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Post-buckling Axisymmetric Deflections of Thin Shells of Revo-

lution under Axial Loading

P. E. Tovstik

Large axisymmetric deflections of thin shells of revolution under axial loading are studied. Using nonlinear

three—dimensional equations of the theory of elasticity which describe the axisymmetric deformations of a thin

shell of revolution made of a nonlinear elastic material the approximate two-dimensional elasticity relations

are obtained. The corresponding expression for the elastic potential energy of the deformed shell is also ob-

tained. For the shell loaded axially the expression for the axial force is obtained as well.

1 Introduction

We consider the large axisymmetric deflections of thin elastic shells of revolution under axial loading. One of

the possible shell equilibrium states is that for which a shell segment is close to its mirror image obtained by

the reflection from the plane Q which is perpendicular to the shell axis (eg. Figures 3 and 4). It is known (see

Pogorelov, 1966; Kriegsmann and Lange, 1980; Evkin and Korovaitsev, 1992) that this state of equilibrium

corresponds to relatively large shell deformations and to a relatively small axial force. That is why it is

necessary to use more exact two-dimensional shell equations.

By using the nonlinear three—dimensional equations of the theory of elasticity for the axisymmetric deformation

of a thin shell of revolution made of nonlinear elastic material approximate two—dimensional elasticity relations

may be obtained. The corresponding expressions for the elastic potential energy of the deformed shell has also

been obtained. The deformations are assumed to have the order of a small thicknesss parameter 11 which is

proportional to the square root of the relative shell thickness. In the elasticity relations the terms of second

order with respect to the deformations are held constant and the error of the equations obtained has the order of

the relative shell thickness. This error is usually small for the linear shell theory. The Kirchhoff—Love hypothe—

ses are valid only for the first approximation.

For a shell loaded axially the expression for the axial force is obtained. This expression is more exact compared

to the results reported in the papers by Pogorelov (1966), Kriegsmann and Lange (1980), and Koroteeva,

Tovstik and Shuvalkin (1995).

2 The Deformed Shell Metric

Let the deformations of the neutral surface of a shell of revolution be described by the following relations (see

Figure 1):

/

d

r0 = r0(s0) 60 = 60(s0) n; = cose0 ( ) E I (1)

0

Here 50 is the generatrix length, rO is the distance between a current point on the neutral surface and the axis

of symmetry, and 60 is the angle between the shell normal and the axis.
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Figure l. Shell of Revolution before DEformation

The main radii of curvature of the neutral surface before deformation, R10 and R20 , are obtained from

1 1 ' 6
_ 2 9E) and _ = Sin—0 (2)

R10 R20 r0

We denote the same variables after deformation as s, r, 6, R], R2 . The formulas corresponding to equations (1)

and (2) are still valid, The tensile deformations of the neutral surface, a] and £2, are given as

e = s’ — 1 and a = L — 1 with r’ = 1+3 cose (3)
l 2 r l

O

In the shell before the deformation we introduce the orthogonal system of curvilinear coordinates

q1 = so, q2 = (p, q3 = z, where (p is the angle in a circular direction, 2: is the distance between a current point

and the shell neutral surface. The squared distance between infinitely close shell points is

2

(dRO) = Hl-qui2 E ggdqidqj HI = l + Zea H2 : r0 + zsinGO H3 2 l (4)
'1

where Hi are the Lame coefficients, and g; are the covariant components of the metric tensor before the de-

formation. To describe the position of a point (so, (p, z) after deformation we use mobile Cartesian coordinates

with the unit vectors ily i2, i3, which are connected to the deformed neutral surface. The position of a point (so,

(p, z) after the deformation is described by the vector

R = R0 + R' with R1 = ilu + i3(z+w) (5)

The functions u(s0, z) and w(so, z) describe the shear deformation and the stretching along the normal to the

neutral surface respectively. If the Kirchhoff—Love hypotheses are valid then u(s0,z) = w(so‚z) E O .

The covariant components of the metric tensor after the deformation, g” , are the following:

gii = R1 J l aql

l

 

Figure 2. Shell after Deformation
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The elements 8,-1- of the Cauchy—Green deformation tensor E, we find from

847 ’ g; = 2HiHj€ii (7)

For axisymmetric deformation 612 = 823 = 0.

The derivatives 8R,- /8q/~ are expressed through the Christoffel symbols

LR!" = F’FRk with F’F = gk’r..‚ = lg“ ü +5351 —% (8)

aqj y H U, 2 aq‘,‘ 3611' 841

where the g’d are the contravariant components of the metric tensor. Below we expand the variables

8,7 and into powers of the small thickness parameter u ‚ For the deformed state which we consider below,

the following estimations are valid:

Z N H2 {given ~ H 313 N H2 W N H3 u N H4

32. N 1 _
850 H y — {€i,€if,6,u,w} (9)

ä „ _y_ _ 4 _ #2-
az if y _ {ai’u’w} H _ 12(1—v2)R2

where h is the shell thickness, R is the shell typical size, v is Poisson's ratio. Further the auxiliary parameter

u0 = 1 denotes the terms order, namely the term with multiplier it]; has the order 11" . Due to formulas (6) to

  

(8) we get

2,, = „0(81 +z6’) + „3((81 +16’)2/2 +w6’ flag) + 0(u3)

813 = u§(uz+w’)/2 + 0(u3) (10)

€22 = uocz + u§(e§/2 +zK3)) + 0(u3) Kg 2 (sinB—sin60)/r0

$33 = uowz + Häwf/2 + 0(u3)

3 The Equilibrium Equations and the Elasticity Relations

In the axisymmetric case the equilibrium equations (see Novozhilov, 1958; Lurje, 1970) are given as

86" 86"

’a—Ll‘ + —13 + l111(75)] + 2F113(7i)3 + I1212532 + 123533 : 0
sO dz

8 0 a (11)
6 GO

8—13 + 33 + {131013 + 21133073 + 1332632 + F333533 z 0
s0 dz

where

(5%. Si(1+E>) _ 5*

of. : V '1 0,.- = —,—J—ol —1 2 1+2; 1+2£ ~82 0 cl
./ HIHJ J SI; 2/ S] ( 22)( 33) 23 ( Y ) (12)
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Here at = Güki are the actual shell stresses after deformation, and G;- are the energy stress tensor compo—

nents. The boundary conditions on the lateral surfaces z = i h2 = h / 2 are the following:

* + -

G~=——-—p—. 1:1‚3 at z: i172 (l3)

3’ 53(1+E‘,.) ’

where pi is the pressure on the lateral surfaces. The shell material is assumed to be elastic and isotropic. Let

the potential (13(11, 12, 13) be given as a function of the invariants of the deformation tensor E. We use the

following invariants

I1 = sil- I2 = eijefi I3 = eijejkeki (14)

Then the stresses 6; are equal to

* 8d) 8(1)

o~=—=A5--+Ael-+Ae-e‘ A =k— k=1,2,3 15
z} agij 1 1] 2 t] 3 1k k] k 81k ( )

where 5” is the Kronecker delta.

For the 5—constants elasticity theory

1

(I) = EM? + G12 + (x1113 + @21112 + (1313 (16)

we get

A] : M + 3091112 + (x212 A2 = 2G + 2%], A3 = 30L3 (17)

Potential (16) gives the general form of the squared dependence of stresses on strains. If 0:] = a2 = 0L3 = 0 then

formulas (15) lead to Hooke's law. Let the orders of the elastic modulus 06]— in equation (16) not exceed the

orders of the moduli 7», G , and let the stresses be referred to 9» (or to G). Then the stresses become dimension-

less and they may be expanded into a power series of u .

4 Asymtotic Solution of System (11)

Firstly let pf = O, j = 1, 3. We integrate equations (11) in z from ~h2 to h2 . Then the first of equations (11)

we multiply by z and integrate within the same limits. As a result we obtrain three integral equilibrium equati—

ODS

<Gi1>,+ <F1116i)1> + 2<r1135i3> + <F212552> + <F313G§3> 0

wk mot) + may» + (raga + «530;» = o as)

<Z6l)l> — <Gf3> + <Zr1115i1> + 2<Zr1136il3> + <ZF212532> + <ZF313533> = 0

1 ha

E Z whQYdZ

According to estmations (9) we get

A1 ~ u A2 N 1 A3=0(tt") (20)
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{5:1’0327523} : 0W) 0:3 = 0(H2) (21)

We remind that the symbol " ~" provides the exact order estimation and the symbol "O" gives the upper order

estimation.

A comparison of the terms in equations (11) and (18) enables us to make estimations (21) more precise, namely

{6f1‚622} ~ u and {613, 6‘3’3} ~ uz (22)

and to obtain the estimations for the integral variables in equations (18).

<62» ~ u {<oa>‚<c:e>} ~ w <wa> ~

The disagreement between the orders of the variables 6101 and <6f1> is caused by the fact that the average value

of Gfl is close to zero. We can now give the approximate expressions for the stresses 6;

on : u0{?»(el +5»:2 +z6’ +wz) + ZG(€1 +z6’)} + 0(u2)

(513 = uéGhtz +w’)+ 0(u3)

622 = tt(){?t(eI +82 +z6’ +wz) + ZGEQ} + 009) (24)

033 = u0{k(el +82 +ze’ +wz) + ZGWZ}LL3{?M((€1+ZBI)2/2 +w6’ —2:6{) +8ä/2 ma; +w22/2)

+ GwZ2+3Ot3wZ2+2012(81+€2 +z6’+wz) +3a1(81+82+z9’+wz)2 +otz((81+z9’)2 +8§ +w:>} + 0(u3)

Due to estimations 633 ~ Hz and ((5101) ~ u2 we get in zero approximation

Ä(81+82 +z6’ +wz) + 2GwZ = O

25

{Ms} +82 +ze’ +wz) + 2G(al+z9')> = 0 ( )

and the following relations:

_ _ 2 * _ E , 2

81 — V82 + ) Öl] —— WA) + )

_ __ _ L I 2 _ _ _ _V__ 2 r 2
wZ — we2 1_Vz6 + 0(u) w — V822 2(1_v 2z G + 0(u)

where

Ev E

k =— =_

(1 + v) (1_ 2V) and G 2(1+v) (27)

Here E is Young’s modulus. In the first of equations (11) the first and the second terms are asymptotically the

main ones, and in the second equation the second and the third terms are the main ones. These terms give

a rocll 86*
36* ’ *

(850 ) + roa—.l3 = 00*) and 8:3 _ 66“ : 00L) (28)

 

By integrating equations (28) with respect to z according to expression (26) for 6:1, and according to the

boundary conditions 6:3 = 6:3 = O at z = ill/1 , we get

E — zz)

2(1— V2 )r0

9;

513 = (roe) +0(u3) and = ———ze’+0(u3) (29>
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By using expression (24) for (5:3 ‚ we find an expression for wZ which is more exact than that of equation (26),

namely

      

2

wz = —u0[ve2 +äze’) — ÄEäG {x(el+ve2) +bleä +z[Ä(—66+K3) +b2826’] +b3z26’2 —o:3} (30)

+ 0(u3)

where

_ Ev 2 2 2
[71— m + (X13(1—2V) + (Xz(1—2V+6V ) + 3V 0L3

Ev2 6(1— 2v)2 6v(1— 2v) 6v2
= _ _ 31

b2 (1+v) (l—2v) + a1 1—v 0‘2 1—v + (X31—v ( )

b _ Ev + a 3(1—2v)2 + a 1—4v +6v2 + a 3v2

3 2(1+v)(1—2V) 1 (l—v) 2 (1_V)2 3(1_„)2

Then from equations (24) we obtain

(il— 26’ +2—1(e+v + KO—e’)+ 2E 532+l286’+b](9')2E — H01_V2 H01_V2 1 82 VZ 2 Z o Ho b112 12 2Z 3 Z

+ b146’2(h22—z2)} + 0(uä)

(32)

*

o v 6’ v , , ,

1:} = u0{ez+1 Z 2) + päl 2 (31 +ve2 +va3 —vZ60) + päE{b21€ä +b22€2z9 +b23(z6 )2

   

+ b249l2(h22—Z2)} + 0(Mä)

where by are the linear functions of the dimensionless variables on? = 01/- / E, j =1, 2, 3 with the coefficients

depending on V.

             

v 0 3(1—2v)3 0 (1 -2V +6V2) (1-2V) 0 3v2(1—2v)
b1, = 0cl + 0c2 + a3

2(1—v) (l—v) l—v 1—v

2v 0 6(1_2V)3 O 2(1 —4v +6v2) (1—2v) O 6v2(l —2v +2v2)

bu Z — 2 1 2 + a2 2 _ (x3_______2—__

1—v (l—v) (l—v) (l—v)

1—2v 0 3(1_2V)3 0 (3 —2v +4v2) (1—2v) O 3(1—v +v2)

b13 = — + (x1 + a2 + a3 3

2(1—V)(1—V2) l—v 1_V (1_V)

1_v +V2 0 3(1_2V)3 0 2(1—2v +4v2)(1—2v) 0 3(1—v —v3)

[721 = — + Otl 2 + a2 2 + (13——————— (33)

2(1—v) (l—v) (1—v) ‘ 1—V

2v2 0 6(l—2V)3 O 2(1 —2v +4v2) (1—2v) 0 6V3

bzz : "‘ 2 + 0€] 2 (12 2 “ (X3 2

l—v (l—v) (l—v) (l—v)

v(l—2v) 0 3(1—2v)3 0 (1 -2V +4V2) (1-2V) 0 3V3

[923 — ‘ 2 + 0‘1 + 0‘2 3 ‘ (x3 3
2(1—v) (i—v ) (l—v)3 (1_V)» (1_V)

v on _

£714 : b24 : _ Z J = 1, 2,3

2(l—v) (l—vz)
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5 Two-dimensional Equilibrium Equations

We consider the curvilinear parallelepiped which before the deformation occupies the domain

so, so +dso; (p, (p+ d(p; — h2 5 z S h2 . In this case the equilibrium equations in projections on the tangent and

on the normal to the neutral surface after deformation have the form

(r071) —‘ T2 COSe + roe’Q] + ropl = 0

(rOQl) — T2 sine —— rOG’T1 + rop3 O (34)

I

(rOMl) — M20036 — r0(1+£1)Q1 = 0

where the projections of stress resultants and stress couples Ti, Q1, Mj are referred to the unit length of the

neutral surface before deformation and are defined by formulas

5* S"

(T1i1+Q1i3)r0d(p = <S—101>hr0dtp Mlizrodcp = <—SLR1 x01>hr0dcp

1 1

‚F * (35)

T. d _ S2 . _ Sz 1

212 so — —62 hdso leldso — — —R X62 hds0

S2
S2

Here 6,- = oil-k j are the actual stresses after deformation, and R1 is given by formula (5). After projecting

relations (35) on the unit vectors ij, substituting expressions (29) and (32) and integrating with respect to 2,

we obtain the nonlinear two-dimensional elasticity relations

T1 = Mä{K(z—:1+V82) +Eb11hg§ +Da16’2} + 0(hu3)

T2 = uthcz+u3{Kv(el+ve2) +Eh(1+b2,)e§ +Daze’2} + 0(hu3)

 

M1 = uäDB’ + ug{D(—eg+vxg) +Da3826’} + 0(hu5) (36)

M2 = uguve’ + ug{D(xg—veg) +Da4826'} + 0(hu5)

where

K = 153:2 D = #112) a1 : 1 + (b13+2b14)(1—v2) (37)

a2 = (b23+2b24)(1—v2) a3 = [912(1—v2) — 2v a4 = b22(1—v2) — “#11

We exclude the term K(81 +ve2) from the first two relations (36) and rewrite these relations with an accuracy

sufficient for the calculations following.

M1 = D(e’ —eg +VK3) + 2Dc2329' + 0(Eh2u3)

T2 = le + Eh(ez+qs§) + Deze’2 + 0(Ehu3) (38)

a] = —ve2 + 0(u2) M2 = le + 0(Eh2u2)

The dependence on the nonlinear elastic properties of the material is shown only through the terms with coef—

ficients c1 and [32 , which are equal to

c1 = ä. + ?‚oc?(1—2v)3 + 3a3(1—2v) (1+2v2) + 3a2v(1—2v3)

(39)

c2 = —2v + t—:[30L?(1—2v)3+ ag(1—2v)(l —4v +6v2) —30L2v(1 —2v +2v2)]
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System (34) together with the geometric relation

I

(roez) = (1+81)C089 — cosGo (40)

which follows from formulas (3), and with relations (38) forms the closed system for 8 unknown functions

Tj, Mj, ej, Q], 6. This system is of the 5th order and the main unknown functions are T1, M1, 82, Q1, G, at

the same time the functions T2, M2, 81, may be expressed through the main functions by formulas (38).

The formal error of the resulting system (34), (38), (40) is of the order uz or the order of the relative shell

thickness. Here we only discuss the error of the construction of the internal stress state. The problem of its in—

teraction with the boundary layer (see Goldenveizer, 1994) is not studied. The elastic shell potential energy is

equal to

H = “john1L12H3aqudq2dq3 (41)

Substituting expression (10) for deformations into formula (41) and integrating with respect to z we get

X2 2C I I 2 I / 2 2 / 2 Eh}

H = ro[Eh[e§+—jlegj +D((6 —eo) +2v(e —eo) K3 +(K3) +2c282(6) j +0[?Hdso (42)

where the constants c1 and c2 are the same as in formulas (38).

6 Shell Loaded by an Axial Force

Let the axial force P be applied to the shell edges. We study the deformed shell state which is close to its mirror

image which is obtained by the reflection from the plane Q which is perpendicular to the shell axis and which

contains the given parallel s*. We assume that this parallel is sufficiently far from the shell edges. Let at

so S so <sä the shell form be close to the initial form, and at so < so S so the shell segment is specular re-

flected. Both at so S so < s; and at s; < so S sä the shell stress state is close to the membrane state. Near the

parallel so = so there is the internal edge effect which is described by equations (34), (38) and (40). We seek

the axial force P which holds the shell in the given position. (Stated more exactly the edge fixing in the axial

direction holds the shell and the force P appears). We also assume that the angle 7 = 6o(s3). The stress state

which satisfies estimations (9) is realized near the parallel so = s*. We introduce dimensionsless variables by

means of the following formulas:

{soaroi : R 58””00} {31,32} = “{Si)’gg} {171,173} = EhH2R_l{P10sP§I}

2 o U 7 3 (I l

{T1‚Q1}= Ehu{T1‚Q1} T2 = EhuTz' {M1‚M2}: EhRu- {M1, 2’}

where the dimensionsless variables are denoted by the symbol ” . Substitutions (43) are introduced in such a

manner that near the parallel so = 3* the values marked with the symbol " are of the order 1. We introduce the

projections V and U of the stress resultants on the axial and the normal directions correspondingly.

T1” = UcosB + Vsine and Qf’ = Usine — VcosG (44)

Later on we shall omit the symbol 0 . Then the system of equations for variables

v, u, 82, M1, e <45)

assumes the form
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(rovj = 0

„(roU) = 32 + uv(Ucos6+Vsin6) + “(318; + mega”

u(ro52)’ = (1—uve2)cos9 — coseo (46)

u(roM1) = ro(1—|‚LV82) (UsinG—VcosB) + ulecose

ue’ = M1 + u(9o—VK2) — 2u2c2826'

The first of equations (46) gives

2 Eh2

P = 21thRu2C = —”——C (47)

1I12(1—v2)

where P is the unknown axial force. Far from shell edges and from the parallel so = 5* the solution of system

(46) is given as

C

V:—

r0

e = eo + 0<Cu2) M1 = 0(Cu3) U = CLSOO 22 = 0(Cu) at so _ st

ro srnBo

e = —eo + 0(Cu2) Ml = ~2um1 + 0(Cu3) m1 = L + L (48)

R10 R20

U = ——C;C—O—S—e—9— £2 = 0(Cu) at so > s*
ro smeo

7 Asymptotic Solution of System (46)

Near the parallel so = st there exists an internal edge effect and the main deformations are concentrated here.

We write equations (46) in vector form.

ux’ = F(x, so, C, u) x = {(1,82, M1,6} (49)

introduce a rescaling

50 ‘52

= —— 50E H ( )

and seek a solution in the form

x = x°(§) + uxl(§) + 0(u2) C = C0 + uc‘ + uzcz + 0(u3) (51)

The precision system (46) enables us to find the written out terms in series (51). We use the following condition

as the boundary one: solution (51) as g -—> ioo corresponds to solution (48) at so > 5* . Taking into account that

MSG) p + “ECO” + 0(H2) e0(50) : Y + Pig/<1 + 0(H3) (52)

6oY = (5*) p = ro(s*) k] = y

we obtain the following nonlinear system in zero approximation:
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PÜo = 83

peg = 00560 — cos?»

M10 z UosinG0 — Cop—100590

60=M1 ()zdwm

(53)

It is known (see Kriegsmann and Lange, 1980; Evkin and Korovaitsev, 1992), that this system has a solution

satisfying the boundary conditions

C0

 

only if C0 = 0 . This solution satisfies the relations

U0(—<:) = U0(&) 83%) = —£(&) MIN—ä) = we) 9°(—&) = —6°(E‚) (55)

In the first approximation we get the system

pl]1 z 812 + g1

peg = —6>1sine0 + g2

'1 1 0 0 o 0 0 1 (56)
Ml = U sine + (U cose +C sine )6 +g3

61 = M11 + g4

where

gl = —§U°cosy + U°(vcos60— cosy) + cleg2 + cleo2

g2 = —§égcosy — eg(vcoseo+ cosy) + klgsiny (57)

pMIg3 = ~vegU0 sine0 ~ C1 coseO + M10<vcos60—cosy)

and the following boundary conditions from formulas (48):

Uro=—w® aen=ae Maa=—meramw 6&
e°(—§) = e°(§) at §> 0

The value C2 may be found from the existence condition for the solution in the second approximation. But it is

more convenient to use the energy relations which are obtained below.

8 The Axial Force Calculation

The work done by the axial force is equal to A = Pz ‚ where z is the axial displacement of the edge s2 with

respect to the edge 51 .

Z = [(1+£1)sin9 —sin60]dso (60)
51

In the case of the internal edge effect near the point sO = s* we get

z = _2J zsineodso + 0(112) (61)

The term with the factor 11 is equal to zero since the function 60(é) is odd. We get the equilibrium equation

from the equality 5H : 5A .

dH dz

= P 62

615* dS* ( )

wherefrom we find the force P. If we use the dimensionless variables (43) in formula (42) we obtain
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n = ZnEhR2u3(l'l° + p.111 +008» (63)

where

no = $28893 (6°)2jdé
(64)

n1 = pj:[%[(eg)2+ (eoflgcosy „3812 +9091 +GO(VKg—Gf)) +f§_(gg)3 +c2£g(90)2]d§

According to relations (55) and (59) most of the terms in the expression for 1—11 are odd and they vanish after

integration. As a result we get

1—11 = 2p'ym1(s*) = 27(py’+vsiny) (65)

When calculating the derivative Lino/615* it is necessary to have in view that 83 and 60 are functions in

p(x*) and in 7(a) . To simplify we exclude the parameter p from system (53) by the substitution

* U0 80* Mm

a: pa U0=_ 30:; M0: 1 (66)
f p 2 JE l JE

 

Then

m = fillet (M1012de <6”

   

and

dH _ i . ‚ . dz _ c
d—S* — ZJEsmy + Zfiazy smy (15* — Zsiny

where

lcos 0 2 „K 2 * 0 *

611228111: 796(89) +(M10 ) jag and a2 = {fit/M“; (68)

The final expression for the axial force P has the form

27'5EhzldL 1 2 2
Ps* = P + P +0 69

( ) vamp “ l“ l) ( )

—(p at y<—7E

Sln'Y 2

1 ‚ ‚ ’ d

P1 = $(a1+pya2) P2 = w1th Edh

___("(”f”ml) at „E
smy 2

where the coefficients a1 and a2 depend only on the angle 7 . Their values are found in the paper by Koroteeva,

Tovstik and Shuvalkin (1995) by the numerical solution of system (53). For some values 7 <g the coefficients

are given in Table 1. Only the values of Pl and P2 depend on the point 5*.
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Y al a,Z Y a1 a2

5° 0.00714 0.41076 45° 0.14806 1.30559

10° 0.02003 0.58212 50° 0.16071 1.39607

15° 0.03627 0.71546 55° 0.16906 1.48803

20° 0.05469 0.83023 60° 0.17201 1.58250

25° 0.07436 0.93417 65° 0.16836 1.68055

300 0.09440 1.03142 70° 0.15681 1.78332

35° 0.11397 1.12458 75° 0.13592 1.89208

40° 0.13216 1.21549 80° 0.10409 2.00831

45° 0.14806 1.30559 ‚ 85° 0.05948 2.13378

Table 1. Coefficients a, and a2

        

1t , . . .

The case 7 = 3 may be reduced to the case cons1dered before, after the substltution y” = TC — y . As a result we

find that

P1(n—7)= 410) and 1320—0: P20) (7°)
As examples we study a conical and a spherical shell.

9 Conical Shell

For a conical shell

60 = y = constant r0 = so cosy P2 : O (71)

and formula (69) gives

h

W[a1(y) +O[:l—*D (72)

where 5* is the distance between a cone point and the cone top and the value of a1 is given in Table 1.

P(s*) = 27th2

We note that if the wide edge is reflected (see Figure 3a), then P > 0 and vice versa.

P > 0 for y < E (see Figure 3a)

2 (73)

P < 0 for y > g (see Figure 3b)

 

Figure 3. Conical Shell Deformations

In Figure 3 the direction of the force P which holds the shell in the reflected state is shown. The absolute value

of the force P increases simultaneously with the decrease of 5* and with an increase of the angle 7 .

128



\
\

N e § N a e u
.

n
o
a

    

\
\ V

\

      

7 /

      

K

Figure 4. Spherical Shell Deformations and the Corresponding Axial Forces

10 Spherical Shell

For a spherical shell of radius R

30 = 60 5,. = y p = siny (74)

P1 = ;(a1+azsiny) and P2 = (1+v)[1+m) at y < 5 (75)

1Isiny Sln)’ 2

Let V = 0.3, R/h = 100. The graphics of the functions P" = P1 (curves 1) and Pi; = P1 +uP2 (curves 2) ver-

sus y are shown in Figure 4 for y <g (Figure 4a) and for y >g (Figure 4b). The correction term of the order

it appreciably refines the value of the force P especially for those values of y which are close to 0 or to 180°.

In a paper by Evkin and Korovaitsev (1992) the post-buckling deformations of a spherical shell under an exter;

nal normal pressure p are studied. It was found that the pressure p is minimal for y E 1100. In our problem the

axial force P changes monotonically as the angle 7 increases.

10 Discussion

Approximate elasticity relations (36) and expression (42) for the potential energy of a shell of revolution made

of nonlinear elastic material are obtained for a 5-constant material (16) under the assumption that the deforma—

tions are relatively small (have the order u ) and the coefficients ocj of the third order have the order of Y0—

ung‘s modulus E. For the deformations of the same order it the same relations (36) and (42) are also valid for

an arbitrary nonlinear elastic material assuming that the coefficients of the fourth and subsequent orders do not

exceed essentially the value of E.

Formulas (36) are obtained assuming that a lateral surface loading is absent. It is simple to verify that relations

(36) are valid also for the lateral loading pf = 00.9) with the same error of the order of HZ . We note that shell

bifurcation in the linear approximation occurs for sufficiently smaller loading.

Expression (69) for the axial force under post-buckling shell deformations contains parameters which describe

the initial shell neutral surface. The terms of the second order in the nonlinear elasticity relations (the terms

with the factors c1 and c2 in formula (38)) are not included in this expression since some functions in formula

(64) are odd. But these terms are important when we seek an upper limit load.

The bifurcation into a non—symmetric mode may precede the post—buckling axisymmetric deformations. In

particular bifurcation occurs for shells with negative Gaussian curvature since for such shells bifurcation takes

place for P = 0(Eh2u2/3) (see Tovstik, 1995). The solution of system (46) may be used in the study of the bi-

furcation problem.

The construction of a linear two—dimensional thin shell theory based on the three—dimensional theory of elastici—

ty has been investigated in many papers (see Goldenveizer, Kaplunov, and Nolde, 1993; Goldenveizer, 1994).
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The direct application of three—dimensional nonlinear theory for large shell deflections is discussed by Sun,

Yeh, and Rimrott (1995).

For the large deformations (of the order of unity) the accurate derivation of the shell elasticity relations from

the three-dimensional equations of the theory of elasticity is apparently absent. There are the elasticity relations

(see Chernykh, 1986) obtained by using hypotheses similar to the Kirchhoff—Love ones. For small (of the order

of u ) deformations the comparison with formulas (36) gives a difference in the nonlinear terms.

The system of nonlinear equations similar to (34) which describes the axisymmetric deformations of shells of

revolution are given in many papers (see Reissner, 1950; Akselrad, 1976; Valishvili, 1976; etc.). Some terms in

these equations differ from another and from equations (34) by the multipliers 1+81 or 1+.s2 close to unity

and also by the elasticity relations.
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