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Complete Solution for Stresses in Terms of Stress Functions
Part I: Derivation from the Principle of Virtual Work

1. Kozdk, Gy. Szeidl

In the first part of the paper it is proved that for solid bodies the general and complete solution of equi-
librium equations in terms of stress functions can be derived from the general primal form of the virtual
work principle provided that the necessary and sufficient conditions for the strains to be kinematically
admissible are known. This resull is of methodological significance since the line of thought can be applied
to every case for which the sufficient and necessary conditions of kinematical admissibility of strains are
clarified.

1 Introduction

1.1 The general solution of the two dimensional equilibrium equations in terms of a stress function
was found by Airy (1863). Three dimensional gencralizations of Airy’s function are the stress function
solutions obtained by Maxwell (1870) and Morera (1892) (cf. e.g. Gurtin, 1972) who established two
alternative solutions, each involving a triplet of stress functions. Beltrami (1892) observed that these
solutions represent two special cases of setting equal to zero three components of the stress function
tensor involved in his solution.

Completeness proofs for Beltrami’s solution, which were given among others by Ornstein (1954), Glinther
(1954) and Dorn and Schield (1956), are valid only for those regions whose boundary consists of a single
closed surface. This fact was noticed by Rieder (1960) who observed that for regions bordered by more
than one closed surface (multiple-bordered region) Beltrami’s solution is totally self-equilibrated on each
surface therefore it can not be complete. By supplementing Beltrami’s solution but independently of each
other Schaefer (1953) and Gurtin (1963) found formally different but complete solutions.

According to the papers cited introduction of stress functions took place intuitively. In this respect a
step ahead was made by Tonti (1967) who derived the incomplete Beltrami solution from a variational
principle. Although the paper by Stippes (1966) derived the complete solution, like Tonti he assumed
that there are no body forces. It is a further problem that both Tonti and Stippes used the six Saint
Venant compatibility conditions as side conditions although these are not independent of each other.
Consequently the solution involves six stress functions (As it is well known any state of stress can be
given in terms of three stress functions.). This contradiction is the dual counterpart of the paradox found
by Southwell (1938) who gave the statically admissible stresses in terms of three stress functions and got
only three (instead of six) compatibility equations from the principle of minimum complementary energy
— he did not know that the six compatibility equations are not independent. It is also worthy of mention
that the surface integrals obtained during the mathematical transformations are completely left out of
consideration. In addition both Stippes and Tonti assumed that there are no body forces.

The book (1978) written by Abovski, Andreev and Deruga (1978) provides a detailed description of
variational principles in classical elastostatics including those variational principles where the solutions
of the equilibrium equations in terms of stress functions appear as Euler equations. In comparison with
the papers by Tonti (1967) and Stippes (1966) there is a step ahead in the treatment of the boundary
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Figurel. Body with Two Single Closed Surfaces

surface but all the terms needed for a complete solution on multiple-bordered regions are missing. The
reason for this is the assumption that the particular solutions of equilibrium equations are assumed to
be known therefore the difference between homogeneous and particular solutions, i.e., self-equilibrated
stresses are given by the above mentioned Euler equations.

1.2 In a view of the foregoing the aims in the first part of our paper are as follows:

— Derivation of the general and complete solution of equilibrium equations in terms of three stress
functions from the principle of virtual work by solving in this way the dual counterpart of the
Southwell paradox.

— To point out clearly in connection with the first aim how important a role the side conditions —
three independent comptibility conditions on the volume and the so called strain (or kinematic)
boundary conditions — play.

— To show how the integrals taken on the boundary can be transformed into a suitable form and
what mechanical meaning the resulting boundary integrals and boundary conditions have.

In section 2 we give the notations and notational conventions and collect some preliminary results.
Section 3 is devoted to the derivation of the complete solution of equilibrium equations from the principle
of virtual work. Section 4 is a summary of the results. The last section is an Appendix, i.e., a collection
of some longer transformations. '

In the second part of the paper the modification of the corresponding variational principles and the dual
pairs of the strain boundary conditions are presented.

2 Preliminaries

2.1 The bounded region of three-dimensional space occupied by the body and the surface of the body
are denoted respectively by V and S. For the sake of simplicity we shall assume that the region V'
is simple-connected. The surface S may, however, consist of not only one but more closed surfaces —
a multiple-bordered region — as well. The surface S is divided into parts S, and S; whose common

bounding curve is denoted by g. The body represented in Figurel. is bordered by two single closed
surfaces.

If the body is bordered by N closed regular surfaces S (¢ =1,...,N; N > 2) and each surface is
divided into two parts Sq(f), St(’) separated from each other by a bounding curve ¢(*) then S,,, S, and g are
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the unions of the subsurfaces Sl(f) and St(i) and the bounding curves g;, respectively. Any of the surfaces
[S.) {Sff)} or [S¢] {ng)} may be an empty set.

Indicial notations and three coordinate systems

~ the (y'y?y?) Cartesian

— the (z'z223) curvilinear and

— the (£1€2¢3) curvilinear, defined on the surface S,
are employed throughout this paper. Scalars and tensors, unless the opposite is stated, are denoted
independently of the coordinate system by the same letter. Distinction is aided by the indication of the
arguments ¥y,  and £ being used to denote the totality of the corresponding coordinates.

Volume integrals — except the formula (2.8) — and surface integrals are considered, respectively, in the
coordinate systems (z!z2z3) and (£1£2¢3), see Figure 2. Consequently, in the case of integrals, arguments
are omitted.

Figure 2. Coordinate System

In accordance with the general rules of indicial notations summation over repeated indices is implied and
subscripts preceded by a semicolon denote covariant differentiation with respect to the corresponding
subscripts. Latin and Greek indices range over the integers 1, 2, 3 and 1, 2, respectively. €¥™ and €pgr
stand for the permutation tensors; 52 is the Kronecker delta. In the Cartesian system (y1y2y3) e, e
and eg are the base vectors while the covariant and contravariant components of tensors are coinciding.
In the system of coordinates (:171:1:2a73) g, and g' are the covariant and contravariant base vectors. The
corresponding metric tensors are denoted by gz; and gP4.

We assume that there exists a one-to-one relationship 3* = y* (xl,xQ, z3) between the Cartesian coor-
dinate y* and the curvilinear coordinates x!, 2% and z® where y* is differentiable with respect to ' as
many times as required. Consequently

8yk
dyn = | 7| F 10
Contravariant and covariant vector fields B! and C), are transformed in accordance with the rules
_ oyr K 5 ok
Cle) =Gli)g B =B W)5s (2.1)

Equations and calculations can be better understood by introducing a suitable surface oriented coordinate
system. The equation of a boundary surface is written as z* = z*(£1, £2) where £! and £2 are the surface
coordinates Let £2 be the distance measured on the outward unit normal n to the surface. On S £ = 0.
[Base vectors] {Metric tensors} on S are denoted by [a* and a] {as; and a*'}. In the coordinate system
(£'€%¢%)
n=az=a’ =1 and n"=0

If |€3] /(min{|R1|,|R2|}) < I in which Ry and Ry are the principal radii of curvature on S then the
relationship % = x* (€1,£2,£€%) is always one-to-one. Under this condition the functional determinant is
not vanishing.

ax*

o |70

T =
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Upon change of coordinates (xl,x2,$3) and (51,52,53) a tensor DF (x) of the second order follows the
transformation rules

OEx 9z dxP AEP
k _ _ Nk
where "

02" 08 _ o

gl dxk

We shall assume that the vector and tensor fields involved in the investigations are sufficiently smooth.

2.2 Let ux be the displacement field (or displacements for brevity’s sake). Further let ez, be the strain
tensor (or strains for brevity’s sake). By t* we denote the stress tensor (or stresses for brevity’s sake).
Displacements and strains will be assumed to be small.
Boundary conditions — inasmuch as there are any boundary conditions prescribed — have the following
forms:
Displacement boundary condition:

g =1l « £e S, (2.3)

Stress boundary condition:
nth = ¢ £eS, (2.4)

where 1z, and ' are the prescribed displacements and tractions.

Kozék (1980) systematizes [the general primal forms]{the primal forms ordered to prescribed boundary
conditions}of the principle of virtual work, the corresponding assertions and, in addition to this, it
gives the missing [general dual forms] {dual forms ordered to prescribed boundary conditions} and dual
assertions together with their proofs.

The line of thought of the present section is based on a well known assertion related to the general primal
form of the principle of virtual work and on a proper choice of the corresponding subsidiary conditions.

2.3 The strains ey (z) are said to be [compatible] {kinematically admissible} if the differential equations
€k[(fL‘) = (ul;k + uk;,)/2 = U(k) reV (2.5)

have a single-valued solution — irrespective of a rigid body motion — for the displacements u;(z) € V and
the solution [does not satisfy other conditions| {satisfies the displacement boundary conditions (2.3)}.

Accordingly, the displacements u, are [compatible] {kinematically admissible} if they are differentiable
at least twice and meet [no other conditions]{the displacement boundary condition (2.3)}.

2.4 Let b be the body forces. The stresses t*!(x) x € V will be referred to as [equilibrated]{statically
admissible} if they satisfy the equilibrium equations

@+ =0 TeV (2.6)
and [meet no other conditions]{the stress boundary conditions (2.4)}.

For a linearly elastic body the boundary conditions (2.3) and (2.4) and field equations (2.5) and (2.6)
should be supplemented by the stress-strain relations. Assuming anisotropic material the stress strain
relations have the form

kl __ kipq
% = €pg
where C*!P4 i5 the tensor of clastic cocfficients.

2.5 According to a fundamental result of potential theory (Gurtin, 1972) the body forces o' always admit
the representation

o = —AB' = —¢"B! zevV (2.7)
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where B'(z) is obtained from the transformation formulas (2.1) provided that the integral

"o = = o [y (P)]
B'ly"(Q)] = 47T/V lyS(P)—ys(Q)ldVP QevV (2.8)

have been determined first. With reference to the above result we shall assume that the vector field B(z)
is known. Repeated application of (2.7) results in b also admitting the representation

b= —AAT = —gPigmny! eV (2.9)

In what follows we shall assume that the vector field ¥ is also known.

3 Derivation of the Stress Function Solution from the Principle of Virtual Work

3.1 Equation

/ tH ey dV — / bluy dV — / nat3u dA = 0 (3.1)
\4 14 S

is the general primal form of principle of virtual work. The above equation is associated with the following
direct assertion: Suppose that the strains e (x) are obtained from equation (2.5). If the equation (3.1)
holds for any compatible displacements uy(z) then the stresses t*(z) are equilibrated.

By substituting the kinematic equations (2.5) as subsidiary conditions and performing partial integrations
the assertion can easily be proved. Really, upon substitution of the integral

/ tHugpydV = / nst>udA + / tF wdV
v s v

into (3.1) and a subsequent rearrangement there follows the fulfillment of the equilibrium equations if
we take into consideration that the coefficient u; in the resulting equation

/(t(ﬁﬁk+b1)u,dv =0
14

is arbitrary in V.

3.2 It can be expected that the above assertion will remain valid when the subsidiary conditions (2.5) are
replaced by such side conditions which have a different mathematical form but are otherwise equivalent
to (2.5).

3.3 Representations (2.7) and (2.9) enable us to rewrite the volume integral

I = — / bl dV
v
involved in the principle of virtual work into
151 = /ABlude 152 = /AA\I!luldV (3.2)
v v

Our aim is to transform them into such a form that the strain tensor is involved instead of the displacement
field. With (A.27) and (A.29), integral I, changes into

Ijy = - /V(gqul~;q + gquZ-?;q - gplBl.c;lc) e dV + / n3 (a?’quA.’q + aqu:.)’sq - angl-c;k) u dA (3.3)
s

Upon substitution of (3.3) for the second volume integral in (3.1) we obtain
/V (17! — (¢"1B',, + g B, — gP'BE,) ey dV — /S n3 [t — (®1B!, + d'9B%, — a¥B% )| u dA =0

(3.4)
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With the aid of (A.30) and (A.32) it can easily be shown that
Iy = - /V (gPAW |+ gUATP  — gPTg™R ) e AV
+ /Sng (a™AT + alqA\I/?.’;q —a®a™U", ) u dA (3.5)
Substitution of (3.5) for the second volume integral in (3.1) yields
|7 = (a4 A, - g e aV

= / ng [t3 — (a?’qA\Ill_;q + alqA\II‘Q_’;q — aBlgmpk ) w dA (3.6)
s

skmg
Paragraphs 3.4 to 3.6 are devoted to the problem of how to find a proper form of the side conditions.

3.4 Equations (3.4) and (3.6) are the general primal forms of the principle of virtual work provided that
the body forces are given in terms of the potential functions B'(x) and W!(x) respectively. Observe that
in the above forms of the principle of virtual work the kinematic variables u; and ey, appear either on
the boundary S only as it is the case for u; or on the volume V as it is the case for ey;. Keeping this
circumstance in mind and recalling all that has been said about the side conditions in paragraph 3.2, one
has to raisc the following two questions:
(a) Under what conditions the strains ex;(z) =z € V are compatible?
(b) What further conditions should be satisfied if we want the displacements u;(z) z € V obtained
from the compatible strains ey to coincide with those appearing in the surface integral in (3.4)
or (3.6), i.e., with displacements given on S?
3.5 Solution to problem (a) is presented herein on the basis of papers by Kozdk (1980b, ¢). To begin
with, we have to introduce some new notations. The index pairs which range over a subset of the nine
possible values will be capitalized. Let agp be a sufficiently smooth otherwise arbitrary symmetric tensor
field in V. Further let Ul(:v) be an unknown vector field on V. By 4p we denote those subsets of the
possible values of index pairs 45 for which the differential equation

1
E(UA;B +UB;A) = OzAB(:E) reV

always has a solution for the vector field v(z). It is clear that the index pairs 45 may have only three
different values. Let s be the supplementary subset of index pairs whose union with 45 is the set of
index pairs 4. Obviously, the index pairs rs may have six distinct values. Because of the symmetry,
however, the corresponding tensor components agg represent, three distinct functions only.
The tensor of incompatibility 7% is defined by the equation

nab - G'akmeblpekl;mp eV

Returning to question (a) the independent necessary and sufficient conditions for the strains ez to be
compatible in a simply connected region V are the fulfilment of differential equations of compatibility

nts = ekaeSlpekl;mp =0 reV (3.7-a)
and that of boundary conditions of compatibility
nen®® = nanl = n363km6dlpekl;mp = nge?’"“eld”end;pn =0 £e S (3.7-b)
Observe that (3.7-a) and (3.7-b) are equivalent to three-three scalar equations.

3.6 Referring again to Kozék (1980b, c) solution for problem (b) is provided by the following assertion:
Suppose that the strains ey, fulfill the kinematic (or strain) boundary conditions

€xe = Unk) = U|k) £e S (3.8—a)
(63n = U3IK)H>\ T b?\‘(ecm - ua|n) == (en/\;3 - ez\B;m) =20 £ES (38'b)

where b5 is the tensor of curvature, index pairs in parentheses stand for the symmetric part of a tensor of
order two while surface covariant derivative and covariant derivative on surface are respectively denoted
by | and |s. (See paragraphs 5.1. to 5.4. for further details.) Then, on one hand,
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— the boundary conditions of compatibility (3.7-b) are fulfilled
and on the other hand
— the displacement field uz(£) £ € S can be determined from ex;(£) by integrations.

the papers by Kozdk (1980b, c) cited above do not contain the whole proof of the assertion. For this
reason a short proof is presented in paragraphs 3.7 and 3.8. During the transformations we shall need
the equation

1
Benfd — Shale = i(un\x—ux\ﬁ)uu + bep(esy —ugn) — bapl(exs — us)i) (3.9)

whose validity is proved in paragraph 5.13 .

3.7 First we shall consider the boundary conditions of compatibility. What we are going to prove is the
identical fulfilment of

ngn®s = P e sy = 0 teS (3.10)

and
ngn®? = P (e,nz, — ez = 0 £es (3.11)

provided that w; meets the kinematic (or strain) boundary conditions (3.8-a) and (3.8-b). With the aid
of (A.10) it follows from (3.10) and (3.11) that
ngn® = N (eqnn) | — bapenin — brperral = 0 fes (3.12)

ngn? = 1P (e — ean )| + bi(exrly — €ruin)] = O £eS (3.13)
With regard to the identity
—€3A7TbAH€K3‘7T = 63A7Tb7‘—u€,€3|)\ (314)

obtained by interchanging the indices A, 7 we can substitute the condition (3.8-a) into both (3.12) and
(3.13). Then substituting condition (3.8-b) and performing further transformations we find that the
equations (3.11) and (3.12) are indeed fulfilled identically.

These manipulations are presented in paragraphs 5.14 and 5.15 . However, the crux of the matter is
inherent in the circumstance that uy = ug(§), i.e. uy is given on S, consequently all its derivatives should
be taken on S.

3.8 Now we shall prove that ux = ug(£) can be determined by direct integrations from ey (§) provided
that eg;(§) meets the conditions (3.8-a) and (3.8-b).

Let L be a sufficiently smooth otherwise arbitrary curve on S (Figure 3). Since dr = d¢*a, £ € L in
view of (A.26) one can write for the rotation tensor that

leakallg = /L(ekw —elmk)akal g+
= /L{(enu;,\ — eapw)a"a + (€3 — €3 )a%a% + (€3,.0 — exp3)a®a JdEr  (3.15)
Upon substitution of (3.9) and (3.12) we obtain from (3.15) that
Qg a*al § = /L{[% (UKM - UMK)HM + bw(eg/\ - us\,\) - bA,U.(en?) - us\n)]anaA

+[(e3k — ugj) 0 + bl (Euie — Upje)]a"a® — [(e3n — ugpn) | + b (evx — u,\)]a’a’ fdg* (3.16)

By making use of the derivatives of base vectors (A.6) and taking the kinematic boundary condition
(3.8-a) into consideration, equation (3.16) can be transformed into the form

o .1
QuaFal|f = / —— [ (U — uyp)ata + (s — ugs)a®a® — (exs — ug)y)a*a]dsH
Ty

from which, performing the integration and omitting the distinguishing letter P we have

1
Qu(f)a*al = E(unp\ — u/\m)a“a)‘ + (exs — u3ln)a“a3 — (exs — u3|,\)a3a’\ (3.17)
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m

S(L)

Figure 3. An Arbitrary Curve L on Surface S

The displacement field can also be determined by integration performed along the curve L. In view of
the decomposition (A.24) we can write

uf = /L(uk;[ afa') - dr = /Lak (err + iy ) dEN
Substituting (3.17) for Q4 and utilizing the condition (3.8-a) we arrive at
ulp = /L{ak lexn + é(u,q,\ — uxje)] +a%[esn — (exs — ug)y)] ya&*
/L auy de* = /L 8¥;(akuk)az§A (3.18)

The last formula really proves that the fulfillment of kinematic boundary conditions (3.8-a) and (3.8-b)
enables us to determine the displacement field u(€) on the surface S.

3.9 In order to cast those integrals involving the side conditions — these are discussed in paragraph 3.10 —

into a proper form we shall need the following assertion: Suppese that the kinematic boundary conditions
(3.8-a,b) hold. Then

Eerll9 T+ exclls — (Uaj)s — Usppnbse = 0 Ees (3.19)

In other words the above equation is not an independent condition. The proof is presented in paragraph
5.16.

3.10 On the basis of paragraphs 3.5 to 3.9 we can draw the following inference: Let ey (x) be a strain
field on V. Let further u;(§) be a displacement field on S. If ey (x) satisfies the differential equations of
compatibility (3.7-a) as well as the kinematic boundary conditions (3.8-a) and (3.8-b) then the kinematic
equations (2.5) have a solution for u;(z) and the solution coincides with the displacement field 1;(§) given
on the surface S. In addition to this, condition (3.19) is an identity.

In other words conditions (3.7-a), (3.8-a) and (3.8-b) are the side conditions sought. For simplicity in the
further transformations identity (3.19) will also be taken into consideration when those integrals involving
the side conditions are being set up.
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Since the conditions mentioned cannot be substituted directly into the general primal forms (3.4) and
(3.6) of the principle of virtual work Lagrange’s method of undetermined multipliers should be used. Let

Hy;p, = Hy zeV
]‘Tl,m = ﬁ[ﬁn e S
Huyss = Hons Eel (3.20)
f{ng = ﬁgn = eSS
and ~
Hs33 =0 Ee S

be the undetermined Lagrange multipliers. Suppose that the side conditiens (3.7-a) and (3.8-a,b) hold.
Then the integrals ;" and I{ are identically vanishing.

I/ = / efFmeStrey ) mpHrs dV = 0 (3.21-a)
14

and

L= /Sn?)émgﬁwg{(em — Uiy Hyos
(€3 — Ugp)a + b5 (€an — Uap) — (Exrs3 — €xsye) — Vg(exn — U)o
+ewrjo + exnljo — (U)o — Uapnbows] Hys — byo(exe — U(njx)) Has} dA =0 (3.21-b)
Consequently, the sum of the above integrals is also vanishing:
M=+ =0 (3.22)

Since the integral form of the side conditions on S is not obvious NOTEs 1 to 7 are aimed to interpret
our choice from which after long and hard transformations and taking into account the other integrals
there follows the correctness of the resulting surface integrals.

NOTE 1: It is temporarily assumed that the Lagrange multipliers f]ng, = ]:13,,7 and Hss do not vanish.
Later on it will turn out that their values do not affect the stresses on the boundary and can therefore
be set to zero.

NOTE 2: As regards its mathematical form multiplier ]:17119;3 = ﬁgmg is a covariant derivative. With the
formulae (A.4), (A.6) and (A.7) we have

Hypg = Hong + b3 Hog + b3 Hyo ¢es

where ffms\yg is regarded as an arbitrary function. Consequently, without any loss of generality one can

assume that H,y.3 is independent of ffmg (&) €€ S. (Keep in mind that we are on S and I;[,T,gvg is the
derivative taken along the normal to S.)

NOTE 3: With regard to the circumstance that the differential equations of compatibility (3.7-a) involve
three independent equations identified by the superscripts #° we can conclude that the necessary number
of multipliers Hy; is also three and these are identified again by the same indices rs being considered as
subscripts. In other words multipliers H4p can be set to zero.

NOTE 4.: Enlarging the coefficient of multiplier f[mg by the member
—bg(exn — U(re)) te s
we add zero to it since (3.8-a) holds.

NOTE 5: Coefficient of H,3 is the identity (3.19).

NOTE 6: Coefficient of Hsz is nothing but a scalar product which involves the kinematic boundary
condition (3.8-a).
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NOTE 7: In the light of NOTE 5 and NOTE 6 the following interpretation belongs to NOTE 1: From
the point of view of the transformations aimed to bring I} into a suitable form it is unimportant whether
H 3 and Hss vanish or not. In paragraph 3.12 however, it is proved that H, n3 and Hzz can always be set
to zero.

3.11 Now forms with no side conditions of the principle of virtual work can be obtained if we subtract
I/% from (3.4) and (3.6).
/V[tp[ - (gqu{;q + gqul.g;q - gplB].c;k)] elp av

— /S ng [t* — (6®B' , +a"B%  — a¥B* ) dA - 1}5 = 0 (3.23-a)

/ [t’”l — (gqu\Ill_;q + glqA\Iﬂ";q — gpqgml\I/]_“;kmq)] ep AV

14

- / ng [t* — (eMAW | +a9AVP — 0™, N dA -1V =0 (3.23-b)
S

To attain a more suitable form it is expedient to transform I 4 VS by performing partial integrations before
actually carrying out the subtraction. When transforming I we replace Hrpg by Hj, and rename some
dummy indices bearing in mind, however, that H,p is obviously equal to zero.

By separating those terms involving strains eg; and displacements u; and observing that
TL3€K7]36)‘1931L3‘K()79/\]:L73 =0 £EesS

we can write
P o g8 Y = B L 1 T (3.24)

in which

s 3_\93 %
b= —/ n3€” ey o) Hno3dA
s

+/ ngEKn:ZE/\q%[—ul\‘KH,ang o U(/\‘K)bms]:[gg + (bgU(MK) = bi‘uam)ng] dA
S

+/ g€ [—ug o\ Hyo — g 2boHzy — ugjeborHys] dA (3.25)
S

IigE = / ?136'{7736/\193{ e)mffms\g —+ .(6,;,\”19 -+ 6/\KH79)H
s
g 5o — B+ Bagle— bgff,\n)f]nﬂ =+ bnl‘}ez\nﬁ?)?)} dA (3.26-a)

and

1= / €M Pe o mp Hig AV (3.26-b)
174

Transformation of integral (3.25) requires the repeated application of the Green theorem which should
be associated with suitable rearrangements. As regards the details we refer to paragraph 5.17. Finally
we obtain from (A.50) that

IigU = / n363nﬁeldpﬁnd;p;<ul dA (327)
o

NOTE 8: Let w;(§) and w;;3(&) be two sufficiently smooth vector and tensor fields on S. Recalling the
definition of covariant derivatives one can consider ’ajl;g(f) as the covariant derivative taken along the
normal to the surface of a vector field w;(z) which is considered as an unknown for all points = ¢ S.
Substituting

ﬁkz(f) — W) (§) for ﬁkz(f) £Ees (3.28)
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we do not change the value of (3.27) since
3kn ldp 7, 1 3kn ldp s, 1 3kn ldp >,
e T Wnd)pr = 5(5 € Pn:a) pr + 5(5 € PWane)ip
1 . 1 N -
= 5(63Kn€35ﬂwn;5W);n £ 563'”] (GAgwwm% F €M3wn;7r3);f< =0 £es

Observe that the expressions in parentheses do not require determination of derivatives higher than wg;.
if one takes into consideration the interchangeability of covariant derivatives. At the same time Wy, (§)
can always be chosen in such a way that the relation

ﬁkg—ﬁ](g;k):o £e S
is fulfilled. This proves the correctness of the assumption fln3 == 1:1377 =H33=0.

3.12 With regard to all that has been said in NOTE 8 one can really assume that the structure of H, Kl
meets the preconditions . This choice does not affect the integral I fE since the left expression in (3.28)
can itself be renamed into Hy,.

Transformations of integrals (3.26-a,b) are similar to that of integral (3.25) and are presented in para-

graphs 5.18 and 5.19. As regards the result of the transformations mentioned it follows from (A.56),(A.58-a)
and (A.60) that

g = / n3e* P (—H e pn;3 + Hawizepn) dA (3.29)
S
and
IlVE :/ epykeldrHydmrers dv+/ n36Kp36A793(H/\K6p19;3 S HAK;Bepﬂ) dA (330)
v s

By making use of (3.27),(3.29),(3.30) and (3.24) we can perform the subtraction in (3.23-a).
/V [t — (¥ Hyaar + 7B, + ¢“B%,, — ¢" B¥ ) e1p dV

— / na [t3 — (P Hp g + a?’qu';q + n,quiq - n,3lR7_“;k)] uy dA
s

+/ ngﬁ'{psf/\ﬂg[—(H,\,{ — ﬁ[,\,{)epﬁ;g —+ (H,\,{;g — ]N{)\K;g)epﬁ] dA=0 (331)
s
Since in (3.31) no conditions for
€k1(3«”) zeV
€p? (5), 6p19;3(£) 5 =P
and
w () £es

are set down they are arbitrary. Consequently, from the vanishing of (3.31) there follows the fulfilment
of

the field equations
P = VR Hygy + gPIB', + gMBP, — gP'BF, reV (3.32)
and the boundary conditions

IjI)\n — H,, =0 ]jl,\ngg — H)\K;g =0 SES (3.33)
and
13 = ngepdpﬁ/\d;pﬂ * aquﬁq + aqu?;q - ang].c;k

= (> Hyaye — € Haa)p +0*1B%,, + a”1B3 — a® B*, teS (3.34-a)

12 = GOSN L a3qB?’;q + a?’qBiq - a33Bﬁk £e s (3.34-b)

157



in which with regard to (3.20)3 4, (A.4), (A.6) and (A.7):
e — H/\g‘ﬁ = ]:[/\3,n S PgKﬁTg S anﬁ)\r = bZHAp 56 S (335-&)

fNI/\K;p = ]jl/\,qp = fNIAK”p — b)\Pﬁlgn . b,.;pg,\g = fI}J‘CHP £esS (3‘35—b)

NOTE 9: In view to the relation involved in NOTE 2 and equations (3.35-a,b) it can readily be shown
by using (A.8), (A.9) and (A.10) that covariant derivatives with respect to ¥ — see equations. (3.34-a)
and (3.34-b) — can also be given in terms of Hy, and H), 3.

If we now substitute (3.33a,b) into (3.34-a,b) and compare the result to (3.32) we shall find that the
stresses tP! can be calculated in the same way both in V and on S, i.e., by the formula (3.32). However,
it should be emphasized that following from (3.33a,b) and (3.34-a,b) determination of stresses on S does
not require the knowledge of Hy3(§) and Hyz;3(§). It can also'be checked by a simple substitution into
the equilibrium equations and by using (2.7) that the representation of stresses in terms of the Lagrange
multipliers Hy; and B' is equilibrated. In addition to that it coincides with the complete solution found
by Schaefer (1953). For this reason multipliers Hy,; will be referred to as stress functions.

Using the form (3.23-b) of principle of the virtual work and repeating the line of thought presented in
paragraph 2.26 we find that

[ @ e+ T, ey 0V

—/ wy [ — (VP + a® AW+ AT — aa™wk, ) dA
s

+/ nae"P3e M3~ (Hyw — Hax)eps:s + (Hxe3 — Hyp3)epn] dA (3.36)
s

from which it follows that equilibrated stresses can be calculated both in V and on S by means of the
formula

P = PVRE I g + gqu\Ill_;q + gl"A\II?;q — gpqgml\Il'_c;kmq zeV (3.37)

The above stress function solution, which was established by Gurtin (1972), is also complete, i.e., not
self-equilibrated on closed boundary surfaces.

NOTE 10: It is worthy of special mention — with reference to NOTE 3 — that because of the structure
of the tensor of incompatibility or what is the same thing because of the structure of the differential
equations of compatibility Hy; involve three scalar functions since H4g = 0. Inasmuch as Hy,; is of six
components, fulfilment of the mentioned conditions can always be ensured by an appropriate choice of a
vector field v)(x) =z € V, essentially by the solution of differential equations

1
5(1},4;3 = UB;A) = Haup zeV
because the stress functions
- 1
Hp = Hu — §(Uk;l + Vi) zeV

involve only three scalar functions since H 48 = 0. Observe that the stress functions U(k;l) CaUSE NO
stresses. This result is that of Finzi (1934). Observe further that the index pairs 4p are to be chosen in
the same way as before — see paragraph 3.5.

4 Concluding Remarks

4.1 The main result of the present work has been the proof of the possibility, that for solid bodies the
general and complete solution of equilibrium equations in terms of stress functions — valid therefore not
only for a self-equilibrated case, i.e. on multiply bordered bodies as well — can be derived from the general
primal form of the principle of virtual work provided that the necessary and sufficient conditions for the
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strains to be kinematically admissible are known. Since these conditions (as side conditions) can not be
substituted directly into the principle of virtual work, the Lagrange method of undetermined multipliers
should be applied.

4.2 Since the side conditions involve three field equations any state of stress can be given in terms of
three stress functions. Consequently three components of the corresponding stress function tensor Hy;
can be set to zero. In this way a solution is given to the dual counterpart of the Southwell paradox.

4.3 The long and hard transformations leading to an appropriate form of the surface integrals taken on
S are also presented. It is proved that the stresses in terms of stress functions should be calculated in
the same way both in V and on S .

4.4 We note that the line of thought presented herein is of methodological significance and can be applied
to other cases, including the micropolar one (Szeidl, 1991), provided that the necessary and sufficient
conditions of compatibility are known.

5 Appendix

5.1 It is well known that
epre’*t = 55,’; = 6,56; — 6;5;
Every tensor d,, admits the unique decomposition

dip = dap) + dpp) (A1)

in which d(;;,y and djjy) are the symmetric and skew parts of the tensor djp.

dupy = (dip + dpi)/2 and duy) = (dip — dp)/2 (A.2)
It is obvious that
d[[p] = EZPTETStdSt/Q (A3)
5.2 The covariant derivative with respect to the subscript s of a tensor d}_”'lm is defined by
dl.clm;s = d]?lm,s G Fp]?sdplm - rlidl.cpm, - F’rﬁqdklp (A4)
where
Ty = Ghm & (A.5)

is the Christoffel symbol of the second order. Equations (A.1-A.5) are valid in any curvilinear coordinate
system. )

5.3 On the surface S
bop() = Tds = anp-a® and  4(¢) = -Tfy = azp-a* EesS (A.6)
are the non-identically vanishing Christoffel symbols while
TE = r33ﬁ =T =0 tes (A7)
Here bop and b denote the covariant and mixed forms of the tensor of curvature.

5.4 The covariant derivative of the tensor d]_“lm on the surface S is defined by

d].ilm;cr (5) = dklm|a(£) = d].vlm,a + Fpkzrd?lm - Flgp;d].cpm - 1—‘Tlr)wd].ilp 5 € S (A8)
Being parts of the tensor dlflm the tensors df a5 4 o ,d355 considered on the surface S are referred to

as subtensors of order three, two,....,zero. Let the surface covariant derivative of the subtensor d*, . be

dl.{)\pna'(g) = d'.{Ap,a + Fﬁnd’,.rz\y - F/\‘,ro'd’.c'n/,t - F/fad’.{/\w 56 S (Ag)
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Upon substitution of (A.9) and (A.6) into (A.8) we obtain
dﬁ.ﬁv/\/,t;a(g) = dl’.gAMJ(g) = dﬁi\p”o‘ - bgd?/\p aE b)\UdP.cSp + buﬁd’?)\?) 56 S (AIO)

In the sequel the above equation is considered as a rule which relates surface covariant derivative to

covariant derivative on the surface. Observe that changes along £2do not affect d*, e

5.5 Let s% be a sufficiently smooth tensor field on S. By making use of (A.9) it can be shown that
%o — STBpw = —SaR%an — S5R39 £Ed (A.11)

in which . i
o T TR
L orx? x>

is the Riemann-Christoffel tensor on the surface. It can easily be proved (Connel, 1957) that

+ I5,T5, — Tk £es (A.12)

Rlgox = bbpx — D3bgy # O £es (A.13)

Regarding (A.11) as a rule and applying it to the covariant derivatives of displacement u; we can write
that

Ug|jpr — Uk|ap = uy(b;b,{,\ — b,/(b“#> = (Al/—l)

and
(UAHK)”WM = (u)\HFu)HM’I\' o= b;:bm‘r(uunf\ - 'U'/\Hu) 56 S (A15-a)
(esn — ugpn) e — (e3x — ugp)jue = (e3y — ugp)(0kbap — bidax) £ € JA.15-b)

where (A.13) was also taken into consideration. Relations (A.14) and (A.15-a,b) show that the order of
surface covariant derivatives is not interchangeable. It can also be proved that

bogix — bars = 0 or in other form AP bagrn = 0 £es (A.16)
The above equations are known as Mainardi-Codazzi formulae (Connel, 1957).

5.6 Covariant derivatives of metric and permutation tensors are identically zero.

gkl;s =0 gm’,fs =0 5lk,:m =0 6klm§5 =0 ET.)T.T.n;s =0 MRS Vv (A17)
and
Ugxlo = erle =0 @, =a =0 8, =6,=0 £esS  (Al8-a)

™3 — R =0 £eS  (A.18D)

€kA3lc = €xA3|lo = 0 € dJor ™ S wller T

5.7 Consider the product d]_“lm;k(a:) d™(xz) z € V. Applying the Green-Gauss theorem (cf. Kellog,
1957) one can readily prove that

/ Wy ™AV = / nads,, ™ dA — / B O IV (A.19)
1% S 14

5.8 Let S, be an arbitrary open surface closed by the directed boundary curve g,. Further let the
positive direction on g, be taken so that 7,,n3 and v, — v, is the normal to the boundary curve g, that
lies in the tangent plane — form a right hand triad (Figure 4). Let b,'(£) and ¢;(§) be surface tensors.
Applying the Stokes theorem it can be shown that

/ ngegmbal_lncldA = % blem™ds — / nz €1 bL cyn dA (A.20)
SU o SO

5.9 By making use of the Green theorem relating surface to boundary integrals (cf. Mason, 1980) one
can readily check the validity of transformation

/SblﬂmcldA = ]{ vpb" e ds — /s bﬂclundA (A.21)
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Figure 4. An Open Surface

If S, is closed the line integrals in (A.20) and (A.21) vanish. Equations (A.19) to (A.21) are the rules of
partial integration.

5.10 The rigid body rotation w” is defined by
€ uy. g zeEV (A22)

from which multiplying throughout by —¢;,, and using (A.l) we obtain

1
—€pprw” = 2 (Up — Upy) = Upyp) = SUp eV (A.23)

where Qy; is the rotation tensor. With (A.23) and (2.5), substitution of uypfor dip in (A.2) gives
Up = €lp — Epip” = e + iy zeV (A.24)
Since €"**uq,, = 0 with regard to (2.5) it follows from (A.22) that

r

Wi =

N —

€ (Uggs + Uges) = € ey zeV (A.25)

Upon multiplying throughout by €y, and using (A.1) one obtains from (A.25)
Epir ., = €lgp — Epgt = Spyg zeV (A.26)

5.11 Now we shall transform the integral I of equation (3.2-a) into a more suitable form. These
manipulations require, however, more steps detailed as follows:
(a) Substitution of (2.11) for AB! and partial integration by the use of rule (A.19)
(b) Substitution of resolution (A.24) for the gradient w;, and partial integration of the term that
involves w"
(c) Substitution of (A.25) for w”, and partial integrations with respect to those terms involving the
gradients €4, and epq,.

After carrying out the steps (a), (b) and (c) and renaming some dummy indices we have

3 o= -~ / (¢"B', + ¢B", — ¢"'B* ) e, dv + / n3a® B w dA + I§, (A.27)
v s
where
Ifl = —/n3a3pBlep,st dA + /(n3 aqu’etq — ng aqu3epq)dA (A.28)
s s

To obtain the final form of I, we shall transform the surface integral 7%,. During the transformations
use has been made of the equations

1
3 l s l skv
n3a’P B ey w® = nga®? B gy € 5 vk (a)
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B g ] oy o
nza“iB'e;y — n3aPiB ey, = ni aPiB’ €y €° 15 (Upsq + Ugpw) (b)

and
rab
NEUy;q — MqUu;k = €Ekqr € Ng Uy;b (C)

whose validity can easily be shown if one takes (2.2), (A.1) and (A.18-a, b) into consideration.

Substitution of (a) and (b) into (A.28) and a subsequent rearrangement enables us to utilize (c).

1 I
I = 3 / aP B s € (Nplnyg — NqUok) dA + 5 / Nk AP Bl eprs€ g dA
s Js
Observe that each of the integrands involve the gradient of displacements. To complete the transformation
we apply the rule for partial integrations (A.20) to the result with the aim of obtaining terms linear in
the displacements. When doing the integration we keep in mind (A.17) and (A.18-a, b) and remember
that the surface S is closed. All these manipulations yield

1 1
Ifl = —§/n3 620,?‘1 Eplat equer“bBl;bukd —5/713 52 apqeplsesmBlwuq dA
s s
= / ng (a'B%, — a® B% )Ju, dA (A.29)
s

where the identity (A.1) has also been used.

5.12 Transformation of integral I, of equation (3.2-b) is very similar to that of integral IZ,. During
the transformation, which requires more steps,

(a) we substitute (2.9) for AAW and carry out the first partial integration

(b) then we utilize the resolution (A.24) and integrate partially the terms involving w”

(c) and finally we substitute (A.25) for w"., and integrate those terms involving ejn,q and egny.
After renaming some dummy indices and a subsequent rearrangement we have

ID, = /V(gqu\I/l;q + glqA\Il’:q - g”qgml\lf’fkmq) e dV + /s n3 a3qam"A\I/l;q u dA + I5, (A.30)
where

5= —/ ngapqasm\ﬂl.;mqeplswsdA + /(ngasqam”\lll;mq e — nga’”’amn\ll?;mq epn)dA (A.31)
§ ¢ Js

To get the final form of I 52 one should transform the integral I /1&32' It can be shown in the same way as
above that

1
Pq ,3mayyl s __ Pq ,mnqyyl suv
ng e prs W' = ny aP1TTW €l € 5 Uviu (d)
and ;
3q ,mnyyl _ pq ,mnagyl - pq ,mn,gyl suv
n3aa™W e — ng aPlaTTW L cepn = ny, aPTa™MW L €prg € v (Uom + Wasar) (e)

With (d) and (e), we get

B mmn gyl suv 1 mn gyl " su
I3y = / aPla™™ g Cple€ (n,,uvm — N Uyyn) dA + 5 / Ny, aPla™™ I 2 YUp i dA
s

S

N =

Substituting €yun€ *®nqUy;p for the term in the parentheses and repeating the line of thought leading to
(A.29) we arrive at

1 1
B, = -5 /Sn353apqam"\I/l';mqbep,sesuvemnerabuv dA - 5 /Sngézapqam" \Illl;mqvep,ses“”un dA
= /ng(alqA\I/?_’;q - agqam’\I"f;kmq)ul dA (A.32)
s
5.13 Proof of equation (3.9)
By making use of (A.10) one can write that
Cruld — Erplk = Crp|r — Expllk — bp)\enli e b;meii)\ g €S (A33)
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The first two terms in the right hand side can be transformed further if we substitute (3.8-a) and utilize
the rule (A.10) again:

1

1
Crulld — Expllk = E(UKHID\ - uAHun) + _é(uulln/\ - U’M“m\) = (b'ﬂuui’))ﬂ/\ + (bf\ltu?’)HK e (A'34)

By interchanging the order of surface covariant derivatives in (A.14) we obtain
U = Un|kp + U, (beK,\ - bszu) £eS (A.35-a)

and
Upler — Upae = U, (Okbun — dXDux) §€8 (A.35-b)

In addition to this it follows from the Mainardi-Codazzi formula (A.16b) that
—(bepus)n + (bapus)je = beptgyr + bauUs)e £es (A.36)

Substituting (A.14), (A.35-a, b) and (A.36) into (A.34) and the result obtained into (A.33) we arrive at
(3.18) if we also take into consideration the rule (A.10).

5.14 Proof of fulfilment of equation (3.10).

Keeping (3.14) in mind let us substitute e,),3 from (3.8-b) into (3.12) and apply the rule (A.10) to the
first term within the braces.

ngn> = 63"“63)‘"{(6,“\“,, — beresn)|u — burl(esy — ug\)je + Oilenn — u,,[A)]} £e S (A3T)

Now we can substitute (3.8-a). If in addition to this we apply (A.10) again and take into consideration
both the identity

—Eznu(bnwegk)uu — 53“”(bweg>\)u,¢ £eS

obtained by interchanging , 1 and the Mainardi-Codazzi formula (A.16-b) we get

1
33 _ 63nu63)\7r{§

n3n (“nn,\ o 'U'/\||n>||7m — bpAU3|ry + b[.LTr[UBH,\K + (OXuw) jxl
1
&a bwrb:ig(uun,\ - Unjw)} -1 (A.38)
In what follows we utilize
— the identity
63K#€3/\ﬂb,¢)\U3“ﬂ# = 63K“€3’\WZ)”WU3“)\K f es (A39)

obtained by interchanging the index pairs k, A and p, m
and

— the transformation

63.%#63/\11' (

Un ) = € HEN [(wnpe)um — Dby (s —uap)] E€S (A.40)

which follows from (A.15-a).
Upon substitution of (A.39) and (A.40) into (A.38) we have

. oo Y
ngn>d = 3Rk {§(un[[AM + Unjkpn) T bun(bXU) |} £es (A.41)
Making use of the identity

1
3nu63/\7r — 63&;;63)\77~

_ 63”“63’\"un||,\m 2(un||,\7r = Ugleia £EeS

€ UM ||k pre

obtained by renaming some indices and taking (A.14) into consideration we find that
1
77'37]33 — €3nu€3/\7f{§[uy(bib,€ﬁ — b;bn,\)]”“ + b,,m (bi’\u,,)“,{}

1
= U, (B5ben + Wben)li = ben (W)} = 0 wEY [
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if we also substitute (A.16b).

5.15 Proof of fulfilment of equation (3.11)
Upon substitution of (3.8-b) and (3.9) into (3.11) and a subsequent rearrangement we have

nan?? = e (ean — uga)ep + 0(ewr — Uya)]j
1

bZ[:_z(u‘/\h/ — Uya)x + Orcless — uap) — buxlear — ug)l} &b

In order to reach the desirable result one should substitute into (A.42)
— the expression

EBK,p.(

€3y — usu)nw = (€, = U3IA)IIun]

1
€3N — uSIf\)Hnu = €3n#§[(

1
= 4 (enn —ua (Ofbas — Bine) =~ (e —us)  E€S

obtained by making use of (A.15-b),
— the Mainardi-Codazzi formula 63"“():”“ = 0 [See (A.16b)],
— the transformation

\ 1
e = )i =~ (U —wp) e EE€S

whose proof requires the use of (2.22a) and the interchange of indices x and p
and finally

— the identity 63K”b5b,m = 0 which expresses that the tensor of curvature is symmetric.
After the substitutions we have that the right hand side of (A.42) vanishes.

n3n> = 0 £es

5.16 Proof of identity (3.19)
Substituting (3.8-a) into (3.19) and applying the rule (A.10) we obtain

P [(upn + U)o — (Wre) o — Usiabox]
= 6M93[U,K||Mg = (b,ﬂ'&g)”ﬁ = (U3”/\ + bKU,,)b,gK] 5 es (A.43)
Using
— the identity
1
B = 6’\’93§(un||w —Uggn) E€S
obtained by renaming and interchanging indices
— the transformation (A.14) with a suitable renaming of indices
and

— the Mainardi-Codazzi formula (A.14) with a suitable renaming of indices
we get from (A.43) that

1
fAﬂs[”éuy(beKﬂ — bybey) — biauz|p — ug|abox — u,bibye] = 0 Ee S

since the expression in the brackets is symmetric in A, 9.

5.17 Transformation of integral I3, of equation (3.25).
For the sake of some further transformations concerning variational principles here and in paragraphs 5.18

and 5.19 we shall assume that the surface is open - see Figure 4 for details. During the transformations
use has been made of
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— the identities

nge"”?’ewgu{,\wﬁng;g =0, eSS (A.44-a)

7136”7736/\19311,[/“,6] b,,af:fgg =0 f es (A.44—b)
and ~

7136”7736'\ﬂ3’u,[)\|,¢}bgH7719 =0 e S (A.44—C)

where the latter two follow from the equation

€m736)‘193

z 37 3 37 . —
U{A|K]H1719‘,3 = EKT]sEAﬂBf/\KBW Hpg3 = —¢ Pw ng;g =0 £e S

if one substitute b,y or f[,,ﬂ for f[mg;g, ,
— the manipulation

nge"”se’\%’(bgu,\m s b‘i‘uam)f[w - 7136""36’\‘93(—5?f)ua[,¢bg1:1nﬁ
= ’I‘L3€m73GQﬁBE(IAgGﬁ/\Buambgﬁlnﬁ = n36‘§n3€>"03u,\|ﬁb5ﬁnu § €S (A45)

obtained by utilizing (A.1) and interchanging index pairs A\, 9 — «, B and ¥, X\ — v, 9,
and

— the equations

3 A3 ] 3 _A93 ]
—/ nge“" € u/\|n||19Hn3 dA = ngéml c u/\|KH773H,,9 dA
So SO

+?{ nge""?’T’\u,\\Kﬁng ds (A.46)
and

—/ 3" (ugp ) Ho dA=/ ng€“ e ug ), Hyp )5 dA
S, &
~7{ n3e" Tz, Hyg ds (A.A47)
9o

derived by means of the Green theorem (A.21) and the relation

' ==y £eg, (A.48)

bearing in mind that nz = 1.

After enlarging the first surface integral in (3.25) by (A.44-a) and the second one by (A.44-b) and (A.44-c)
one can substitute (A.45), (A.46) and (A:47). Upon a subsequent rearrangement we find that

L= ——/S ?7,36”7136'\193UMKI:L719;3 +/ 7136”"36'\19311,,\“{(1{[,73“,9 — byo Haz + 04 H,,)dA
3 So

+/ ngé'{nBE’\ﬁBU3|n(ﬁmg“,\ = bn,\f:[33 - bﬂAﬁng)dA
So

+]{ nge3 7?0 (umnfl,,g — ’U,g|,cf~l77,,9) ds (A .49)
9

if the identity

3 AD3,

U'Bl,\b'ﬂKHnZ} = 7136KT’3€A193

n3e ’U3|,¢b19,\f~[,73 £esS

has also been taken into consideration. Upon substitution of the relations

Hn?:;ﬂ = f{n?:ilﬂ - bnﬂﬁ% + bgl:l'r]u £Ee S
I:[nﬂ;z\ = H7719||,\ — bn/\ff33 = bﬁxﬁns eSS
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obtained from (A.10) into the second and third surface integral and a subsequent rearrangement we can
apply the Stokes theorem to the sum of the three surface integrals.

—/ n3€Kn3€Aﬂ3[(f1n19;3 & f{n?:;ﬂ)uz\;n 1 fl‘llz\;ﬁUBI/\] dA = - / 77in€m’:3€ldpul;K[:Ind;zj dA

o o

— —-/ ngeg"”eld”Hnd;pnul dA — T”eld”Hnd;pu, ds
So Go

Rewriting the result into (A.49) we have:
IigU e —/ n363nk€ldp1j1nd;p,¢ul dA +% 77436';”37’19 (’u,mK]:Ing o U3],€}~[n§) ds
So go

—7{ THGIdPHnd;pUl ds (A50)
9o

If the surface is closed i.e. S, = S then the line integrals vanish and the above equation reduces to (3.27).

5.18 Transformation of integral /{}; of equation (3.26-a).
Utilizing
— the manipulation

3 93 i 3 vr3
€"M°%¢ (—bge,\K & B e ) o = B 0 ggbZ — 060 Vs
— Kkm3 _vT3 ¢ O T
= " 0 T e b0 H, e S
= GKT,BEM%EUTBGVTSGAKZ):HUV = 6Kn3€)‘193€,\,¢b5H77y

obtained by interchanging indices A — 7, 8 — 0, ¥ — v and using (A.1),
— the equation

Exr[d = €xAl9 T+ Oxpe3n + Orpeus g€
that follows from (A.10)
and finally

— the integral transformations

/ nge" PNy HygdA = — / n3e* e eq, HygrdA
S0 5

o

+j£ nge“”sT‘gegKflng ds (A.51)

and

/S n3e" B3y 9 HysdA = —/ nge* e’ e iz 9dA
" S
+j1{ nze* ey, Hyg ds (A.52)

whose derivation requires the use of the Green theorem and the equation (A.48)
we get from (3.26-a) that

Iy = / nge e ley (Hyo3 — Hn3||19 + byo Hag + by Hyy, ) + eBAbnﬂﬁUB
So
+esn(—Hyoys + by Hos) + exrsHys + exa iy Hyo + exp Hys) dA

+7{ nge"™ (1% g Hyg — T exn Hys) ds (A.53)

o

It follows from (A.10) that

Hooia = Hpopn + byaHag + borHys £es
H?]SHﬂ == Hn3|19 g bnﬂﬁ33 = bi;H'qu 56 S
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Substitution of the above equations into (A.53), a subsequent rearrangement and renaming indices lead
to the result

S 3 A3 [ [ [
Iy = / nge™e™""[— Hyxepsz + Hirnepzw + Hzxepsin
So
+ Hpzep9 — Hopjweps — Hawrepu] dA

+ f ngEK"3(T1963,¢Hn,9 = TAeAKHng) ds (A.54)
Making use of the Stokes theorem one can write that

/nsénp3€/\193fz’/\n€p3\ﬁdf4 = / nge" P33 H,  p€p3 dA
So o

+ f TAe“pgfIAKepg ds (A.55-a)
and

/nse“’JBew‘q’Hsncpmdi = / nac* P33, veps dA
s, S,

— ?{ Tﬂe“p?’flgkepﬂ ds (A.55-b)

o

Upon substitution of (A.55-a,b) into (A.54) integral I reduces to the form
IFE = / n3enn36>\193('— IjIAnepﬂ;B + gAK;Bepﬁ) dA (A56)
s :

Observe that the line integrals cancel each other.
If the surface is closed S, =S and we obtain equation (3.29).

5.19 Transformation of integral I\, of equation (3.26-b).
By applying the Gauss theorem twice and renaming dummy indices we obtain from (3.26-b) that

Vg = Lip + I3y (A57)
where
IgE == /prksldrHyd;krers av (A58-a)
174
and
IégE = /Sn?)enpgelsp(eps;len - epsHln;p) dA (A58-b)

As regards the surface integral it is worth decomposing those sums involving €'*P. After some manipulation
we have

I3y = / nze P3P [Hyrepnis — Hanepsp — Haneporn —How3eps + Haxweps + Hagreps] A4 (A.58-c)
S

Comparison of the above integral to (A.54) enables us to repeat the line of thought leading from (A.54)
to (A.56). Finally we obtain

ISE — / nge‘P?’ewg(H,\nemg;g — Hy;3€09) dA+f n36KP3(T19H3,€6p79 — T/\HR)\epg) ds (A.59)

Observe that we have assumed an open surface.

If the surface is closed, S, = 9, the line integrals vanish and equation (A.59) reduces to

Lip = / nae"P M3 (Hy  ep9,8 — Hanzeps) dA (A.60)
s

Upon substitution of (A.58-a) and (A.60) into (A.57) we arrive at (3.30).
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