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Asymptotic Investigation of the Nonlinear Dynamic Boundary

Value Problem for Rods

I. V. Andrianov, V. V. Danishevskyi

An asymptotic procedure for a quasilinear dynamic boundary value problem is proposed. The method is based

on the introduction ofan artificial small parameter and its use for obtaining a simple approximate analytic

solution.

1 Introduction

Asymptotic approaches for nonlinear dynamics of continuous systems are well developed for the infinite in

spatial variables (Kevorkian and Cole, 1981; Nayfeh, 1981; Hinch, 1991), For systems of finite size we have an

infinite number of resonances, and the Poincaré-Lighthill-Go method (Kevorkian and Cole, 1981; Nayfeh,

1981; Hinch, 1991) does not work. The use of an of averaging procedure (Mitrolol’sky et al., 1991) or the

method of multiple scales (Lau et al., 1989) leads to infinite systems of nonlinear algebraic or ordinary

differential equations, and a subsequent truncation method does not provide the possibility to obtain all

important properties of the solutions (see below). The method of normal forms (Miloserdova and Potapov.

1983) is a very interesting approach for the two dimensional case. In this paper we use an asymtotic procedure

which is based on the introduction ofan artificial small parameter (Andrianov et al., 1994).

2 Asymptotic Procedure 1 — Using Natural Small Parameter

Let us assume a governing boundary value problem in the following form

2 2
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where all variables are nondimensional, ands is a nondimensional small parameter (8 << 1). From the

physical point of view we have longitudinal vibrations of a rod with nonlinear drag. Let us introduce a change

ofvariable

t = (or (2)

We will now search for solutions using the ansatzes
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After substituting expressions (2) and (3) into the governing boundary value problem (1) and splitting it with

respect to 8 one obtains
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The solution of equation (4) may be written in the form

(X3

U0 = C1 sinxsinl + C2sin2xsinZt + = ZCisinixsinil (6)

1:1

Here C1 is the amplitude of the fundamental oscillation, while the constants Ci for i>1 provide the next

approximations. After routine but cumbersome transfomiations we arrive at the following infinite nonlinear

algebraic equations
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3 Asymptotic Procedure 2 — Introduction of Artificial Small Parameter

Systems like (7) may be obtained in various ways (Mitrolol’sky et 31., 1991; Lau et al., 1989), and the main

problem in this approach consists in its solution. Truncation of the infinite system (7) cannot give any

information about resonances of higher order. We propose to introduce an artificial small parameter u ‚ writing

it near all nondiagonal members of the system (7), and represent the unknown coefficients as expansions.

llC„ Cf?) + C020 + C902 + n = 2, 3,

(8)

031 = (0&0) + (DEUH + („32W +

After splitting with respect to u solutions may be obtained routinely. It may be easily shown that for even n

C5,” = 0

and

032°) = —O.281250 C12 m21) = —0.001438 C12

do) = 0.0144927 q C20) : 00002071 C1 do) : 00000030 C1

4 Numerical Example

Numerical results (dependencies of fundamental nondimensional frequency 00 upon nondimensional amplitude

C1 ) are displayed in Figure l for various values of the small parameter s .
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Figure 1. Amplitude-frequency dependencies for fundamental oscillation for various values

of small parameter s

5 Concluding Remarks

Various problems for nonlinear dynamic boundary value problems for continuous systems, such as rods, beams,

plates, shells, may be solved effectively on the basis of the approach presented. The introduction of an artificial

small parameter may also be useful for perturbed eigenvalue problems with multiple roots (Hinch, 1991).
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