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Random Vibrations of Elastic-plastic Structures

V. A. Zhovdak, T. N. Marchenko

The basic finite element method solutions for the description of bar structure random vibrations are obtained

on the basis of small elasto—plastic strains theory and the piecewise approximation ofthe hysteresis loop. The

stochastic dynamics problem solution was carried out for the stationary case. Executed calculations

demonstrate the ejj‘icacy ofthe ordered methodology.

1 Introduction

For large machine tool frames a random cyclic input and the occurrence of local plastic strains in consequence

of this input are a typical attribute. In this case in order to calculate the low-cycle strength it is necessary to

know the mechanism of the cyclic deformation of the frame material. The reasons which make these

calculations difficult include the provision of a correct description of the elasto-plastic deformation diagram in

the form of some hysteresis loop and the subsequent solution of the nonlinear stochastic dynamics problem. In

this work the piecewise approximation of cyclic deformation is used, because it is possible to take into account

all peculiarities of the diagram and the possibility of its change for different load cycles. For the solution of

random nonlinear Vibrations the Markov process theory together with the finite element method (FEM) are

used.

2 The Main Hypotheses

Solution of the stochastic dynamics problem of bar structures subject to spatial flexural-longitudinal-torsional

vibrations is considered in View of random loading and the advent of local elasto-plastic strains The discrete

model of the structure is based on finite elements having 12 degrees of freedom. Finite element and positive

directions of generalized unit displacements vector components Y(t) are shown in Figure 1. Models of elastic

supports consist of a 6 stiffnesses (3 forces and 3 moments) and a mass. For the finite element chosen the

stiffness matrix is constructed by using the dynamic stiffness matrices of individual elements at elastic strains.

In the case of the beginning of local elasto-plastic strains it is supposed that

- the plastic strains are local, that natural frequencies and modes with elasto-plastic strains are only slightly

different from those of the elastic structure;

- the construction material is cyclic stable and the diagram of cyclic deformation has a form as shown in

Figure 2;

- only a single mode is excited.

3 Derivation of Elasto-plastic Structures Vibration Equations

For the notation of the structural Vibration equations with elasto-plastic strains 3 conventional FEM procedure

is used, in which there are physical relations based on the theory of small elasto-plastic strains (Pisarenko and

Mozharovsky, 1981) with nonlinear relations (in form of a hysteresis loop as in Figure 2) between stress and

strain intensities. For an explanation of this nonlinear relation, piecewise approximation is used and written as

0x = E (y‚2)8x +B 02,2) (1)

where

ex : 8x0 +y1<z +ZKy = 2A sinw (2)
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Figure 1. The Finite Element and Positive Directions of Generalized Unit Displacements Vector

Components Y(t)
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Figure 2. Diagram of Cyclic Deformation

E1 (EI‘E2)(SA ’8T) 0<W<W1

E: E2 E: (ST—Est w1<llj<Tt/Z (3)

E1 (El—E2)(SA —sT)

In equation (3), wl represents the value of phase w according to point 1 of the hysteresis loop (Figure 2); From

equations (1) to (3) the components of generalized unit force and strain vectors are defined as

Nx :ng dF:JE(8xO+}/KZ+ZKy )dF+J BdF

F FF

=E1[sxOF*+KzS:+KyS: ]+N: (4)
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where

* * __ E * _ E >|< _

F :J%dF sz _JF de Sy—szdF Nx—JB dF (5)

’ F 1 F 1 F 1 F

Expressions for bending moments and for the torque are obtained similarly.

ch {35m = £E(exo +sz +zKy){:}dF+£B{:}dF

F

5*, 1*, 1*, M",

zEl 3x0 ’ +KZ fl +Kv + " (6)

S: ' I).Z M:

9; _ * _ E 2 * _

1yz _JEÄ yzdF Iy _ jfz dF My _ J'BzdF

F 1 F F

where

(7)

I*=JÄ 2dF M"=JB dF
Z E y z y

F 1 F

E1111

MK =‘CWF =G'WP'Y}.z ZWYfl

According to equations (4) to (8) the relationship between generalized forces and strains is defined as

o = D*e +6* (9)

where

F" 0 Sf S:

I

>s< O 2 1 p 0 0 >l< * >s< >k

D — (WV 6 =[NX,O, My, MZ] (10)

In equation (10) elements of the matrix D* are an area, static moments and section inertia moments in View

of plastic deformation. They are functions of the Coordinate x, the strain amplitude 8A and the phase w. In

the case of an elastic deformation the matrix D* is diagonal and its elements are an area and section inertia

moments. The vector 6* is a vector of an additional generalized force resulting from the plastic strains in the

bar section. After substituting equation (9) into the expression for potential energy of a bar element we have

L L

Uz—ä—JYTRTW‘Py dx+JYTRTG*dx (11)

O 0

In this relation the matrix R describes the constraint between the strain vector 8 and the unit displacement

vector Y and it is obtained similarly under an elastic deformation (Gallagher, 1975).

£=RY (12)

Minimizing potential energy with respect to unit displacements, we obtain expressions for stiffness matrix K6

and elemental additional unit force vector X: , which are functions of strain amplitude 8A and Vibration phase

w .
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L

Kg = IRTD*R dx (13)

O

L

x: = {My dx (14)

0

The derivations of the mass matrix M e and the damping matrix Ce are done similar to the one for solving the

problem of bar element vibration in an elastic arrangement (Postnov und Harhurim, 1974). On the basis of the

elemental mass, stiffness and damping matrices and using the conventional procedure (Postnov and Harhurim,

1974), we can obtain the frame stiffness matrix in global coordinates and the equation of the bar structure

forced vibrations subject to plastic deformation

MY(t) + CY(t) + K(Y,Y,t)Y(t) = X(t) + x*(Y,Y,t) (15)

In equation (15) the stiffness matrix K is a nonlinear function of the unit displacement vector and its derivative

(or of the strain amplitude 8A and Vibration phase w , on account of linear function (12) between 8 and Y ).

4 The Solution of the Stochastic Dynamics Problem

Transforming the stiffness matrix K into K = K +K L — K L , where KL is the elastic stiffness matrix, equation

(15) may be written as

MY(t) + CY(t) + KLY(t) = xo) — [K(Y.Y,r) — KL]Y(t) + x*(t) (16)

On account of the adopted hypothesis about the initiation of a single mode the unit displacement vector may be

defined as

Y0) = d) qm (17)

where (I) and q(t) are a natural waveform vector and a generalized coordinate of the structure and are in

agreement with the natural frequency Q . Substitution of equation (17) into equation (16) and multiplication

from the left by vector (I) produce the nonlinear equation for the generalized coordinate q(t).

(2(1) + zsgqa) + qua) = CI)T[X(t)—(K—KL)CDq(t)+X*(t)] (18)

Let us introduce the symbols for the stationary broadband random process 7((t) , which is proportional to a

small parameter MA

x0) = CDTXm (19)

and for the function h(q‚q‚t) ‚ having 112 of infinitesimal order,

h(q‚q‚t) = 28Qq' + (I>(t){[K(q,q‘,z)—KL]CI>q—X*} (20)

Then equation (18) becomes

q + qu = —h(q‚q'.t) + Mr) (21)
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For the initiating coordinate q(t) the last of equations (21) is the nonlinear stochastic difierential equation with

the broadband random input x0), whose correlation function KX(1:) and the spectral density Sx(oa) are

obtained by certain probability performances of the unit forces vector X(t) according to relation (19). The

solution of the stochastic dynamics problem for equation (21) is carried out on the basis of Krylov-Bogolubov's

averaging principle in combination with the methods of the Markov process theory (Dimentberg, 1980). For

this solution it is nesessary to move to the new „slow“ variables - the amplitude A(t) and the phase (p(t) -

according to relations

q(t) = A(t)sin(§2t+cp(z)) = A(t)sinu/(t)

(22)

40) = QA(r)cosw(t) W) = Qt+q>(t)

Using relations (22) and (21), we can obtain two first order equations for the „slow“ variables A and (p

(Dimentberg, 1980).

Am : g"1cosw[—h(A‚(p,n+ Xm]

<23)

cm = —(QA)*‘ sin[—h<A‚cp‚r> +x(f)]

Let

g, (qm = :2” cosw V1 (144W): —g1<cp‚t)h(A‚<p‚t)

(24)

gl (qm) = «MW V2 (Amt) z —g2(cp‚r>h(A‚<p‚t)

then system (23) may be written as

Am = V1(A,<p,t)+g1(<p,t)x(t)

(25)

If the small parameter it tends to zero, A(t) and <p(t) may be considered as a two-dimentional diffusional

Markov process with the coefficients of drift Ki and diffusion Kfi (Dimentberg, 1980).

 

T T magi/LCM)

K1» : I/i(A,cp‚t)dt+fdtj'—l—Öu— g] (A‚cp‚t +s) KX (s)ds

o o 0 i

(26)

1 T 00

Ki,- =T tdt tgi(A,cp,r)gi(A,<p,t)KX(s—r>ds (i =1, 2)

0 O

K12:K21=0 ulchl (p2:A T:27t/Q

Making the computations with equations (24) and (26), we can write

21:

K1 (A) = 315;}? (A‚w>cosw dw + 0
0 293A

(27)

2n

4 _ 1 h . SO S0

K2 (1 )—m (A,\y)sm\ydw K11 zfi K22 2m

0
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where S0 = ZnSX(Q) is the intensity of transforming white noise. Using the coefficients Ki, K“ it is possible

to write the Fokker—Planck-Kolmogorov (FPK) equation for the transition probability f (A‚(p,t) using a two-

dimensional Markov process [A(t),(p(t)]

a K 32 2
8—]: = ~aiA[t<1(A)f] —%[K2(A)f] + %871: + %a—?'7[K22(A)f] (28)

In equation (28) the coefficients K,- andKl-l- are functions of the amplitude A only, because the integration of

equation (28) for variable p going from 0 to 21c yields the FPK equation for the stationary one—dimensional

transition density of amplitude A(t) .

[jiAkitmnm] = %a—f (29)

The plastic strains in the frame begin after the amplitude AU) runs into the value A;k obtained from the

condition of attainment of stress intensity of yield limit. During the change in AU) going from 0 to 14* elastic

strains remain in a structure. The coefficient K,- (A) for different amplitude values may be written as

21:

 

—2—1%§J-2£A92c0s2w dty=er 0£A(t)<A*

MA) = 2: (30)

S i.
"Zlmjhmnmsw dw+4QgA Am 2 A

O

In view of expression (30) and equation (20) the solution of equation (29) may be written as

CIA exp [—Z—SnggAz] osA(r)<A*
0

f(A) = 2 n (31)

C2A exp[——2%O—EA2 +% f J CDT [K(A‚\|/)(I>A sinw — X*(A,w)]cesw dw dA A(t) 2 A"

A* 0

In equation (3]) the constants Cl and C2 are obtained from conjugate conditions in the point A 2 Ai: and

from a probability density normalizing condition.

5 The Calculations

On the basis of the worked out methodology a random vibration calculation program was created in view of the

elasto—plastic properties of a material. Test calculations were carried out for a beam with hinges at the ends

under a uniformly distributed load. The length of the beam is 0.3 m, the cross section is 0.02 ml, Young’s

modulus E1 = 2.01*1011Pa, the density p = 78*103 kg/m 3 . Calculations show that 8 elements are sufficient for

the attainment of the required accuracy. Distributions P(A) were taken for different values of the yield limit ET

and different variants of ratio E1 /E2. Several P(A) plots are shown in Figure 3. The ratio E1 /E2 =1

according to the elastic problem solution with Rayleigh’s density. The probability density of the generalized

coordinate amplitude of the turbine plant K—550-6.5 oilpipe (Figure 4) is shown in Figure 5. This plot is for

the first natural frequency, The natural mode for this frequency is shown on Figure 4. Pipe length was 3.61 m,

pipe diameter 0.219 m, wall thickness 0.009 m, material density p = 7.8*103kg/ m3. The region of maximum

plastic strains is marked by a dotted line.
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Figure 3, The Probability Density ofBeam Generalized Coordinate Amplitude

for Different Parameters of Hysteresis Loop

Figure 4. The Model and Natural Mode of the Turbine Plant Oil Pipe
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6 Conclusions
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Figure 5. The Probability Density of Pipe Generalized Coordinate Amplitude

for Different Parameters of Hysteresis Loop

The stochastic dynamics problem solution methodology considered allows the study of effects caused by local

plastic strain, and calculations with different hysteresis loops. The analysis has shown that for the range of

hysteresis loop parameters investigated. the variation the probability density of the generalized coordinate

amplitude is appreciably different from Rayleigh’s density and there is a considerable decrease of strain peak

amplitude.
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