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MHD Squeezing Flow Between Two Parallel Discs

S. Bhattacharyya, A. Pal, I. Pop

The unsteady motion of a viscous, incompressible and electrically conducting fiuid squeezed between two

parallel discs, in which the lower disc is rotating with an arbitrary time-dependent angular velocity, while the

upper disc approaches the lower one with a time-dependent velocity, is studied. A numerical solution of the

governing partial diflerential equations is obtained through a fourth-order accurate Hermitian finite—

difi‘erence scheme. Results for the velocity field, normal pressure forces (load) and the torque which the fluid

exerts on the discs are presented for some values of the Reynolds number and magnetic field parameter at

various non—dimensional times. It is found that the load on the upper disc increases significantely with the

increase of the magnetic field parameter. It also increases with the decrease of the gap between the discs. The

torque on the lower disc is shown to increase with the increase in the magneticfield parameter as well as with

the angular velocity of this disc.

1 Introduction

The study of the squeezing flow between two planes is of special interest for applications to bearings with

liquid—metal lubrication. The interaction of the flowing liquid-metal lubricant with the applied magnetic field

can be used to increase the total load which the rotor can support and to reduce the viscous drag on the rotor.

Studies on the effects of an applied magnetic field in lubrication were made by Hughes and Elco (1962), Kuzma

ct al. (1964), Kricgcr ct a1. (1967) and Kamiyama (1969). In these investigations the authors have considered

the magnetic force term but neglected some or all the inertia terms in the Navier—Stokes equations. Hamza

(1988) studied the squeezing flow between two non—rotating discs in the presence of a magnetic field acting

perpendicular to the discs by taking into account all the inertia terms. In a subsequent paper Hamza (1989)

obtained a similarity solution of the governing equations, where the axial magnetic field is assumed to be of a

particular time-dependent form.

The study of similarity solutions for the steady motion of an incompressible viscous fluid between two rotating

discs was initiated by Batchelor (1951). Using von Karman similarity transformation the governing equations

were reduced to two coupled fourth-order ordinary differential equations. The solution of these equations was

expressed in power series of small values of the Reynolds number Re . However, Lance and Rogers (1962)

developed a shooting method to solve numerically the ordinary differential equations for different values of Re.

Subsequently Holodniok et al. (1977, 1981) have developed a finite-difference scheme along with Newton’s

iteration for obtaining solutions at higher values of Re. A detailed review of these studies was made by

Zandbergen and Dijkstra (1987).

Ishizawa (1966) has shown that when the angular velocities of the discs are time-dependent, the Navier—Stokes

equations describing the flow between two discs can also be reduced to a pair of coupled non-linear ordinary

differential equations. Hamza and MacDonald (1984) considered the case where two parallel discs in an

unsteady rotation have also a velocity component in a direction perpendicular to their planes and obtained a

similarity solution of the governing equations. Their solution requires that at time t, the separation of the discs

must be proportional to (1—0tt)“2 and the angular velocities of the discs are proportional to (l-oct)'1, where of]

denotes a characteristic time.

In the present paper, we consider the unsteady flow of a viscous, incompressible and electrically conducting

fluid between two parallel discs of a small gap width, where the lower disc rotates with an arbitrary time-

dependent velocity and the upper disc approaches the lower one with a time—dependent velocity. We assume

that a uniform magnetic field is applied perpendicular to the planes of the discs. Since the gap width between

the discs at any time is small compared to their diameters, the edge effects can be neglected. Numerical

solutions of the governing non-linear parabolic partial differential equations are obtained through a higher-

order accurate Hermitian finite-difference scheme. Effects of the magnetic field parameter, the squeezing

parameter and the Reynolds number on the flow field, on the normal pressure forces exerted on the upper disc

(load) and on the torque on the lower disc are determined at different times.
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2 Formulation

We consider the flow of a viscous, incompressible and electrically conducting fluid between two parallel discs

in the presence of a uniform magnetic field B0 , which is assumed to be applied perpendicular to the planes of

the discs. Let (r,6,z ) be cylindrical polar coordinates with the discs occupying the planes z = O (the lower

disc) and z =d (t*) (the upper disc), respectively, where d is the distance between the discs and t" is the

nondimensional time. It is further assumed that the lower disc rotates with the angular velocity

0) (t*) = (2(1) ( t* ) in its own plane and the upper disc approaches the lower disc with a constant velocity W1.

Initially (t* = 0) the discs are at the constant distance H and the lower disc is rotating with a uniform angular

velocity Q . This implies that d(()) = H and q) (O) : 1 .

The Navier-Stokes equations for the governing unsteady axisymmetric flow can be written as

ä ä a ug vav _ z Q 13 2

at War We? ‘ 7 ‘ 27:1; ' V V 7 ‘E‘a;("B°”) ‘1)

2

fizmflwfihflzv v»; _S’Äv <2)
at 8r 82 r r“ P

where u, v and w are the velocity components in the radial (r), tangential (6)and axial (z) directions, and g is

the circumferential component of vorticity given by

au aw
= _ _ __ 3

g Hz ar ( )

If the stream function W is defined by

1 8w 1 aw
: -———— : — —— 4
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thus g becomes

1 2 ag = _(Vzw _ __W] (5)
r r dr

where the Laplacian operator V2 is given by

2 2

V2 _ a— li + a— (6)
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In writing equations (1) and (2), the effect of the induced magnetic field on the flow is neglected and this is

justified for flow at a small magnetic Reynolds number. This is indeed true for flow of liquid metals, e.g,,

mercury or liquid sodium.

We now introduce the following non—dimensional variables:

n = z/d(r*) [50") = d(t*)/H MR) = m(t*)/o

f = or f(n,t*) = w/rsz(t*) (7)

h(n,t*) = gH/rto(t*) g(n,t*) = v/ru)(t*)
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Using these variables, equations (1) to (3) then transform to

2
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subject to the boundary conditions (for t" > 0)
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where gt* 2 dg/dt*‚ hr = dh/dt", Bit 2 dß/dt* and (bit = dct)/dt*. We now assume that the upper disc

approaches the lower one with a velocity Wd : QHE where 8 is a positive constant called squeezing

parameter. Hence

— Wd = w(1,z*) = — 2co(r*)Hf(1,t*) (12)

This explains the boundary condition on f at n=1given by equation (11). In equations (8) and (9)

Re = H2Q/v is the Reynolds number and M = Ego/p9 is the magnetic interaction parameter which

measures the strength of the electromagnetic body force relative to the Coriolis force. Here v is the kinematic

viscosity, c5 is the electrical conductivity and p is the density of the fluid.

Since the gap d ( t* ) between the two discs decreases with time, we shall assume here that

13(23): 1 — er (13)

The initial conditions of equations (8) to (10) (i.e., at t* = O) are governed by the solution of the

corresponding steady—state similarity equations for the flow due to a uniform rotation of the lower disc. These

equations can be obtained from equations (8) to (10) by setting

   

>|< * a

ßt =d>t =1 and *20 (14)( ) ( ) at

i . . 82p . . . 8p .
From the axral momentum equatlon It can be shown that = 0, re, the radial pressure gradient — 18

r r

independent of n , and this is given by

1 _ 2 Re—l 83f ‚k 2 *

7; — pQ ¢[ [33 ——an3 (0J > + (pg (0,2‘) (15)

If the discs are assumed to be of finite radius a and of negligible thicknesses. then the load or the normal

pressure forces exerted on the upper disc is given by

L = 21tJ:r[P(r, 1, z*)— F(r, 1, z*)]dr (16)
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where P (r, l, t*) = p (r, 1, t* ) — p (a, 1, t*) and 15 (r, 1, t*) are defined in a similar way and correspond to

. . . . . . 8P *
the conditions on the outher Side of the upper disc. But, it IS assumed that a— (r, l, t ) = O, so that from

I”

equations (15) and (16), we obtain

 

L = _ L??? :;—€(0,r*) + g2(0,t*)¢]¢ (17)

If we now define the non—dimensional load as L* = 4L/ ( anZa4 ) then, we have

t“ = — [RE] (of) + g2(0,t*)¢:l¢ (18)

On the other hand, the torques which the fluid exerts on the discs are also of interest in rotating flow problems.

Thus, the torque on the lower disc is defined by

  

T = 2nuj:r2[g—:) dr (19>

z=0

Using equation (7), Tcan be expressed in non-dimensional form as

T* = d) (t*)gn (O, t*)/ß(t*) (20)

where T" : (2T/ana4).

It is worth mentioning that equations (8) to (10) for the steady-state (t* = 0) non-magnetic (M = O) case

reduce to ordinary differential equations and they correspond to the set of equations considered by Rogers and

Lance (1962). These equations also correspond to those derived by Hamza (1988) in the absence of rotation of

the lower disc (Q = 0).

3 Numerical Method

The non—linear boundary value problem governed by equations (8) to (10) is solved by first differentiating in

the t’k — direction and averaging the other terms. The derivatives in n are discretized by using the compact

Hermitian formula. The fourth-order accurate method considers as unknowns at each discretized point 11i not

only the value of the function fl. itself but also of its first and second derivatives f and f i”, where primes

denote differentiation with respect to n,- . The system is closed by considering the following relationships

between the function ft and its derivatives in three successive discretization points.

/ I l 3

12-1 +422 +f‚-+1 = -(fi+1-fi_1) + 0(k“)

k (21)
I II II

fi—1+10fi+fi+l 2 ’kT(fi+1—2fi +fi~l) + 0(k4)

where k is the spatial step of discretization. The second-order derivative f i” can be expressed as

„ 1 ‚ ‚ 2

fi 2 ‘ JUN ’ fi—i) + k—2(fi+l —2fi + fi—l) (22)

which is fourth-order accurate. However, the second—order derivatives can be eliminated in order to reduce the

number of unknowns. This method was described in great detail by Adam (1977), and Peyret and Taylor

(1983). Loc (1985) employed it successfully for solving the unsteady Navier-Stokes equations.

We shall use here Newton’s linearisation technique to cope with non-linearity. The resulting system of block

tri—diagonal equations is solved by a block elimination method (Varga. 1962). The steady—state ordinary
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differential equations are solved in a similar manner. The boundary conditions on the function h are

approximated through a second-order accurate upwind scheme. The iteration starts with assuming a guess

solution for f, g and h, satisfying the boundary conditions (11).

4 Results and Discussion

In order to assess the accuracy of the present method, we have applied it to the problem of Lance and Rogers

(1962) for the steady flow between two rotating discs without an applied magnetic field (M = 0). Results for

the radial (f ’) , tangential (g) and axial (f) velocity components are shown in Figure 1 for Re = 25 and 81, and

S = O and 0.5, where S is the ratio of the angular velocities of the two discs and primes denote differentation

with respect ton . It is seen from this figure that the present results are in excellent agreement with those of

Lance and Rogers (1962). The variation of the non—dimensional load L* with time was also compared with the

perturbation solution obtained by Hamza (1988) and it was found that the maximum percentage difference is

about 4%, which is again very good.
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Figure 1. Radial and Tangential Velocity Profiles for 0 S = 0, Re 2 81

and OS = 0.5, Re = 25

The effect of the squeezing parameter s on the velocity profiles (f, 8f / 8r], g) is described in Figure 2 at f“ =

1 for M = 4 and Re = 25 when the lower disc rotates with a constant angular velocity (q>(t*) = 1) and

ß(t* ) is given by equation (13). It is seen from this figure that the radial velocity 8f /dn increases due to the

increase in the squeezing parameter 8 . Hence, the radial pressure gradient, which is independent of z, is

negative throughout the flow. The negative radial pressure gradient which arises due to squeezing and rotation

of the lower disc produces a normal force (or load) on the upper disc and this force is so directed as to push the

discs away from each other. Further, we see that the axial (f ) and tangential (g) components of velocity also

increase with the increase in a .

Figures 3a and 3b display the radial and tangential velocity profiles (8f / an, g) for Re = 25 and different

values ot the magnetic parameter M at t* = 1 with (1) ( t") = 1—0.2t*2 (decelerated rotation of the lower disc)

and ß(t*) = 1—0.25t*. It is seen that the radial velocity is outward near each disc. We also see that the

magnetic field produces a slight increment in the radial outflow near the discs and the radial velocity profile in

the region of the midplane (n = 1/ 2) becomes almost flat. Further, we notice that the radial outflow in the

mid-plane decreases with the increase in the magnetic parameter M. Near both discs the tangential velocity

decreases with increase in the magnetic field.
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Figure 3. Radial and Tangential Velocity Profiles

att*= 1 for Re = 25

Figure 4 shows the variation of the non-dimensional load Ü with time 1* for M = 0 (the magnetic field is

absent) and Re — 25. Graphs are drawn for various values of the squeezing parameter E with

(l) (t* ) = 1—0.3z‘*2 and ß ( t* ) given by equation (13) including the flow case when the lower disc is stationary

(g = O). It is clearly seen from this figure that as time elapses, L* increases monotonically. The results also
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illustrate the fact that L* increases as the parameter 8 or the gap between the discs increases. Further, we

notice that L* remains almost invariant in time for small values of E .
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Figure 4. Variation of the non-Dimensional Load

forM=0 and Re=25

Figure 5 shows the variation of the non-dimensional load L* with Re at time t* = l for M = 5 and different

values of 8 when d) ( t*) = 1—0.4t*2 and ß(t* ) is given by equation (13). It is evident from this figure that

the effect of 8 on Ü is much more prominent than the effect due to an increase of Re, particularly for

Re > 50.
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Figure 5. Variation of the non—Dimensional Load

at t*=1 and M=5

Figure 6 presents the variation of the non—dimensional torque T’k on the lower disc with time t" for Re = 5

and different values of M . Graphs are depicted for flow due to an accelerated ¢(t*) = 1—0.3?2 or a

decelerated (q) ( t*) = 1— 0.3 t"2 ) rotation of the disc with ß(t*) = 1— 0251* . It is seen that for an accelerated

disc, the magnitude of T* increases monotonically with time, while T" decreases with time when the rotation

of the disc is decelerated. This result is plausible on physical grounds. For an accelerating disc, its angular

velocity increases with time and consequently the torque required to maintain such an angular velocity should

also increase with time. Just the reverse is true for a dccclcrating disc. Further, we observe from this figure that

the magnetic field produces a huge increment in the magnitude of T* . This can be explained physically as

follows: It is well known that a magnetic field imparts some rigidity to the conducting fluid. Thus, with

increase in the magnetic field, greater effort will be necessary to maintain the rotation of the disc and this

implies an increase in T* with an increase of the parameter M.
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