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Chaotic Motion of a Tethered Satellite System

J. H. Peng, Y. Z. Liu

The use of tethered satellites has been proposed and implemented in a few instances. It is a device to extend

the capability of spacecraft to perform scientific and application investigations. The present paper discusses

the libration and longitude vibration ofa tethered satellite system. By the analytical method of Melnikov and

the numerical calculation ofPoincaré maps, it is observed that this system’s motion may become chaotic.

1 Introduction

The use of tethered satellite has been proposed for space exploitation and development. It is a device to extend

e. g. the capability of the Space Shuttle to perform scientific and application investigations. The subsatellite is

suspended from the Shuttle cargo bay, toward or away from the Earth, at distances up to 100 kilometers from

the Shuttle. The dynamics and control of this system have received considerable attention in the past few years.

The interest is focused on the deployment and retrieval of the subsatellite, the vibration and libration control,

station keeping et al. The present paper discusses the plane swing and longitudinal vibration of a tethered

satellite system. By the analytical method of Melnikov and numerical calculation of Poincare surfaces of

section, it is observed that this system may perform a chaotic motion. When the longitudinal elastic tether

displacement is assumed to be small, according to Liu (1992) the tether behaves like a sinusoidal vibrating

string, and can be taken as a system of one degree of freedom with periodic perturbation. When the longitudinal

elastic tether displacement is large, the plane swing and longitudinal displacement are strongly coupled, we

take it as a system of two degrees of freedom.
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Figure 1. Mass m1 and tethered submass m2

2 Planar Swing Excited by Periodic Varying Parameter

The system is idealized as two point masses connected by a massless elastic tether with mass center 0 of the

system moving on a circular orbit with the angular velocity of (no. Assume that GB is the center of the Earth,

08X is along the vector 060, 13 is the pitch angle, 1 is the distance between ml and m2 (see Figure l), the

equation of planar motion is given as (Bainum, 1980)

327



{a + (6m) + 3w2sims 00513 = 0 (1)

When longitudinal vibration is relatively small, the displacement can be described approximately as

l 2 lo + A coswot, L = when 10 is the original length of the tether, A is the amplitude of

l l0 smth

vibration, (no is the vibrating frequency.

Defining 1: = (not, ö = fl, 2 = A,we write the dimensionless equation as

(00 0

2
d6

Q — 23 („+öjsinr + 352 sinfi cosfi = 0 (2)

d1 d1

. d1?) . .

We define x1 = Ü, x2 = —d—— , and rename 1: as t, then equation (2) can be wr1tten as

T

X = f(x) + €g(x, t) (3)

where

x2 0

f X = d ‚ t = .
( ) [—352 sinx1 cosxl] an g(x ) [2(x2+6)smt]

For a = O, equation (3) represents a planar integrable Hamiltonian system,

9g . —aH
X = x =

l 2

8x1

 

3x2

1 (4)

H = + 382 sin2 x1)

the Hamiltonian system possesses a hyperbolic saddle point 190(21), and a homoclinic orbit

F0 = {q0(t) |t e R} with

sin‘1 tanh(fi5t)

— ‘55 sech(x/§5t)

(lo (5)

F0 is the intersection of the stable manifold W€"(P€)and unstable manifold WE”(PE)of the system. For

sufficiently small a > 0 the system still has a hyperbolic periodic orbit 720) = p0 + 0(8). Correspondingly,

the Poincare map defined by P;0 220 —> 20; 20 = {(x, tlt = [0, still has a hyperbolic saddle point

Pa = R) + 0(ez)with stable and unstable manifolds WE‘V(PS) and WS“(P€). The distance in the Poincare map

between the manifolds WES(PE) and We“ (PE) is measured by

eM(t0)

d(tO) = W + 0(9) (6)
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here M(to) is the Melnikov function. It is given by

M(t0) = 1f(q0(t)) /\ g(q0(t+t0))dt

Substituting equation (5) into equation (7), we obtain

M to = 2x582 wsech fiét sin t+tO dt+362 sech2 fiöt sin(t+t0)dt( ) ( )
——o<)

The solution in terms of elliptic functions is

to
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M00) = 21t[sech~3— + cschijsin

2J§8 zfis

(7)

(8)

(9)

where M(t0)is a function of to, and there exist simple zeros, this means that the stable and the unstable

manifold intersect transversally, the Smale horeshoe exists, and the system may perform a chaotic motion. In

Figure 2, equation (3) is numerically integrated for 30 different initial conditions, the Poincare map is defined

as 2x00) = {(x1(t), x2(t) lt = kT, k = 1, 2, In Figure 2a, for fairly small 8, we see that most of the

Poincare map is fairly well covered by invariant tori, that is, most of the periodic and quasiperiodic motions are

preserved, as we go on increasing 8 ‚ some tori break into chaotic trajectories in the sense that the successive

points on Poincare maps do not lie on a curve any more, but fill an area densely. In Figures 2a, b, c we can also

see a hyperbolic point and homoclinic orbits connected to it, and the small region Close to the separatrix is

covered by chaotic trajectories. These features corroborate the result obtained previously by means of the

Melnikov theory.
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(C) = 0.0001, 8 0.1 52 = 0.0001,(d)

Figure 2. Poincare maps 2x00) = {(x1(t), x2(t)|t = kT, k
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3 The Coupled Motion of Swing and Longitudinal Displacement

When the longitudinal elastic tether displacement is large, the plane swing and longitudinal displacement are

strongly coupled, and the system should be taken as having two degrees of freedom. The Hamiltonian of the

system is (Bainum, 1980)

_ m "2 2 ' 2 m 2 22 i _ 2
H _ 5P +1(s+1)]+ 3[1—3cos (19)]wl + 2K(1 10) (10)

Normalizing the Hamiltonian (i. e. dividing by m (0% 10), We obtain

h = l[1'2+12({32+1)2] + l12(1—3cosz1s)+ lk(1—1)2 (11)

2 2 2

where: k = K/mmä, and the dynamical equation can be written in canonical form

s = i — p—i?
ap‘fl l“

pü Z _% : —älzsin2öaü 2

(12)

,_ a_h _
— aI71 —p1

. h
p] = —%-l— : pä/l3 — 1(lw3coszl9) - k(l"1)

In what follows, equation (12) is numerically integrated for 4 different initial conditions, the Poincare sections

in the (o — pfi)plane were obtained. The two different types of motion, regular and chaotic, are readily

distinguished on the Poincare maps, since for regular motion, succesive points describe smooth curves or

separate points; for chaotic motion, the points fill an area in an apparently random manner. In Figure 3a, for

low energy level, most of the Poincare’ maps are fairly well covered by invariant tori, that is, most of the

periodic and quasiperiodic motions are preserved, as we go on increasing h, some tori break into chaotic

trajectories (see Figure 3b — h), as h is further increased, more and more regular motion disappears, and finally

ending in a chaotic ocean as shown in Figure 3f, g.
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(a) h = —1.25 (b) h = -0.75 (C) h = -0.6

    

   

        

(d) h=—O.6 (e) h=—0.5 (f) h: 0.0

     

(g) h: 0.5

Figure 3. Poincare maps of Ü — pß plane
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