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Complete Solution for Stresses in Terms of Stress Functions.

Part II: Modification of Variational Principles

1. Kozak, Gy. Szeidl

In the secondpart ofthepaper the authors consider the variational problemfrom which the general and complete

solution of equilibrium equations can be obtained as Euler equations. By deducing the dual pairs of the strain

boundary conditions the static—kinematic analogy has been made complete.

1 Introduction

1.1 The book by Abovski, Andreev and Deruga (1978), which we have also cited in the first part of the paper,

presents variational principles from which the solutions of equilibrium equations in terms of stress functions

are obtained as Euler equations. Contrary to the papers by Tonti (1967) and Stippes (1966) there is a step

ahead in the treatment of the boundary surface but all those terms needed for a complete solution on multiple-

bordered regions are missing. The reason for this is that the particular solutions of the equilibrium equations

are assumed to be known in advance therefore the difference between homogeneous and particular solutions,

i.e., self-equilibrated stresses, are given by the Euler equations mentioned above. It is a fiirther problem that

the contradiction between the number of side conditions (six compatibility differential equations on the volume

V) and the number of necessary stress fiinctions (although three stress functions are sufficient to describe any

stress condition the resulting Euler equations involve six stress functions) is also not resolved.

1.2 It is well known that the mathematical structure of the compatibility equations and the stress representations

found by Beltrami are the same. This similarity is often called as static-kinematic analogy. It is obvious that

the fulfillment of strain boundary conditions is the way to cause no incompatibility on Su. Recalling that

compatibility and equilbrium are dual concepts one can raise the question: under what conditions are there

no stresses due to stress functions on St? In other words, is there a possibility to extend the static-kinematic

analogy to boundary conditions?

1.3 In view of the foregoing the aims in the second part of the paper are as follows:

— With regard to the previous ideas (completeness, number of necessary stress functions, transformations

of integrals on the boundary etc.) to modify and supplement the corresponding variational principles.

— If possible to extend the static—kinematic analogy to the boundary conditions on St.

1.4 In section 2 we focus on the free variational problem and briefly show what equations follow from the

stationary condition. Section 3 is devoted to a modification of the principle of minimum potential energy and it

is proved that the dual counterparts of the strain boundary conditions are also stationary conditions . Conclusions

are presented in section 4 which is a short summary of the results. The last section is again an Appendix, i.e.,

a collection of some longer transformations.

2 Free Variational Problem

2.1 Notations and notational conventions are the same as in the first part. When citing equations of the first

part the equation number is followed by a comma and the roman number I.

2.2 There arises the question in connection with equation (331,1) obtained from the general primal form of the

principle of virtual work whether it is possible or not to establish a free variational problem where

— vanishing of variations with respect to strain fields em of the corresponding functional ensures the

fiilfillment of field equations (332,1) on the volume V of body and that of boundary conditions (333,1)

on the part 3,: of boundary
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— furthermore vanishing of variations with respect to the displacements uk yields the fulfillment of bound-

ary conditions (3.34a~b,l), consequently the fulfillment of stress boundary conditions on St.

The functional sought can be derived from the functional of the total potential energy by applying the method

of Lagrange multipliers. The domain of the functional involves

the strain fields

€kl(SL‘) {I} E V

the displacements

ukié) f E St

and

the stress functions

Hkl(33) 1‘ E V

as well as N N

Hm(€) and Hm;3(€) 6€ St

In the latter case, as we haveNassumed so far, the stress functions meet the preconditions

HAB(X) E 0 x E V and Hk3(§) E 0 6€ 3;.

NOTE 1: These preconditions are based on those results presented in section 2 of part I. We remind the

reader that there are three independent compatibility differential equations nRS = 0 and because of that three

multipliers HRs are needed to maintain the equilibrium on V.

2.3 Equations of linear elasticity in terms of the variables mentioned above consist of the field equations

Cplrsers = epykeldrHyd;kr + gqulw + gqu’iq — gPlB’i,c x e V (2.1)

ekaeSlpeklmp Z 0 13 E V

and boundary conditions

HKA ‘- HKÄ : 0 HnAß _ Hrs/M3 z 0 6€ St

eM — MAW) = 0 5 E St (2.4—a)

(63K _ u3|m)I|/\ + biwean _‘ ualn) " (enAß _ €A3m) : 0 6€ St

6M — 110m) = 0 {E ‚S'u (ZS-a)

(63K. — üSIn)]|A + 5305m; _ üaln) — (eNA;3 _ eA3m) : 0 f E Su

{p = egmepdpfhdmg + a3‘7B’fm + aquiq — angäk EG St (2.6—a)

£3 : awemfimpg + #31, + a3qBZq — (2.3333, g e S, (2.6—b)

associated with a continuity condition

fii—Uz=0 €69 (2-7)

Really, simultaneous fulfilment of equations (2.2), (2.4-a,b), (2.5-a,b) and (2.7) ensures that the strains ekl

are kinematically admissible. Recalling the assertion from the beginning of paragraph 3.10 in part I we can

conclude with regard to continuity conditions (2.7) that the integration of conditions (2.4-a) and (2.4-b) yields

the actual displacement uk(£) on 5,. If in addition to this, field equation (2.1) is satisfied then the equilibrium

on V is maintained while simultaneous fulfilment of (2.6-a) and (2.6—b) is equivalent to that of stress boundary

conditions.

NOTE 2: Here and in the sequel, with regard to its simplicity, we confine ourselves to Schaefer’s solution.

However, the line of thought presented herein can be applied with ease to Gurtin’s solution.

2.4 Now let N N

H2 = H2(€kt‚uz‚ HRS; Hannw) = 115’ + H5“ + Hg“ + Hg; (2-8)
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be the functional sought in which

H5 = /[äepzcmem—(gmB’..q+gqu&q—gplB’:‚c>epz1dVflekrmelspermpmkdv (2.2a)
V

n; = ~ / w — n3<a3quq + a’qBiq ~ <13le dA
. St

w/ naem’ßemüem —um„))Ü„o;3

s.

+[(€3n -— flaw)”; + b30312»; — nahe) — (eng; — 6mm.) — 5209M *~ U(A|n))lHn0+

lemme + BMW — (UA|K)H19 ‘ u3|Abün]Hn3 — IMMEM — U(A|H))H33} dA (2'9‘b)

Hg" : / n3(a3qBi;q + aquäq ~ (13131116) m dA

‚Su

M/ ”Sememflem * ü<A|n))Hn0;3
SH

+1(€3K - 113mm + (flew — 11am) — (6ms - 6AM) w (950% — Ü(Azn))1Hnü

Hemp; + 6mm — (flip/Jug ~ 113|Abi9anna — bmflem ~ ÜomflHss} dA (2'947)

Hg; : — f 7136m73’r19“um,c - figlK)Hn3 — (113'N — ü3|K)ng} d8 + aneldendmwl - {1,0615 (2.10)

9 9

Observe that the functional contains all the stress functions including those regarded to be zero When inves—

tigating what stationary conditions follow from equation 6112 = 0 as a variational principle we shall take into

consideration, as we did earlier, that Hubs) and Hug) are of special structure — see NOTE 8 in part I and

paragraph 2.2 .

2.5 Vanishing of variation

(5H2 2 (561—12 + (Sun; + ÖHH2 + (51—11—12 2 0 V (2.11)

as a variational principle ensures the fulfilment not only of field equations (2.1) and (2.2) but also of the boundary

conditions (2.3), (2.4—a,b), (2.5—a,b), (2.6-ab) and continuity condition (2.7).

In what follows we briefly outline the proof of the above assertion. Because of the independence of variations

taken with respect to distinct variables stationary condition (2.11) is equivalent to the equations

(sang: 68H; + 6511€“ + den?" z 0 (2.12—a)

öuflz = 6m? + 6qu z 0 (2.12-b)

5111—12 = 51111; + 511115“ r:— 0 (2.12—c)

and

6;,112 z syn? + a5an = o (2.12—d)

2.6 Equation (2.12-a) can be transformed into a suitable form if utilizing (3.26a—b‚l) we substitute

H (330,1) into the expression 6611;] replacing first em, 6mm and em; by their variations 6e”, 66mm and

éepfi

—— the opposite of (329,1) for 651—15t replacing first 5', HM and HM“ by St, 619'“ and ÖHKW

and

—— the opposite of (329,1) for 66115" replacing first S, HM and Hag by S“, öHm and öHNÄß .

Upon a subsequent rearrangement we have

55112 z / [Cpmem H (epykeldTHW. + 91“?quq + gqufiq Ü gP’Bfikn öe„‚ dV

V

+f n36“p36’\031—(HM — stew + (HM, — meepg] (M = 0 (2.13)

St,
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Since the variations 661p , 66p19;3 and (Sew are arbitrary, this equation can only be satisfied when field equation

(2.1) and boundary conditions (2.3—a,b) are also fulfilled.

2.7 Observing that (an? is the opposite of [ISU if in the latter 8, uA and 11.3 are respectively replaced by

51,, öuA and 6u3‚ then utilizing (A.50) w in which So, go and U3 are also to be replaced by Su, g and 6u3 ——

and (2.10) we obtain from (2.12-b)

61,112 = —/ [fl — n3(637"‘eldpf{„d;p„ + a3quw + aqué".q — (913%)] 6m dA : 0 (2.14)

SI.

Since in (2.14) no condition for 611; is set down it is arbitrary. Consequently, fulfillment of equation (2.14), or

what is the same thing, fulfillment of stationary condition (2.12—b) yields the boundary conditions (2.6-a) and

(2.6-b).

2.8 As regards equation (2.12-c) one should remember that condition (3.19,I) is not independent of (3.8a-b,1).

In the light of this circumstance it can easily be shown that the fulfillment of stationary condition (2.12-c) is

equivalent to that of field equation (2.2) — HAB E O on V, consequently, we assume that (SHAB E 0 —— and

boundary conditions (2.5-a,b) even if 6H,,3 and 6H33 are different from zero, otherwise arbitrary on Su.

2.9 Making use of the independence of variations (SEI—[5’ and 6H 112G we can replace (2.12-d) by the following

two conditions

(SEN? z 0 and 5,—‚1159 z 0 (2.15)

Since 151% z 0 we can cancel those terms in (2.15-a) — see (2.9-b) — which involve Hg, and H33. In this

way we obtain from (2.15-a) with regard to the arbitrariness of 61:17,19 and 6151,7193 that the boundary conditions

(2.4-a,b) also hold.

2.10 Before investigating what equations follow from the stationary condition (2.15—b) we define two vector

fields (WG) and 6151(5) on the curve g separating boundary parts Su and St in order to simplify the necessary

transformations. Let

d 6W

d3

This equation always has a solution for the unknown vector field.

 

: —T"eldp6H‚7d;p f E g (2.16)

S

6771a; Z w/ TneldpöHndmal d8

S o

In addition to this

 

 

dör"1 123 ~ ~ d6f‘2 123 ~ ~

d9 z —7—n€ (6111773;2 + öHfl223) d8 Z 7.17€ (6H773;1 ‘l' 6H171;3) g E g

d6”3 ~7‘ : —7-776367r5Hn5;7r
f e g (2.18)

ds

where with regard to (3.35a—b,l)

(SH/“3;” : 6‘Hk3l" : ÜÜÄ3>N _ FSKÖÜTB M ads-HAT E E S

6HAHiP : (SH/\Nlp : 6HAIch _ bÄpöH3H " brtp6-FIA3 f E S

Further let d6 N

w, N „

d8 7 Z 7719(6197736743 + 6Hm9) £6 g (2.20)

It is clear that the latter equation also has a solution for the vector field 615,7.

NOTE 3: In view of (2.17), (2.20) and (2.19-a,b) we may write

(57:1:— 6f1(6Hn2;37...) 67:2 267:2(6Hn1;3,...) £6 g

and

61121: 6wi<6fi1w,.. .) öwz = mama...) re g

where the variations of 151,723, 151,715, H119 and 1:120 are independent of each other and arbitrary. Consequently,

we may assume without any loss of generality that 6?A and 612),] are independent and arbitrary on g. Later on

it will also turn out that 67:3 plays no role in the final form of stationary condition (SI-{Hg} =
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2.11 Now we can turn our attention to the stationary condition (2.15—b). Using (2.10), substituting (2.16) and

(2.20) for N N

TneldpÖHndm and TÜÖHW

and entering into no details _— these are presented in paragraph 5.1 ~ we have

d „ d A „

61;ng — j{[€"”’?’—(uglN — ü3|„)]6w„ds + — unnörnds : 0 (2.21)

9 ds g d3

if we also bear in mind that because of the assumption H773 = 0 the corresponding term has been canceled in

(2.10).

It is obvious that the vanishing of (SHHZG for arbitrary 61D” and 67‘” is equivalent to the fulfilment of equations

d A d ‚

Ecußin _ u3ln) I 0 and “ um) : 0 g E g (2'22)

If the latter two equations hold then continuity condition (2.7) can always be satisfied by means of a proper

choice in respect of the initial values.

NOTE 4: When applying direct methods there is no need to utilize the line of thought presented in paragraphs

2.8 and 2.9 in order that one can prove the fulfilment of continuity condition (2.7).

NOTE 5: Functional defined by the equations (2.8), (2.9—a,b,c) and (2.10) corresponds to the last functional

published on p.224 in Abovski et a1. (1978). There are, however, some significant differences detailed as

follows:

1. The functional presented in this paper does not imply any contradiction concerning the number of

compatibility differential equations and that of stress functions. Both are three and not six as it is the

case in Abovski et al. (1978).

2. The present formulation allows us to divide the boundary into parts Su and St on which various boundary

conditions can be imposed.

3. The domain of functional H2 involves stress functions defined on St and this is the circumstance which

enables us to handle boundary conditions of various types.

4. It is also worthy of mention that the continuity of displacements on curve g is not a precondition but it

follows from the stationarity of functional H2.

3 Static—Kinematic Analogy

3.1 If preconditions are set down on some variables then functional H2 can assume a much simpler form.

If the strains are kinematically admissible then (2.2) and (2.4—a,b) hold and both the~displacements and their

derivatives on S are continuous along the curve g. If in addition to this stress functions HM and HKM3 satisfying

stress boundary conditions (2.6—a,b) are known then functional H2 — see equations (2.8) to (210) — reduces

to functional

H1(€kl‚ul) = HY(ekl) +Hf"(’ltl) +015”

where 1

Ill/(€101) z Ä[56Plcplrsers — (gquim + gqufiq — 9131312106191]

1115* (m) = u / neareeldpfrndmuld/i (3.2-b)

St

and

Cf" = /S 77,3(a3qBéfl + aqué‘;q — a3’B’jk)] a) dA (3.2—c)

NOTE 6: The same functional can be obtained from that of the total potential energy

meant): ä- / eplCPlTsede~ / bluldV— fluid/1

V V S,,
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if one substitutes I51 (equations (3.2-a,l) and (3.3,I)) and (2.6—a,b) for the second volume integral and fl,

respectively, keeping in mind that ul(f) : MOE) on S“.

3.2 Functional (3.1) can be transformed further performing partial integrations in Hf" in order that H1 should

depend on 6],; only. As regards the details we refer to paragraph 5.2 . Finally one has

Hue“) z fine“) + Effie“) + Hf + Of + Of" (33)

in which

Hf‘1(ekl) = / ngemseldp(»—Hnd;pem + Hndenlm) dA (3.4-a)

Si,

119(6)“) Z fT"e”"3(Hnge3„ — Hügegfi) d5

g

and

GIG = w f Tne’dpalfrm ds n f7’76”"3(f1,719223m — imam) d3 (3.4—c)

g 9

3.3 Functional (3.3) is subjected to subsidiary conditions which ensure that the strains cm are kinematically

admissible. In contrast to the foregoing one has to choose those conditions of single-valuedness being given

in terms of strains em. Consequently, for strains to be kinematically admissible it is necessary that the field

equation (3.7-a,l), the kinematic boundary condition (2.5—a,b) and the boundary condition of compatibility

”377317 : Eßnfieldpendmn Z 0 g e ‚5'n (3.5)

should be fulfilled. Let V

HRS(32) : HSR($) a: E V

Em (g) :1an (5) and Hm =fiia,.3 £6 S.

and

wh(£) f 6 Sr,

be undetermined Lagrange multipliers.

In accordance with all that has been said when seeking what equations can be obtained from the stationarity of

functional H1 one should supplement the functional by the sum of integrals

HS z Hg + Hg" + mg" = 0 (3.6)

where

Hg 2 ~11V(FIRS) (3.7—a)

2 *Iflsmflt, HM, Hmm) (3'743)

and

Hgt z ~ / 63"”eldpendww, dA (3.7—c)
St

As regards the notations the parameters that have been changed are marked in equations (3.7—a) and (3.7—b) —

see (3.2la,l) and (3.21b,l) for details.

It is also worthy of mention that integrals (3.7—a) and (3.7—b) are considered under the same assumptions as [1V

and If were earlier, including the structure of multipliers as well as the not independent condition (3.19,l).

NOTE 7: For strains ekl to be kinematically admissible it is also necessary that some further conditions,

referred to as continuity conditions, should be satisfied on curve g. Joint fulfilment of the former and the latter

conditions — which are presented in the next paragraph —— is not only necessary but also sufficient for strains

ekl to be kinematically admissible.

3.4 It follows from the kinematic equations that

TÜEW Z Tüüm'u?) E E g (3.8-a)
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must hold. Using (A25) it is immediately verified that

M — ’7 3 — ’7 W3 — Meme. {6 (3 8-b)
E — T um " T E 2u19;/\1] — 1971M g '

This equation expresses that the rigid body rotation w3 should be the same in both sides of curve g. As regards

the other two components of rigid body rotation one obtains from (A.25) and (A26)

1 1 1
r _ 'rql _ _ i _ _ ‚qu

WW — 5 ( “Im? + “(Np 2%;112) — C (Clqm Cqflp) 5” E V
2 2

Changing r and p to 29 and n and decomposing the sums one may write after some manipulation that

19
du) Z anü

193A

—ds 4?? (
: 7775193)‘(e)\3m — ü3;‚\„) : TUE 6AM, a 63,”) € 6 g (3.8-c)

The above line of thought implies the assumption that the displacements and their covariant derivatives taken

on the surface are continuous when one goes through curve g. Since neither 11k nor 11mg can be varied freely

611k z 0 and 611km : 0 £6 Su

from which in comparison with (3.8-a,b,c) it follows immediately that the variations (Sek, on g are subject to

the conditions

Ham 2 0, Mewöeüw = o 5e g (3.9-a)

and

T776193A6€A3m = 7776193)‘(5€)\m3 — (56mm) 5 E g (3'9’b)

Since 1 1

em = —2—(uÄ;3 +133») 2 §(u,\;3 +ü3;,\) £6 g (3.10)

it is easily seen that egg can be varied freely on g.

Consequently, when varying the sum H1 + H5 with respect to strains em in order to find what equations follow

from the stationarity condition one should keep in mind that ekl can be varied freely everywhere on V and S

except the curve g on which the variations öekl are to meet the preconditions (3.9-a) and (3.9-b).

3.5 Now we shall consider what equations can be obtained from the stationary condition

5411+ (sens = [g + 15" + 15¢ + Jg : 0 (3.11)

in which 1111/, Ig’, I and [g denote respectively the integrals taken on V, St, Su and g when the transformations

aimed to bring 65H1 + 68115 into a suitable form have been completed. At present they are not known. It is,

however, obvious that each of the integrals IX, Iä”, If? and 11‘]: must vanish separately since the domains are

different. In what follows we shall utilize this circumstance without referring to it again.

3.6 Recalling (3.2—a), (3.7—a), (3.2la,l) and repeating the line of thought leading from (A57) to (A.58a,b) and

(A.60) we have

any + 56mg : (serer + 11V (56kt, IYRS) : 1g + If“ + 1;" (3.12)

where

I}; z /V[Cpl”e„ — (epykeldrflym + gmBlw + gfqzaé;q — gP’B’gkn 6% (1V = '3 (3.13)

and

1.45" + ff) ___ “/5 S nsenp3€A193(HM66pM # HM;35epfl)dA (3.14)

„+ o.

3.7 It is obvious that the integral 1%“ consists of two parts.

jäh : If“. + 66H?»
(3.15)

As regards the variation 6H3“ let us consider the equations (3.7-b), (3.21b,I), (3.26a,l) and (329,1) from which

follows that »

611€" = ’Iig(5u>öekla Hkl)|ü=0 = "IfE(Su‚öekl7 Hm)
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since the variation is taken with respect to 6“. After performing the necessary letter changes one can substitute

(3.29,l) for 68H? in (3.15). Keeping (3.14) also in mind we obtain

15” z If" +6611?

:/ ngeNP3EW3[( [31,, "—HAK)6ep19;3 — ( firm _H/\le;3)6ep’t9] 6114 =0 (3-16)

S“,

3.8 Now we concentrate on the last two integrals If?" and [g whose sum will be separated into two groups

depending on whether they include HM, HM or v):

1% + If? = (11%. + 1%.) + (Iä; + Iäw) (3.17)

To begin with we shall consider those integrals containing HM, HM. It is clear on the basis of (3.3), (34-21),

(3.4-b), (3.6), (3.7-a), (3.11) and (3.12) that

15;, + 13H r 65H?"1 + If" + öenfmkl) (3.18)

Comparison of (3 .4-a) to (A.58b) yields

(Senfl'l = [53(5), 66qu Hkl) (3.19—a)

Next integral If" will be considered. An appropriate result can be achieved in three steps.

1. We notice that the surface integral in (A.59) is equal to If" provided that the following replacements

are made.

‚So—MS} H—«aH e—HSe

2. Comparing (3.4—b) to (A.59) we also notice, that the line integral in (A.59) coincides with <5er if

further letter replacements are made.

go ———> g H e Ü e —> 66

3. Then we solve the equation resulting for If".

Finally we have V V

15‘ Z —IgE(St76€kl‚Hkl) — Hflöethkl)

Upon substitution of equations (3.19-a) and (3.19-b) into (3.18) we obtain

+ [SH = IgE(St‚ Öethkl *- Hkl) + H10(6ekl,lf1kl — Hkl) (3.1942)

since the integrals are linear in HM. Let w

Hm = sz - Hm (3-19'11)

With (A.58c), (3.4-b) and (3.19—u) it follows from (3.19-t) that

S, G fl ~ 3 M93 - e —
In'H + IHH ~ / n35”) 6 [HÄNöep19;3 - HMÖEpaw ~ H3N6ep'l9;)\

Sr,

—HM;35€pn + Ümwöeps + HEKIÄöepÜ] 61A

——f n36“"3(T‘9H„göegK — TAÖer—Ing)ds (3.19-v)

go

If in (3.19-v) we substitute

Hkl fOI' (Sle

and

6k) for HM

we arrive at (A.54). It immediately follows from this that the point of departure of those transformations leading

to (A54), i.e., equation (3.26a,l), is the final form of (3.19—v) provided that em and HM are respectively replaced

by Hkl and 66“. In this way we have

Iä’H + [fin = /Sn3€m3€wa{ Hmöenw + (Emma + Emmöena

+(Ü3HHA + bill—10m — —,¢)\;3 + HAglK — bgHAK)Öeng + ÖWÜHÄnöegg}

204



which means that

IgH z 0 (3.23—b)

3.9 The last integral to be considered is the one which involves the multiplier w). It is clear from (3.6),

(3.7-a,b,c) and the resolution (3.17) that

1.31;” + Igw = (sensr : nit-(6m) (3.24)

1n the sequel it is our aim to make use of equations (A.50) and (3.25,1) in order to avoid carrying out long formal

transformations. Comparing (3.17) and the surface integral in (A.50) it becomes clear that after substituting

respectively w

St, g, öekl and v; for So, go, HM and w;

in (A.50) and (325,1) one obtains an equation with the unknown H§‘(5ekl) or since the two expressions are of

the same value of If” Consequently, one may write by separating surface and line integrals

: —/S n36”"3e’\‘93w(,\|n)(SewagdA

+/S n3€n7736A03[_wAW|1966773 — U1()\{„)bmgö€33 + (bgwmn) — biwamweng] dA

+/S ngemsems{—w31„„)\öeng — w3|‚\b,9„663‚7 — ’LU3|NÖI9‚\6€773]dA (3.25)

and

9

Igw : aneldpöendmwl ds — fügGKnßTÜ(w19|K6€773 — 103(„Öe„,9)d3. (3.26)

g

With respect to (3.17), (3.23—a,b) and (3.25) we have

[151L I / ”ßemaemgflgm —w(/\]K.))6e1719;3

Sr,

+i<H3Ii “ w3|n>||A ’i‘ b§(f—[mc ‘ warp-e) _ (Hex?) _ [Ti/Vim) _ h w(/\|K.))]66T]19

+[Hmnü + Emma — (Hindus "— w3|‚\b19n]68n3 —— bm9(HAK‚ — w(A|K))öe33} dA = 0 (3.27)

Making use of (3.17), (3.23—a,b) and (3.26) it follows that

GM G

[II _Il'1w

Decomposing the sum involving 6 in the first line integral we obtain from (3.26)

[g 2 18,1” z —j{r"'e3’\‘96egm)\w3 ds wa’76193Ä(öe‚\m3 — 563„;A)w,9 d3

g a

+j57’76193Äwm1966A3 ds + 1(257’1963mw3lnöeng d5 : 0

g g

Substituting (3.9—a) and (3.9—b) then performing partial integration with respect to s we get

[g = fTÜE773Ä2'LU(nw)ÖG‚\3 (15 : 0

9

Since in equations (3.13), (3.14), (3.27) and (3.28) no restrictions for

öelp a: E V

6CPI9I3, 66mg {E Su

567mm, 56m9, 5€n3‚ 5633 5 E St

and .

663A f E 9

are set down they are arbitrary. Consequently, the vanishing of integrals IX, ä” and [g yields
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— the field equation

arme.s = epykeldrfiyw + gmBflq + gqufiq — gplB’:k a: e V (3.29)

as the Euler equation of the problem

— the boundary conditions

[TI/w: HM and Ilium: HMQ 6 6 Su (3.30)

HM — HM = H»; = 10mg) EG St (3.31-3)

(H3K _ w3lK.)H/\ + —' main) _ (HR/M3 _ HA3;&) : 0 6€ St

Hana + Hmw ~ anHfl — wglAbm; = 0 5 E St (3.31-c)

and

—— the continuity condition

H’wW) z 0 ge g (3.32)

The following notes are aimed at interpreting equations (3.29) to (3.32) obtained from the extremum condition

(3.11).

NOTE 8: Equation (3.29) is the general and complete stress function solution of equilibrium equations set up

in this form by Schaefer (1953). In other words the general and complete solution of equilibrium equations can

really be derived from the extremum of the total potential energy provided that the subsidiary conditions are

appropriately chosen.

NOTE 9: According to equation (3.30) multipliers defined on SH coincide with those defined on V. Conse-

quently, the stress function solution is valid on S”.

NOTE 10: Equations (3.31-a,b,c) are the dual counterparts of kinematic boundary conditions (3.8a-b,l) and

supplementary condition (3.19) since [the fonner] (the latter) conditions can immediately be obtained from the

[the latter] (the former) ones if we substitute [6 for H and u for w] (H for e and w for u). Since (319,1) is

not independent of (3.8a) nor is (3.31—c) of (3.31-a). Consequently, (3.31-a) and (3.31—b) are the substantial

boundary conditions.

NOTE 11: It follows from NOTE 8 and equations (333,1) that stress functions on V and St may differ from

each other in the symmetric part of the gradient of a vector field

Hkllé) - HMO = Wang) 5€ 5 {3-33)

In the light of this circumstance there arises the question whether boundary conditions (3.31-a) and (3.3l—b)

contradict equation (3.33) or not. In what follows we shall prove that there is no formal contradiction between

(3.31-a), (3.31-b) and (3.33). Our point of departure is the equation

HM) — Hide) = HMO = was) (5) 5 e St (3.34)

which is obviously equivalent to (3.33). The latter equation implies (3.31-a). However, in contrast to (3.34) no

derivatives taken along the normal to St appear in tum“). Proof of the second part of our statement requires

some preparations.

Let Tl be the axial vector of wk). As it is well known

1

Tl Z Eelpqwqm and wllml Z —€lps7‘5 5 E St (3-35)

In view of (A.2b) and (3.34) one may write

1

w[l;p];>\ : 5(wlm)‘ — wp;l>\) Z 5(wl;p>\ "l" whip _ wad]? " 1010;”) f E St

or

wll;p]:A : Him) “ HAW £6 St

After exchanging the left and right sides let us add (3.34) to the latter equation. With respect to (3.35b) we have

wlmä Z w(l;p);z\ “ 6lps'ri). z Hum " HAMI + Haag. f E S; (3.36)
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Now we shall prove that the latter equation, which is a consequence of (3.34), implies (3.31-b).

Because of the indices in (3.3l-a,b) we shall confine ourselves to those equations obtained by setting l and p to

3 and n: v n i

w3m)‘ : w(3;n);)\ _ €3HO'T‘:‚\ : HBAm _ HAMS + H3K;)\ g E St

It can be shown readily by using (A.9) that

Ham). z Emu + b‘iHm — bmgsa 6€ St

Substitution of the latter equation into the right hand side of (3.37) yields

HM”; + 53H“ — (HKÄß - Exam) M [RAF—133 = w3;‚<.‚\ Z wank)» ~ EBKUTTA f E St (3-38)

Using again (A.9) to transform the right hand side of (3.38) we have

7113;“ = 103mm + biwain - bmwss 5€ St

With this equation it follows from (3.38) that

(H3); ~' w3|„)|{‚\ + 173(Hm — walfi) ~ (Hm/M3 “ Hum) — IMA<F133 “ w3;3) = O 5€ St (3-39)

If H33 — w3;3 = 0 equation (3.39) reduces to (3.31-b). In this case no derivative of wl taken along the normal

to the surface appear in (3.39). In other words the principle of minimum potential energy ensures the fulfilment

of that part of equation (3.36) which does not involve the derivative of w; along the normal to St.

NOTE 12: With regard to (3.3021) and (3.3 l-a,b) condition (3.33) is a continuity condition of the form

TfigwuZTfl Hm €69

for those multipliers defined on St and Su respectively.

4 Concluding Remarks

4.1 The most important functionals of Lagrange’s type have been presented in the second part of the article.

As a result of our modification the corresponding variational principles imply no contradiction concerning the

number of compatibility equations and that of stress functions in terms of which one obtains the general and

complete stress function solution of equilibrium equations from the stationary condition.

4.2 The variational formulation presented ensures more freedom in respect of the boundary conditions (both

strain and traction boundary conditions can be imposed on distinct parts of S).

4.3 The static—kinematic analogy has been supplemented by appropriate boundary conditions. Each of the strain

boundary conditions and the supplementary identity on 5'“ has its dual counterpart on St and vice versa.

5 Appendix

5.1 Transformation of integral 631120 of equations (2.10) and (2.1’5b)

Canceling the term that involves 6151,73 and substituting T'7eldP6HndW and 7‘96ng taken from (2.16) and (2.20)

into (2.15b) we obtain

(SI-{Hg Z fnaemßTflualn — a31n)6Hm9 d3 + if “BTUEldpéI—jndmwl _ @0613

g II

d6 N a A A
= ]{6’€’I3(an + ’r‘9enggév‘3)(u3l,.i — 1131K) d5 — ?{(ul —~ ul)

y 9

d 67”

d=0

d3 8

 

since 713 = 1.
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Making use of the equation €m736n03 = —65 and performing partial integrations we arrive at (2.21).

5.2 Transformation of integral (3.2-b)

Applying the rule (A20) of partial integration and observing that

emfleldpuwp E O 6 E 3;

one obtains

quekl) : I? + If : — f5 ngwfielw—H„d„‚u„„ + H,,du.,.-,;ip)dA — ii Tneldendmülds (13.1)

z ' 9

where 115t and I? stand for the surface and line integral, respectively. It follows from the decomposition theorem

(A2) and the kinematic equation (2.6,1) that

um = em + upm} and um; : 6H; + UNI] f E St (B2)

Upon substitution of (B2) into the surface integral I” and comparing the result with (3.4-a,b,c) one has

115" : nfrvl + 15" (8.3)

where

15“ = —/ 77,36Nn36ldp(—Hndmuuw] + Ünduwm) (1A

S:

2 fl/ 713661736193(_ÜWÜWWK] + Üfläüulwl T ÜUWWBWI
S:

+H1117U[H;A];3 ‘T H713u[n;)\];19 + I{7]ÜU{N;3];Ä)

Since N

ENÜSGAÜSFLHWHMAL‘} E O E Sr,

and m

6&1136Ä03Iinü;3u[>‘;n} E O E St"

with the rule of partial integrations one obtains

IS." = 159L + [IG 2 ~—/ 713€K7736A03[—I:~{,73(uuwl + U‚[K‚.‘)\])„y — H‚IÜ(U[3;K‚} + U[K;3]);‚\] CIA

SI.

H ?(T’7F'“73(Ümpu[3„‘„] — H17311‚[19;N1) (is

' {I

in which the surface integral vanishes. In view of equation (2.61) and continuity condition (2.22) the assumption

is made that

u[3;„1 = (Eh-3 —— 113W. and um“) : 617K w 1119m- f e g (8.5)

Substitution of (8.5) and a subsequent comparison of the result with (3.4-a,b,c), (Bi) and (B2) yields

' Hf“ = Hf” HI? + 01G

which proves the correctness of transformation mentioned in paragraph 3.2 .

Literature

l. Abovski, N.P.; Andreev, N.P.; Deruga, A.P.: Variational Principles of the Theory of Elasticity and Theory

of Shells. Nauka Publishers, Moscow, (1978).

2. Kozak, 1.; Szeidl, Gy.: Complete Solution for Stresses in Terms of Stress Functions. Part 1: Derivation

from the Principle of Virtual Work. Technische Mechanik, 16, 2, (1996), 147—168.

3. Schaefer, H.: Die Spannungsfunktionen des dreidimensionalen Kontinuums und des elastischen Körpers.

Z. Angew. Math. Mech.‚ 33, (1953), 3564562.

4. Stippes, M.: On Stress Functions in Classical Elasticity. Quart. Appl. Math, 24, (1966), 119—120.

5. Tonti, 8.: Variational Principles in Elastostatics. Meccanica, l4, (1967) 208208.

 

Address: Professor Dr. Imre Kozak, Associate Professor Dr. György Szeidl, Department of Mechanics, Uni-

versity of Miskolc, H—3515 Miskolc—Egyetemvaros

208


