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'.'The Given Force Cannot be a Function of Acceleration"

C. M. Leech

The modelling of reactive forces, those that are applied by constitutive components and are generated by their

deformation typically assumes that various deformation derivatives can be included. The inclusion of the

deformation and the first derivative, that is extension and velocity, or strain and strain rate are well

established. However, there is a problem when the acceleration or rate of strain rate is included in the

modelling of constitutive components. It will be shown that these will cause at the very least a non-uniqueness

in motion, and consequently such modelling is adverse to Newtonian mechanics.

1 Introduction

Pars (1965) in his book "A Treatise on Analytical Dynamics", pages 12—13, states that "forces depending on the

acceleration are not admissible in Newtonian dynamics". This is correct but the method used by Pars to show

this is flawed. In the present paper the statement on admissibility is examined and a more correct method is

used to confirm the Pars statement. The following is presented using the notation of Pars and part of his

development is reproduced with annotations introduced by the present author.

2 Background

First the development by Pars is outlined here. Consider a particle mass m, moving along a line Ox and

consider two forces m4) and mwthat can act on this particle; the multiplier m, used by Pars is taken as an

expedienee and will be retained in the present paper. The functions q) and w can be functions of the particle

position x, the particle velocity v(= dx/ dt) and the time t; these functions can also be functions of the motion

history but this is not relevant to this article. Since these functions (1) and \V are functions of variables x and v

that are themselves functions of time although the functional behaviour of x and v is not known a priori then it

is proper to state thatq) and IV are functionals of x and v. Now also let these functionals be functions of the

acceleration f(2 dv/ dt) and it is this dependence that is the primary concern.

Consider three experiments, the first where the particle is acted on by the force m¢ (f), the second by m n; (f)

and in the third by the combinations of forces m(¢(f ) + \|I(f . Pars states here that the values of x, v and t

are the same in all three experiments but not how to achieve this. Denoting the resulting accelerations of each

experiment by f1, f2 and f3 then

f1 = <l>(f1) (1)

f2 = w(f2) (2)

and f3 Z ¢(f3) + W(f3) (3)

The first point is that there should be uniqueness in f and thus the force functionals q) and IV should be linear in

f. As Pars has done, these functionals are prescribed such that thef can be uniquely determined.
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Pars then invokes the fundamental postulate of Newtonian mechanics that when two forces act simultaneously

on a particle the effect is the same as that of a single force equal to the vector sum, and equivalently each force

gives rise to an acceleration that it would produce if the other were absent, thus

f3 z f1 + f2 (4)

and combining this with the equation (3) above forf3 gives

f1+f2=¢(f1+f2)+W(f1+f2) (5)

and Pars then continues to show correctly that this latter equation is inconsistent with equations (1) and (2);

here this will not be pursued further but the introduction of equation (4) will be queried.

 

The two reactive forces

   The two applied forces

Figure l. A Mass Subject to the Action of Two Forces
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3 The Contradiction and the Resolution

A system which incorporates the two functionals (1) and w is shown in Figure 1. It is important to distinguish

between the two types of forces shown; the forces considered by Pars are applied forces and act independently

of each other and hence equation (4) can be used. However if the forces are reactive as they must be if they are

dependent on the motion, the accelerations that they cause are not independent of the action of the other force.

The combined action of the two reactive forces is modelled by equation (3).

Returning to the Pars statement, "forces depending on the acceleration are not admissible in Newtonian

dynamics", it is necessary to define a Newtonian space, as a field of behaviour of systems that are governed by

or adhere to the three Newton laws; this is the equivalent to Pars' Newtonian dynamics. There are systems that

are not in the Newtonian space and those systems that use force functionals that contain accelerations and

higher displacement derivatives, i.e. rate of change of acceleration (z df /dt)‚ will be seen to be in a non-

Newtonian space.

Consider a mass, moving in x—direction and acted on by a force component, Figure 2, where the behaviour of

the force is governed by a constitutive law written functionally as w (x, v, f) . This force functional is a

function of the mass position x, its velocity v and its acceleration f. Obviously it could also be a function of

other differential and integral operations on x, but it will suffice here to consider only those three.

Force

   
    

      
x,v,f 1

Figure 2. A Single Mass and a Single Force

Applying Newton’s second law gives

mf = w, v. x) (6a)

dx

h = ——w ere v dt (6b)

dzx

and f = dt—z
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The velocity and acceleration are only related to the mass position by compatibility requirements (6b and c),

they are quite independent of each other in equation (6a). Thus the force element can be examined on its own

away from the mass and could be visualised as a specimen undergoing tests in a testing machine. (A testing

machine is defined as a machine that can impose on a test specimen a specified kinematic deformation and will

measure the force exerted on the machine by the test specimen. The specified kinematic deformation will be

determined from the requirements of the test and can include all history and rate deformation paths.)

It is observed that acceleration appears on both sides of equation (6a); as Pars has stated there must be

uniqueness in the acceleration term. To achieve this it is necessary to impose linearity of f in the force

functional 1;}; any nonlinearity could result in a state in f-v-x space, Figure 3, where a specified point x, v

gives a nonunique value for f resulting from the application of equation (6a). To ensure linearity the following

form for w will be introduced:

ul(f, v, x) = Q (v, x) — A(v, x)f (7)

curve of mf=\l/ (f‚v‚x)

   

Projection of curve in x v plane

Figure 3. Solution to Equation (6a)

where Q and A are two new functionals; the negative sign before the second term is a convenience.

Substituting equation (7) in equation (6) results in the following:

mf = S2(v, x) — A(v, x)f (8)

The term A represents the added (or equivalent) mass of the system and this will be discussed later. Equation

(8) can be rewritten as

(m + A) f = Q (9)

A(v, x) is a functional that can vary as the system configuration changes; again it could be "experimentally"

determined together with S2(v, x) by recourse to the testing machine. First, if A is at any time negative then

by designing the system with the appropriate mass m such that at that point in the v—x space, m = the
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system would respond with an infinite acceleration. Second if (m + A) S Othe resulting acceleration would

be in the opposite sense (vectorially opposite) to the force. For positive definiteness of inertia m 2 [Al . The

value of m is assumed to take any positive value.

  

Figure 4. Curves of Constant w

This has suggested some problems with the acceptance of w(f , v, x); however there is a more significant

problem and that arises again from taking the component w and examining its behaviour in a testing machine.

The machine is used to record the force 141(f, v, x) exerted by the component for a given profile of component

stretch x, stretch rate v, and rate of change of stretch rate f. Figure 4 illustrates qualitatively, a typical behaviour

for such a test where traces of constant w are shown.

Now consider any point in f-v—x space; this gives the reactive force supplied against the testing machine.

Consider that state as one through which the system of Figure 2 passes according to equations (6). The force

element has shown for a specific acceleration f, velocity v, and position x a resultant reactive force I}! that is

applied to the mass. The acceleration of the mass is thus 141/ m and this is in general not equal to f . This has

been shown for the chosen state in the f—v-x configuration space, but it could equally apply to any state in that

space.

There is thus an error in the events described, either the force element cannot be tested in the manner

described: but this is the conventional, necessary and only method for identifying the behaviour and

characteristics of force elements used within a dynamic system, or the modelling and analysis of systems using

such a force cannot be resolved using Newton's second law, i.e. the system is in a non-Newtonian space.

The added or equivalent mass referred to previously is an inherent inertia within the force element; if such a

force element was tested in testing machine, the effect of acceleration would be measured. Its effect would be to

resist change in velocity and thus A would be positive semidefinite. Within equation (9) the added mass must

be kinematically tied to the particle mass m in the system. This is the only type of acceleration entry into the

force constitutive that is consistent with Newtonian space. Non-inertial acceleration and higher time

differentials (d"x/dt") Whilst not necessarily incorrect, cannot be used within Newtonian space. This

exclusion from Newtonian space has implication in many applications; within the field of viscoelasticity it must
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exclude from the material constitutive relations the dependence of stress on strain acceleration. Other

applications include solid-fluid coupled systems where the characteristic of the fluid domain is represented by

an equivalent force component and this is assembled with the solid force components to give an equivalent

system; it is useful to give a mass quantity to the fluid and this is the quantity A referred to in equation (8);

this would be usually bounded from below, A being greater than O. It is conceivable that A could be less than 0

for systems where there is a reduction or removal of the coupled fluid mass in, for example, a fluid driven

vibratory system, but this is beyond the scope of this note.

4 Conclusion

The implications of including the acceleration and higher derivatives in the constitutive form for applied forces,

i. e. those generated by non—inertial components is discussed. Their inclusion leads to nonuniqueness in the

dynamic motion of the system and thus is in opposition to Newtonian dynamics. The implications of this extend

into the theory of viscoelasticity and must restrict the form of constitutive equations if Newton's second law is to

be applied.
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