4
so 3a

+j£ ngemsT‘gegKng d5 (A51)

and

/S Ngemi’em’emrmflnsdA: —/ memgememgnslmd/l
„ sa

+74 7136”"37'AeMÜW3 ds (A52)

90

whose derivation requires the use of the Green theorem and the equation (A48)

we get from (3.26-a) that

IiSE =/ “355"3‘5wslem(gm9;3 - Hn3||19 + bm‘agw + bfiV—Ünu) + eBAÖKÜHnß

So

+e3n(“Hnfl||A + b1„\Ü193)+ englqms + enSlAHm? + emwüna] dA

+yl n36“’73(7'19€g„H„19 — TÄeMHng) ds (A53)

o

It follows from (A.10) that

Hump = Ham) + bnAfIBfi + bmüng 5€ S

Hnßllfi : Hn3|19 + bnflü33 + b11337“; 5€ S
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Substitution of the above equations into (A53), a subsequent rearrangement and renaming indices lead

to the result

S 3 A193 N N N

I1E Z / n3€Kp 6 ['— HAnepflß + HÄne/ßyfl + HSKe/WM

So

+Hm;3€p19 — Hmwepg — H3K|Aep19ldA

+ if ngeK"3(7—’963„Üm9 — TÄ€AKH773) d5 (A54)

Making use of the Stokes theorem one can write that

[n35Rp36A193HAnep3Wd/l :/n3€Kp3€/\193H/\K1198P3d14

SO o

+ )5 TAEKPBINIMepg d3 (A55-a)

and

/n36“p36mgHsncm9|Ad/1 = f nacKP‘q’cmgHsmemd/l

so so

— f Tflenp3lf13kep19 d3 (A55-b)

0

Upon substitution of (A55-a,b) into (A54) integral 113E reduces to the form

[i913 : / 7136m736M93(—— ÜAnepqgß + HM;3ep19) dA (A56)

so .

Observe that the line integrals cancel each other.

If the surface is closed SO E S and we obtain equation (3.29).

5.19 Transformation of integral IIVE of equation (3.26-b).

By applying the Gauss theorem twice and renaming dummy indices we obtain from (3.26—b) that

IivE : Iii/E + lägE (A57)

where

Ig/E : /6pyk€ldrHyd;krers

V

and

15E : /Sn3€Kp3€lsp(eps;len _ epSHlKgp)

As regards the surface integral it is worth decomposing those sums involving 6137). After some manipulation

we have

I2SE = / “36””36W‘q’lHAnepm - HMGpw - H3Kep19;z\ -Hxn;36p«9 +Hm19€p3 + H3n)‚\ep19] dA (A.58-C)

S

Comparison of the above integral to (A54) enables us to repeat the line of thought leading from (A54)

to (A56). Finally we obtain

[5E 2/ TLgEKpBEMg3(H,\R€/M§;3 — HMsgepqg) dA+f n36‘93(T‘9H3„6‚„9 — TÄHMepg) d3 (A59)

Observe that we have assumed an open surface.

If the surface is closed, So :— S ‚ the line integrals vanish and equation (A59) reduces to

[5E = /n3€Kp3€/\193(H‚\nep19;3 — HAng3ep’8) CIA (A.60)

3

Upon substitution of (A58—a) and (A50) into (A57) we arrive at (3.30).
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