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Double Asymptotic Method for Nonlinear Forced Oscillations

Problem of Mechanical Systems with Time Dependent

Parameters

V. Z. Gristchak, V. N. Kabak

The double asymptotic method for the forced oscillations of nonlinear vibration problems of some mechanical

systems with time dependent characteristics is an asymptotic procedure developed with perturbation and WKB-

theory. The method is illustratedfor some coeflicientfunctions and results of calculations are compared with

direct numerical solutions.

1 Introduction

The problems of forced oscillations of nonlinear dynamics problems have been one of the most fundamental

subjects in the study of the behavior of mechanical systems in modern aerospace, machinery and structural

industries. For example, the shock wave interaction with ground objects and earthquake stability of structures

are in general nonhomogeneous in space and in time. The specific characteristic of these problems is the

complicated character of interaction with the object and evaluation of an external loading connected with the

vibration behavior of the structure. The ground object at some distance from the place of an explosion, is

exposed to the product of detonation or air-shock wave. With this connected complicated diffraction picture of

interaction, the object is subjected to instationary (dependent on the time) pressure. Dynamic pressure is a

function of parameters of wave, geometrical and physical characteristics of the object and its displacement and

orientation with respect to the space wave front. The pertinent literature in the area of applications of

approximate analytical or analytical—numerical methods for nonlinear dynamics problems has been discussed by

Adrianov et a1. (1994), Gorman (1982), Kobayaski and Sonoda (1991), Timoshenko et al. (1974) and Volmir

(1972). In the present paper an approximate analytical method on the basis of double (perturbation and phase-

integral or WKB methods) asymptotic expansion in closed form for some forced oscillation nonlinear dynamics

problems of mechanical systems with the time dependent parameters is discussed.

2 Description of the Method

Consider the nonlinear dynamics problem for a mechanical system with time dependent characteristics of mass

or density. The corresponding differential equation that describes the process of forced oscillations can be taken

in the form

Mr) + <02 (0f + aP W2 + at Q(z)f~‘ = W) (1)

where (020) = (0(2) (p (t), (p (t)a given function of time. The parameter of natural frequency of vibration

(no > O we take into account as a large parameter. The function tp(t) > 0 is a continuous function, (X is a

small parameter O < (X << 1. For example, for the nonlinear vibration problem of the shallow cylindrical

shell the parameter 0t 2 52—, where a] is longitudinal dimension of shell and h is the shell thickness. We

assume here that (p(t), P(t) and Q(t) are continuously differentiable functions.

In order to obtain an approximate analytical solution of the initial nonlinear differential equation we will use

the double asymptotic expansion method that includes two steps of solution (Gristchak and Golovan, 1995). On

the first step (outer perturbation expansion) the solution of equation (1) is presented as the expansion on the

small parameter 0t.

f=fo +0tf1 +0813“- (2)
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We take into account three terms of expansion (2) and after substitution of equation (2) into equation (1) and

comparing the coefficients with the same order of parameter 01, we obtain a system of equations for the

unknown functions f0, f1,

f0”+ (02(t)f0 = y(t) at a0 (3)

f1”+ w2(t)f1 = —P(t)f02 at 01' (4)

f2”+ €02 (t)f2 = *ZP (t)f0f1 ‘ Q(f)fo3 ataz (5)

Using the fact that the natural frequency of Vibration parameter (0% is large in the comparison with unity, the

solution of the first homogeneous equation of the system we look for on the basis of the two term phase—integral

or WKB—rnethod (Nayfeh, 1981) (inner asymptotic expansion). Omitting the details of the simple calculations,

we obtain the functions foo, fm, fH in the expansion

’ 1

f0(’) = f3XPJ()[°’0foo +f01 + m—Ofll + “de (6)

From the equation (3) it follows that:

 

c f 7

foo Z 1L2 CXPL i lmo ‘92 (005T (7)

9040)

or f00 = AG] + BG2 (8)

' t 1 1 r 1
cos Jocoocpm dr s1n JOOJOQÜ) d1

where G1 = ——1-—-— G2 = ——————-——— (9)1

(P40) (P4 (t)

are the G-functions of the first kind (Gristchak and Golovan, 1995). We will introduce the following notations:

A 2 C] + c2 B = l(C1 “ CZ) (10)

Using the method of variation of arbitrary constants for the particular solutions of equations (3) and (4) we

have

  

f01 = A(t) G1(t) + B(z) G2(t) (11)

f” z M(t) G1(t) + N(;) 020) (12)

A’(I)G1(t) + B'(t) G2(t) = 0 (13)

A (t)[——w0 (pp)3 02 — (4:; G1:| + B(t)[w0 (pp)E G1 — j; 62] = y(r) (14)

A(t) = Jg) G2 (I)d’c + D1 3(1) = OI {gaunt + D2 (15)
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f0(r)=cl[K—i Mr) c2 dm] + G2<r>[L + i 9(1) omen-l <16)
(1)00 (000

Here we denoted

K:A+D1 L=B+D2 (17)

The particular solution in the second approximation can be written as

   

M’(t) G1(t) + N’(t) G2(t) = 0 (18)

M,(t)["°30 ‘90)5 G2 _ GI] + N,(t)[w0 (PO)E G1 fl G2]: —P(t)f02 (19)

M(t) z A2502 G2(T)d’t + Kl N(t) = — ÄML—Y‘EGIUMI + K2 (20)

Without losing generality we put Kl = K2 = 0, then

f1(t) = %[GI(T)J0, p(T)f02 G2(T)d'c _ G2(T)J(:P(T)f02 Cliodr] (21)

O

Substituting the functions f0, and f1 into the expansion (2) we obtain the approximate analytical solution of

the following equation

f(t) + w2(t)f + 0<P(t)f2 = W) (1*)

in the form

f0) = G] (aß — 3:— ;vm Gz mm] + out)? + mi10%) G. (r) on]
o o (22)

+ 0<{MGI(:) + N620) i + [G] (I) fo'pw: am) dc — G2(1)] ’ pun? am}

Finally the solution (22) for two approximations for 0t and for three approximations for of the initial

030

equation (1*) is given in the form
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f(t) = G1(t)l:K‘wL72(t)}+ G2(t)[L+’c’01_O‘Y1

O

1 2 K2 1 2 L2 2K
+(x>< G t —— + — + — +— ——p

{ 1( c0(3) P112 (Y2) (00 P112 wg P222 (71) mo P222 (0(2) 112(72)

2 2L 2K ZKL 2L

‘6‘3’P112 (72: 71) _ EP221 (72) + ’(‘D—Q‘Pzzl (71) + ’03"sz + —2P222 (71)] (23)

o o o 0 m0

1 K2 1 L2 2K

—Gz(t)[—’(gäP111 + w—OPIH + w—äPm + a); P122 “(D—3P111(Y2)

‘37P112(Y19 72) “ 2—€P112(72) + EI‘j‘P112(Y1) + EPIH + 2—lglP122(71)}

(0E) (’30 (’30 0)0 (00

The integrals that correspond to solution (23) can be written as

2‘

P112 (1%) = Jopm 0? (1)02 (r) ((2) G2 (z) dzfdt

pm = Jo’p (w) es (r) am) dr

P222 = JQP (T) G; (ÜUOTY (Z)G1 (z) dzjzd'c

P222 = JZP (T) G; (T) d'c

P122 (12) = (1)0. (r) G5 (r) U0} (z) G2 (z) dzde

pm (12, 11) = 10; (1)61 (1)0; (um (z) G] (z) J0? (z) 02 (z) dzjdr

pm (12) = 1} (r) G; (r) cl (110011112 (z) dzde

P221 (71) = JZP (T) G22 (T) G] (1)“); (z) G1 (z) dzjd‘c

[7221 = J pm 022(1) (11 (1)211

f

P222 (71) = JP (1)0; (Ti-[QTY (Z) Gl(z) dzjd‘c
0

P111 = JZP (T) G13 (T) UJY (z) G2 (z) 612)ng

P111 = JZP (T) G13 (T) d7
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pl (11) = p (r) G] (r) a; (oflo‘wz) 01 (z) dz]sz

pm = [032106, (11c; («1m (24)

pm (12) = Jo‘p (x) es (r) (10‘112) c2 (z) dzjdr

<12, 11) = Jo’p (r) as (r) G: (11(ng (z) 02 (z) 1112) G1 (z) dzde

pm (12) = jo’p (r) a; (I) c] (0(ng (z) G2 (z) dzde

pm (11) = 10m G12 (1)0211) [£112,101 (z) dzde

P122 (Y1) = ID“) 01(17) 022(1) (ng (z) G] (z) dzjd‘c

From the general solution (23) of the initial nonlinear dynamics equation (1*) with quadratic nonlinearity

follows that we can neglect the terms of an order 81 (we take into account terms of an order 8"] and 80). In

this simplification our approximate analytical solution of equation (1*) becomes

1 1 K2 L2 2KL
t=GtK—— t+GtL+— t+OLGt— +—— +—f() 1( wo 72 ( 2 ( (00 Y1 ( { 1( )[wo P112 (00 P222 mo P221

K2 L2 2KL

‘G2(’)[““‘p111 + —P122 + _pnzß (25)

030 u3o (”o

The constants K and L can be obtained from the initial conditions, for example,

f(0) = 0 (26)

f ’(0) = (Po (27)

In the following sections we shall discuss some specific problems on the basis of given approximate analytical

solutions.

289



3 Nonlinear Oscillations with Constant Force

The integrals for the nonlinear solution (25) with constant right hand side of initial differential equation (1*) of

motion can be evaluated as

1 P

P112 = —g w—OCOS3(COOI)

1 1

P222 = BP E[—9cos (wot) + cos(30)0t)]
(28)

1 P .
p221 : E (0—0 Sln3((D0t)

1 P _ A

P111 = E m—0[—9 s1n(co0t) + s1n(3w0t)]

1 P .

P122 = 3 a81n3(w0t)

Finally the solution of the nonlinear problem can be written as

Q

ma)0

+ ml {K2(G1 P112 — G2 P111) + 2KL(G1P221 — G2 P112) + L2(G1 P222 ‘ G2 P221

0

Q

mu)0

  

I t

f(1:) = KG1 + LG2 — G1 JOG2(r)dr+G2 J0G1(T)d13

(29)

Some numerical calculations for this specific case are given in the following Figures 1 to 4.
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Figure 1. Comparison of Linear and Figure 2. Solution for Small Values of PO
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Figure 3. Linear Solution Figure 4. Contour Plot of Linear Solution
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4 Oscillation Function for Nonlinear Term with Constant Force

The nonlinear function P (t), the function (0 (t) of the natural frequency, and the forcing function y (t) are

considered as

12(1) z Posin(bt) 7(1) = 9 = com; (00) = wo = const (30)
m

For this specific case the integrals in the solution (25) are

p112 = POJ.[cos(030t)]2 sin(oo0t)sin(bt)dt

P0

8(90)?) —b2)(coä 492)

— {sin[(b — 3w0)t](—b3 — 3192000 + bmä + 3mg)

+sin[(b — m0)t](—b3 472030 + 9190)?) + 9033)

+sin[(b + coo)t](b3 472% — 9m?) + 9mg)

+sin[(b + 3w0)t](b3 —3b2w0 — mg + 3003)}

P221 = P0J.[sin(c00t)]2 cos(w0t) sin(bt)dt

_ P0_ 8(9wä_b2)(wä_b2>{cos[(b — 3000)t](b3 + 3b2w0 — bwä _ 3mg)

+cos[(b — m0)r](b3 —b2m0 + 9bw3 + 9mg)

+cos[(b + coo)t](b3 + [22000 + 9wa — 9mg)

+Cos[(b + 3coo)t](b3 — 3192030 — bcoä + 3(93)}

(31)
3

p222 = POJ.[sin(w0t)]' sin(bt)dt

P .
=W{sm[(b —- 3030)t](—b3 —3b2(‚00 + boa?) + 3mg)

+sin[(b — m0)t](3b3 + 3b2w0 — 271mg — 27mg)

+sin[(b + (90):](41;3 + 3172030 + 27wa — 27mg)

+sin[(b + 3m0)z](b3 —3b2w0 — bmä + 3003)}

p1” = POI[COS((DUI)]3 sin(bt)dt

P

= W{COS[(b — 3C00)t](~b3 — 3122000 + +

+cos[(b — m0):](—3b3 — 3b2m0 + 27wa + 27m3)

+cos[(b + m0)t](—3b3 + 3b2m0 + 27m3 — 27mg)

+cos[(b + 3w0)t](—b3 + 3b2w0 + bwä — 30%)}
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Taking into account the boundary conditions (26) the constants K and L are

K=0andL=fi (32)

CO0

Numerical calculation for this example and corresponding figures are given for the parameters

 

Figure 5. Discontinuity Effects at Constant Figure 6. Dependence of Amplitude

Forced Oscillations with Periodic P (t) of Oscillations upon W, b
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Figure 7. Amplitude of Oscillation Figure 8. Contour Plot

at W: 10 for Periodic P (t)

    

  
Figure 9. Amplitude Factor and Contour Plot for High Level External Force
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Figure 10. Comparison of Linear and Figure 11. Comparison of Linear and

Nonlinear Models for Nonlinear Solutions
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5 Power Function for Nonlinear Term with Constant Force

For comparison we shall explore the function

P(t) = R, t2 (34)

The corresponding coefficient functions in the solution (25) are

 

p112 = R)Jt2[cos(wnt)]2 Sin(m0t)dt = 102203 [c0s(w0t)(54 — 27t2 (0(2))

+ cos(3(n0t)(2 — 9t2mä) + sin(w0t)(54t0)0 + 6tw0)]

 

P

P222 = P0J.12[sin((00t)fdt = 108203 [cos(w0t)(l62 — 81 tzwä)

+cos 30) t —2 + 99002 + sin a) t 162m) — 6tooO
O 0 O O

 

p221 = Pojt2[sin(co0t)]2 cos(m0t)dt = 10:0 [54m0 cos((oot) — 6twocos(3w0t)

  

3

m0 (35)

+sin(w0t)(—54tc00 + 2712 m3) + sin(3w0t)(2—9t2coä)]

2 3 Po
p111 = PO]: [cos(co0t)] dt = 2 [162er cos(m0t) + ötwo cos(30)0t)

10803;)

+ sin((DOt)(—162t(n0 + 81r2w3) + sin(3m0t)(9fimg — 2)]

Taking into account the boundary conditions (26) and (27), the constants K and L are

K = — Q ‚

m 035

1 V .
{L + F[u(0.51851<213 + 1.5185L2P) — 1.03704'KLP]}0JO = (Po (36)

0

L E E

(00

Numerical results of calculations for (p0 = land the corresponding figures are given for the parameters

r: 0.1, m0 = 10, 0c = 0.1, W = E (37)
m
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Figure 15. Comparison of Linear and Nonlinear
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Figure 16. Nonlinear Solution Figure 17. Comparison of Linear and Nonlinear

Solutions for [:0], P=O.l, W=1, 0c=0.l

6 Nonlinear Effects for Periodic Forced Oscillations

Taking into account the solution of an initial equation (1*) we suppose that the forced oscillation is periodic and

given by

y(t) 2 F0 sin(a t) (38)

For this specific case we obtain

W) z Wag + w0)cos[(a _ (00);] + (a _ m0)cos[(a + w0)t]}

(39>

W) = —%är0_—az){(a + 030)sin[(a — (00):] — (a — w0)sin[(a + wo)t]}

Let us consider as initial conditions for the problem those given by equations (26) and (27). From these

equations it follows that

K: 0 and L = #ch (40)

(1)0
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For the case

. 1

(p0 = 1 and L = 20— (41)

0

With an assumption P(t) = P0 sin(b t) the solution for the periodic forced oscillation is

l_‘0

2030(03(2) — a

f(t) = cos((oot) 2) [(a + w0)sin(a — m0)t — (a — (no) sin(a + coo)t]

l”0
—————a+0)0cosa—0)0t+ a—coocosa+w0t (42)2(„0(mä_az>[< >< H H )1+ sin(000t) L +

1 .

+ 0c L2 w—[COS((DOI)p222 — sm(w0t) p221]

o

where the integral coefficients pijl are as given in equations (31). Results of numerical calculations are given

in Figures 18 and 19 for

         

Figure 18 b) Resonance effect
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Figure 19. Shape of Vibration

7 Concluding Remarks

The ultimate goal of the proposed double expansion approach is to develop an algorithm for an approximate

asymptotic solution of some forced oscillation problems for mechanical systems with time dependent

characteristics. An effect of interaction between structural properties of mechanical systems and forcing

functions will have to be investigated in more detail especially near the resonance zones.
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