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Effects of Dissipation Energy on Vibrational and Sound Energy

Flow
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Sound radiating from vibrating structures is known as structure-borne sound. The purpose of the present paper

is to study the generating mechanism of structure—borne sound. The analytical model is a rectangular plate, a

typical element of structures. The plate is excited at one point. Damping is taken into consideration by using a

proportionally damped model or a dashpot model. The dynamic response of the plate is calculated by using the

finite element method to obtain vibrational and sound energies. The vibrational and sound energy flow

patterns, which are expressed by vector quantities of structural and sound intensities, are compared. The

efi‘ects of the vibrational dissipation energy on the flow patterns of the sound energy are also investigated and

two types offlow patterns (5- and M—type) arefound.

1 Introduction

Recently, sound or noise radiated from vibrating structures has become a problem of great interest. Noise

reduction has evolved as an essential design consideration. Most of the sound radiated from vibrating structures

is known as structure—borne sound. There are many reports with studies on estimation of sound power or the

distribution of sound pressure (Kojima, 1980; Uno Ingard, 1987; Maidanik, 1962; Tanaka, 1991). There are,

however, only few reports on the sound generating mechanism. And the sound generating mechanism, i. e. the

change from vibrational energy to sound energy, is not yet clarified. The purpose of the present study is to

investigate sound generating mechanisms from the View point of both sound energy and vibrational energy. In

this paper, the analytical model is a rectangular plate. The plate is excited sinusoidally at one point, because in

this case vibrational energy flow patterns are obvious or simple. The dynamic response of the plate is calculated

by using the finite element method to obtain vibrational energy and sound energy. Vibrational and sound

energy flow are expressed by use of structural intensity (Noiseux, 1969; Pavic, 1976) and sound intensity

(Mann, 1987), respectively. The sound field is analized in the near field of the vibrating plate where the

vibrational energy of the plate is converted into sound energy. The present paper deals with the following: By

changing the magnitude of damping, vibrational and sound energy are investigated by using three parameters

which are sound radiation efficiency, energy ratio, and loss factor.

2 Vibrational Energy and Sound Energy

2.1 Vibrational Energy

The vibrational energy flow is expressed by the structural intensity, which is a vector quantity with components

of magnitudes

W. and W). (1)

where WX and are structural intensity in the x— and y-direction, respectively. The structural intensity Wx is

composed of three components which are the component of shear force, bending moment, and twisting

moment, as given by equation (2).
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where w is the displacement of the plate, j is the unit of imaginary number, w is the angular frequency, B is the

bending stiffness of the plate, v is Poisson's ratio, and * denotes the complex conjugate number. The

expressions in the y—direction are obtained by interchanging x with y in the equation (2). Structural intensity is

calculated by using finite difference approximations. Here, the measuring points 1 to 8 for two-dimensional

structural intensity are shown in Figure 1. The approximated equations for equation (2) are expressed as

follows:
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Figure 1. The Measuring Points for 2—dimensional Structural Intensity (x—direction)

2.2 Sound Energy

The sound energy flow is expressed by sound intensity which is given by a vector quantity. The coordinate

system to calculate sound intensity is shown in Figure 2. The vibrating plate is divided into many elements,

which are assumed to be vibrating in the same way as pistons. Sound intensity magnitude I at the measuring

point P(x, )2, z) in Figure 2, is expressed by equation (3), because the sound intensity is contributed to all

elements of the plate.
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Figure 2. Coordinate System for Analysis of Sound Field
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where pi is the sound pressure of the ith element, E,- is the particle velocity of the ith element, and N is the

number of the elements. The sound pressure p,- and the particle velocity in the x, y, z—direction um uvi, uzi are

given by equations (4) to (Sc), respectively.

p,- = jwp%expj(wt-Kri) (4)

u”. = A‚-()c—‚>c‚)rf2(r‚.‘1 +jK)expj(mt—Kr‚.) (5a)

u“. = Ai(y—yi)rf2(ri" +jK)eij((Dt—Kri) (5b)

um. = Aizri"2(ri_1+jK)expj(c0t—Kn) (5c)

where A. r K are as follows:
1’ i’

A. = jww(xi, yi)ASi/21t V

(x—xl.)2 +(y—y‚-)2 +z2

m

ll

(‚O/C = 2112/?»llK

The quantities xi and yi are positions of the ith element, p is the air density. c is the sound velocity and

ASL- is the area of the ith element. As the measuring height z of sound intensity influences the sound intensity,

the non—dimensional parameter u given by equation (6) is used, so that the measuring height becomes similiar

for all frequencies.

u=Kz (6)
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3 Analysis and Results

3.1 Analysis of Vibrating Plate

The analytical model is shown in Figure 3. The surroundings of the plate are fixed, and it is assumed that the

plate is sufficiently thin to be analyzed as a thin plate. The plate is excited sinusoidally at point A shown in

Figure 3, and the material constants for analysis of the plate are shown in Table 1.

0.35 m   

    

Plate thickness In 1.50 X 10'3

Young's modulus Pa 2.06 X 1011

Mass density kg/m3 7.85 X 103

Poisson‘s ratio 0.30

    

Table 1. Material Constants

2

Figure 3. Analytical Model

The vibrating plate is analyzed by using the finite element method. The equation of motion is expressed by

equation (7).

[WM + [CHWl + [K]{W} = {f} (7)

where [M ], [C] and [K] are mass, damping and stiffness matrix of the plate, respectively, {w} is the

displacement vector and {f } is the force vector. The damping matrix [C] is given by the proportional damping

expressed by equation (8).

[C] = O(1141+ MK] (8)

where ocandßare proportional damping coefficients. When the modal damping ratio is used, the modal

damping ratio gm” of the (m, n) mode is expressed by equation (9).

1

9m = Efgi + mm) (9)
ml’l

where an is the undamped natural angular frequency of the (m, n) mode. In this paper, damping is taken into

consideration by using both a proportionally damped model and a dashpot model, i.e. the modal damping ratio

cm” is used for the dashpot model.

Analysis is performed for the lst mode to the 10th mode. As typical examples only the analytical results for the

2nd mode ((1,2) mode) and 5th mode ((2,2) mode) are shown in this paper, because analytical results of all

modes have similar tendencies. The mode shapes of the (1,2) mode and the (2,2) mode are shown in Figure 4.

    

  
(a) (1,2) mode (b) (2,2) mode

Figure 4. Mode Shape
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3.2 Distribution of Structural Intensity and Sound Intensity

When the excitation is forced sinusoidally at point A in Figure 3, vibrational and sound energy on the plate are

analyzed. The magnitude of the excitation force is constant. The effects of dissipation energy of the plate on

vibrational and sound energy are investigated by using the modal damping ratio or the damping coefficient.

Here, although the structural intensity vector is assumed to be a 2—dimensional quantity, the sound intensity

vector is a 3-dimensi0nal quantity. In this paper, to compare the structural intensity vector with the sound

intensity vector, the sound intensity vector is in the 2 dimensions of x and y. The length of the vector is

normalized, so that vibrational energy and sound energy are converted into dB. The analytical results are

shown in Figure 5, when vibrational energy is equally dissipated in the plate. Figure 6 shows the analytical

results, when vibrational energy is dissipated by the damper at point B. It is found that the sound intensity

vector map changes when the dissipation energy is increased. The flow pattern of the radiated sound energy

(Figures 5, 6(a)) can be estimated as vibrational mode shape (Figure 4(b)), when the dissipation energy is

small. On the other hand when the dissipation energy is enlarged, the flow pattern of the radiated sound energy

(Figures 5, 6(b)) is similar to the vibrational energy flow pattern. But the structural intensity vector map is not

changed in spite of the increase of dissipation energy. It was found that the other vibration modes have similar

tendencies and that consequently the radiated sound energy flow has two types of flow patterns. In this study,

the sound energy flow pattern depending on the vibration mode is called M—type, and the sound energy flow

pattern similar to the vibrational energy flow is called S-type.
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3.3 Energy Flow from Structural Vibration to Sound

The energy flow from excitation of the plate to sound radiation in the condition of steady Vibration is

schematically shown in Figure 7. In this figure, E1 to E6 are the input energy (exciting energy), the Vibrational

energy of the plate, the Vibrational energy of the surrounding air, the propagated sound energy, the dissipation

energy of the plate and the unpropagated sound energy. The alteration of energies E1 to E4 relating to the two

kinds of damping is shown in Figures 8 and 9. When the modal damping ratio and the damping coefficient are

enlarged, all energies are decreased, with the input energy E at a smaller rate than the other energies.
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Figure 7. Energy Flow about Generation of Structure-borne Sound
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4 Relationship between Dissipation Energy and Sound Field

M- and S—types of the sound energy flow pattern are compared by using three parameters, viz. sound radiation

efficiency, energy ratio, and loss factor.

4.1 Sound Radiation Efficiency

Sound radiation efficiency, which is calculated by the sound power radiated from the vibrating structure, is

expressed by equation (10).

P

c = —_2— (10)
pabc < v >

and where P and < \72 > are sound power and the time and spatial average of the plate vibration velocity,

respectively, and a and b are plate side lengths. The calculated results of sound radiation efficiency are shown

in Figures 10 and 11. It is found, in Figure 10, that the value of sound radiation efficiency is constant in the

area gm” S 1.0 X 102 and that the sound energy flow pattern of M- and S—types is mixed in this area. Next,

when the sound radiation efficiency is constant or is not, the mode shapes are shown in Figure 12. As a result,

the mode shape is found to be obvious in the case that sound radiation efficiency is constant. Sound radiation

efficiency does change, when the vibrational mode shape is modfied. Therefore sound radiation efficiency is

found to be decided by the mode shape, and not by the dissipation energy. Consequently sound radiation

efficiency is found to be a parameter which is not able to classify the sound energy flow patterns (i.e. M— and S-

types).
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( a) Modal Damping Ratio gm” (b) Damping coefficient Cd

Figure 12. Change of Mode Shape for Damping Effect ((2,2)mode)
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4.2 Proposal ofEnergy Ratio

Dissipation energy is equal to input energy of the vibrating plate under the condition of steady vibration.

Therefore, it can be considered that the dissipation energy is equal to the propagated vibrational energy from

the exciting point to the damping point, which is obtained by integrating the structural intensity over a

circumference around the exciting point. Here, we consider an energy ratio 1]“- which is defined by the ratio

of sound energy to dissipation energy. The energy ratio nxi is expressed by equation (11).

n _ a
.\'l

l

(11)

where Es and E,- are sound energy and dissipation energy, respectively. This parameter is found to express the

comparison of the mechanical energy in the plate with the propagating sound energy in space. The calculated

results of this parameter are shown in Figures 13 and 14. Here, the results of the (2,2)mode and the (1,2)mode

are shown for comparison with other vibrational modes. In these figure, the symbols A and A indicate the

sound energy flow pattern of M—Type, the symbols O and 0 indicate the sound energy flow pattern of S—type,

and the symbols El and l indicate the transient flow pattern composed of M-type and S—type, respectively.

These figures show that these energy flow patterns are clearly divided by the energy ratio. That is, these sound

energy flow patterns are found to indicate that M-type flow patterns appear in the area of n“- 2 1.0, and S—

type flow patterns appear in the area of n“. S 0.1 . V
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Figure 14. Relationship between Damping

Coefficient and Energy Ratio

((2,2) and (1,2)mode)

4.3 Loss Factor

In this paragraph, the sound energy flow patterns are investigated by using the loss factor which is calculated

by the half—bandwidth method. Figures 15 and 16 which indicate the calculated results, show the comparison of

the (2,2)mode with (1,2)mode for reference. In these figures, the symbols are similar to those in Figures 10 and

11, but the symbols 0, I and A indicate the results calculated by using the modal damping ratio and the

symbols 0, El and A indicate the results calculated by using the damping coefficient. The relationship

between the energy ratio and the loss factor is found to be coincident for the two kinds of damping for each

mode. Classification of the sound energy flow pattern is possible by using the loss factor for each mode.

Furthermore the energy ratio is able to classify into M— and S—types for all modes regardless of the damping

involved.
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5 Conclusions

In this paper we investigated the effects of dissipation energy on the Vibrational and the sound energy flow. The

main results obtained are as follows:

(1) The flow pattern of the radiated sound intensity showed the existence of two types, Viz. the flow pattern

called M—type dependent on the vibration mode, and the flow pattern called S—type similar to the vibra-

tional energy flow pattern.

(2) The flow pattern of the radiated sound energy of S- and M-types can be classified by the energy ratio

113,-. That is,

Vfor n“. _ 1.0 : M-type

for n“- S 0.1: S—type

for 0.1 S nSl- S 1.0 : transient region from M-type to S—type

(3) From the result obtained for the three kinds of parameter (i.e. sound radiation efficiency, energy ratio, and

loss factor), it was found that only the energy ratio is able to classify the sound energy flow into the patterns

of M-type and S-type.

(4) Sound radiation efficiency is dependent on the mode shape regardless of the magnitude of the dissipation

energy.
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