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Complementary Formulation of the Appell Equation

F.P.J. Rimrott, B. Tabarrok

Appell equations can be expressed in two ways. The conventional one uses accelerations, i.e. second

displacement derivatives, and mass, combined into an Appell function A which is sometimes called

,,accelerati0n energy“. The alternative way uses force derivatives, i.e. second impulse derivatives, and

compliances, combined into an alternative Appell function A*, which might be called a ,,force derivative

energy“. The present paper is devoted to an introduction of the alternative formulation.

1 Introduction

In the conventional formulation the Appell function (,,acceleration energy“ in J/sz) is

A — ljmm (1)
2

With generalized coordinates q, the Appell function (1) satisfies the Gaussian principle

— Hijöäi = O
(2)

8611‘

Since the ö q} are independent and do not vanish, we obtain for the conventional Appell equations of motion

__1‘[,=0
(3)

where 1'1,- is a generalized force (Fischer and Stephan, 1972). In the conventional formulation, the system’s

kinematic constraints (compatibility equations) must be satisfied before the Appell function (1) can be

established. The result, i.e. Appell’s equations (3) of motion, represents a sum of forces which vanishes (i. e.

dynamic equilibrium).

In the subsequent derivation, it will be shown that an alternative formulation exists, with an alternative Appell

function (,,force derivative energy“ in J/sz) of

*_ in

A _—2J1dc (4)

where I = impulse and c = compliance. With generalized impulses S (Tabarrok and Rimrott, 1994), the

alternative Appell function satisfies the complementary Gaussian principle

3,41* ..

J

187



Since the 651- are independent and d0 not vanish, we obtain for the alternative Appell equations of motion

aA*

aSj s] ( )

where sj is a generalized speed. In the alternative formulation, the system’s force constraints (dynamic

equilibrium equations) must be satisfied before the alternative Appell function (4) can be established. The

result, i.e. Appell’s equation (6) of motion represents a sum of speeds which vanishes (i.e. compatibility).

2 Derivation of Alternative Appell Equation

In order to obtain the alternative formulation of the Appell equation we begin with the D’Alembert equation for

a mass element dm

(dB—dF) . ör = o (7)

where dB = i‘dm.

An element of work of a force F can be written

dW=F.dr = fl-dr = fl-dI = t-dI = ü—dl (8)

dt d1

where we have chosen in to identify the extension velocity of a force element. An element of work of the inertial

force B can be written

dW = B~dr = 113m = flall; = r-dB (9)

d1 d1

Entering equations (8) and (9) into equation (7) one obtains

dr-éB—du-61=O (10)

By making use of Newton’s second law, the linear momentum B can be expressed in terms of the linear

impulses I, such that

rk -Bk = v, - I, (11)

In e. g. an oscillator chain consisting of k point masses and l springs, I" represents the velocity of a mass, while

vrepresents the velocity impressed upon a spring by the adjacent masses (see e.g. Rimrott and Tabarrok,

1993). With the help of equation (11) we can now write equation (10) as

(dV—dil)'51 = 0 (12)

for a mass element, and

J(dv—dü)-öl = o (13)

for a mechanical system.

Now we follow Tabarrok and Rimrott (1994) and introduce the alternative form of Gauss’ principle, which for

the present situation would appear as
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J(dv—dü)-öi = 0 (14)

The quantity uis the extension velocity of a force element (e.g. a spring). In general extension = - force X

compliance, or

u = —ic

ü : —ic (15)

dü = —idc

We now introduce the alternative Appell function (4)

A;k = —lJi2dc

2

Furthermore we introduce generalized impulses S and the time t, such that

A" =A* (S1, 52, sj, ., Sm; $1, $2, $1., Sm; 51, 3'2, r) (16)

Then we have for the Gaussian variation

‚k aA* .-

851 _, < )

For the second term in equation (14) we write

_ .. .. .. 1 „2 * aA* ..

fan-5131151051 = —5 —J'1 dc = 6A = Tami (18)
2 öSj ‘

Furthermore we let the first term of equation (14) be

jdv - 5i = 11,155,. (19)

where sj is a generalized speed.

Equation (14) can now be written

aA* ..

s, _T as, z 0 (20)
' öSj

The variations ö Sj are independent and do not vanish, hence

A»:

s]- — = 0 (21)

' BS]-

represents the alternative Appell equations.
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3 Examples

Example 1, Conventional Formulation

The Appell function (1) for the three—mass—two—spring system (Rimrott and Tabarrok, 1995) Of Figure 1 is

1 1 1 1 1

A = —Ji‘2dm = —m-"-2 = —m "2 + —m "2 + (22)
2 2 lql 2 aqa 2 bqb 2 Cqfl

 

Ä; B

—+I

.‘S—l 371'.T5: S2

Figure 1. An Oscillator Chain

The compatibility (displacement fit) equations, which must be satisfied before the equations of motion can be

established involve the extensions e of the springs and the displacements q of the masses.

61 = qh - qa (23a)

62 Z qc _ ‘11; (23b)

The generalized forces H impressed upon the masses ma, mb and m6 by the springs are

Ha = -F1 = +kie1 = +k1(q„—q„) (24a)

r1,, :1?1 —F2 = —k1e1 +k2e2 = —k1(qb—qa)+k2(qC—qb) (24b)

He = F2 = —k2e2 = —k2(qC—qb) (M)

The Appell equations (3) of motion are

84 _ Hi = o
861i

With i = a, we obtain

miia - k1(qb -q„) = 0 (25a)
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With i = b, we obtain

mäb + k1(qb-q„) - k2(q„-qh)= 0 (25b)

And with i = c, we obtain

mac + k2(9c_qb) = 0 (25c)

Written in matrix form

ma 0 O äa kl _kl O qa 0

0 mb o 4,, + —k1 k1+k2 —k2 qb = 0 (26)

0 O me (It 0 _k2 k2 qc 0

The first matrix is the mass matrix, the second is the stiflness matrix. The system has 3 degrees of freedom,

represented by the three variables q“, qb and qt. . It also has 3 equilibrium (force fit) equations (26). It has 2

compatibility (displacement fit) equations (23). Displacement fit equations and force fit equations together

amount to 5 for the present problem, corresponding to the 5 elements, i.e. 3 masses and 2 springs.

Example 1, Alternative Formulation

The alternative Appell function (4) for the system of Figure l is

-153 _ iiA* = —lJ-lzdc =

2 2 k1 2 k2
(27)

since I1 = S1 and I2 = 52; i.e. the impulses I and the generalized impulses S are identical in the present

1 1

problem. For the compliances we have c1 = k— and c2 =

1 2

The linear momenta B of the masses and the linear impulses S of the springs are related by integrals of

Newton’s second law (without integration constants). These dynamic equilibrium relationships must be satified

before the equations of motion can be established.

Bu = —5] (28a)

3,, = s, — 52 (28b)

BL. = 52 — 53 (28c)

The generalized speeds sj impressed upon the springs by the adjacent point masses are

  

31=vb_va=fl_i_51“52+51 0%)
ml) or mh ma

s; = vC—vb = Ä _ .512. z 52-53 _ 51—52 (29b)
mg ml, mt- mi

The alternative Appell equations (6) of motion are
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________=() (30a)

______=0 (30b)

k2 mc mi)

Written in matrix form

l O .. i+i _i

0 L s2 _L L+L $2 0
k2 ml) mb mc

where the first matrix is the compliance matrix and the second is the susceptance matrix. The system has 2

degrees of freedom, represented by the variables 51 and 52. Equations (31) also represents the system’s 2

equations of compatibility (speed fit), since e. g. 52 / k2 represents a speed. The system also has 3 equations of

equilibrium (impulse fit) represented by equations (28). The sum of impulse fits and speed fits is 5 for the

present problem.

In comparing the two formulations it is seen, that, for the present problem, the alternative formulation (6)

results in two differential equations of motion, while the conventional formulation (3) resulted in three

differential equations of motion.

Example 2, Conventional Formulation

Consider the nonlinear oscillator shown in Figure 2. Its Appell function (1) is

1 l

A = —Jf2drn = —m"2 322 2 q V ( )

The force H (Figure 3) is

n = —hq3 (33)

The Appell equation (3) of motion is

resulting in

mij + hq3 = O (34)
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m

nonlinear spring |dF|

F=-hx3

 

Figure 2. A Nonlinear System Figure 3. Nonlinear Spring

Example 2, Alternative Formulation

We must be careful to interpret the complementary Appell function (4)

* _ _ l „2

A _ 2 J I dc

properly. Since we are dealing with one spring only

A = ——i2c (35)

The spring is nonlinear, i.e.

F = 41x3
(36)

For the tangent spring stiffness (Figure 3)

k = 8—F = —3hx2 (37)

8x

and for the associated compliance

1 1 1

r = ‘w = <38)
C:

We introduce a generalized impulse S = I and S = F and obtain for the alternative Appell function (35)

t 1-.2 1

A Z ‘55 3h1/332/3 (39)

We also require the extension speed of the spring
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= i (40)
m

The alternative Appell equation (6) of motion

Aäk

L—s = O

BS

consequently leads to

S

S

3hl/332/3 + E = O (41)

Example 3, Conventional Formulation

The angular displacement 9 of thc two-mass-one-spring system of Figure 4, can be used to represent the linear

displacements of the masses, with

x1 l c059 (4280

l sine (42b)Y2

The conventional Appell function (1) is then

1 .. 1 .. 1 .. 1 -- A

A = Ejrdm = me12 + Errzyz2 = Em12(92+64) (43)

         

Figure 4. Two-Mass—One—Spring System

The deformation of the spring is

e = x1 = lcosG (44)

The generalized force II for the present problem is the torque M. Since the potential energy of the spring is
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V = lkxf = lklzcosze (45)
2 2

we find the torque to be

M = —a—V = klzsine cose = lkl2sin26 (46)

ae 2

The generalized force is consequently

r1 = éklz sin26 (47)

The Appell equation (3) of motion is

T—H=0

86

With equations (43) and (47) we thus have

mlzö — ä—klz sin29 = o (48)

Obviously a single degree—of—freedom system, it has one compatibility (displacement fit) equation (44) which is

satisfied a priori, and one equilibrium (force fit) equation (48), altogether two fit equations, corresponding to

the two elements, one inertial element ml2 and one force element k.

Example 3, Alternative Formulation

We write for the alternative Appell function (4)

4: 1 .. ..

A z 7(1de = -5336, (49)

with

S6 = H = mlzé (50)

where H is the angular momentum. The problem here is to find the~correct expression for the compliance c. We

begin with equation (46) and form the tangent stiffness

k9 = aa—Ag = klzcos26 (51)

whose inverse is the compliance sought, i.e.

l 89 1

c = — = — z— 52
6 k9 8M k1200526 ( )

The time derivative Se of the generalized impulse S6 is the torque M. From equation (46 ) we thus have

s'e : M = éklzsinze (53)
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from which

. 2

cos29 = 1— 2—5;

kl

From equations (49), (52) and (54) we obtain the alternative Appell function as

A*=_i 3,2

2 MI“ — 45'2

For the generalized speed we use

A H 52
S =e=_=_9_

e ml2 ml2

such that the alternative Appell equation (6) gives us

S9 ;2L——~— + ‚

41814—432 m12

=0

(54)

(55)

(56)

(57)

In its alternative formulation the system has one equilibrium (impulse fit) equation (50), which must be

satisfied a priori, i.e. before the alternativeAppell function can be formulated, and one compatibility (speed fit)

equation (57) which is represented by the alternative Appell equation.

4 Conclusion

It has been shown, that an alternative form of the Appell equation of motion can be defined. By means of three

simple examples, the application of the conventional and the alternative formulations has been illustrated.
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