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Locally Coupled Analysis of Damage of Elastic-Perfectly

Plastic Material with Crack Closure Effect

A. Garai

In this paper, the basic equations describing the elastic-perfectly plastic damageable metal material are

presented. The principle of locally coupled analysis ofdamage (connected with the critical material point)

for cyclicly loaded material is described. The DAWGE code is usedfor the evaluation of the damage of

elastic-peifectly plastic material under 3D loading. The input datafor this program are the tensor of de-

formation in the critical point of material as a function of loading history and material properties. The

algorithm used in the program DAMAGE is also described.

1 Elements of Damagc Mechanics

As a lot of papers dealing with the theory of continuous damage mechanics have already been published

(Lemaitre, 1992), only the principal features used to build a model of ductile plastic and quasi brittle

damage are summarised here.

1.1 Damage Variable

Consider a damaged body in which a volume element at macroscale level has been isolated, and let S be

the overall section area of that element defined by its normal it , SD the total area of intersection of micro

cracks and cavities in section S and S the effective resisting area (Figure 1).

S < S — SD

According to the concept of effective stress associated with the hypothesis of strain equivalence is described

below. By definition, the damage variable D associated with the normal n is

 

Figure l. Damaged element
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1.2 Hypothesis of Isotropy

In the general case, cracks and voids are oriented and D„ is a function of n. This leads to an intrinsic

variable of damage which can be a second order tensor (Cordebois and Sidloroff, 1982) or a fourth order

tensor (Chaboche, 1978) depending upon the hypothesis made. In this paper we restrict ourselves to

isotropic damage, the cracks and voids being equally distributed in all directions. Thus DH does not depend

upon n and the intrinsic damage variable is the scalar D .

1.3 Concept of Effective Stress

If F is the load acting on the section S of the element considered in Figure l, T = F / S is the usual stress

vector which leads to the Cauchy stress tensor (o ‘ n = T) . The quantity S = S (1 — D) is the effective area

which effectively carries the load F . By definition the effective stress vector is

which, since D is a scalar, leads to the effective stress tensor (8 -n : T )
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1.4 Hypothesis of Strain Equivalence

It is assumed that the strain behaviour is modified by damage only through the effective stress (Lemaitre,

1971). The strain behaviour of a damaged material is represented by constitutive equations of the virgin

material (without any damage) in the potential of which the stress is simply replaced by the effective stress.

1.5 Thermodynamic Potential

Taking the free-energy \p as thermodynamic potential, it is assumed that it is a convex function of all

observable and internal variables. Using the hypothesis that the elasticity and plasticity behaviours are

uncoupled gives (Lemaitre, 1992) gives

1

we =—a:ee:se(l—D) (2)
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Where a is the linear elasticity tensor and e“ is the elastic strain tensor. The damaged elasticity law is

awe

Öse

 

G=p =a:ee(1~D) (3)

and the variable Y associated with D , by the power dissipated (Y D) in the phenomenon of damage, is

defined by

(4)

1.6 Damage Criterion

The density of elastic strain energy dwe being defined as

dwe : (fidee
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If we replace dge by its value taken from the damage elasticity law written for do = 0 at constant

temperature, one can see that Y is one half of the variation of dwe due to an infinitesimal increase of

damage at constant stress and temperature. This gives for Y the name of " damage strain energy release

rate" (Chaboche, 1978):

ldwe <5)
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1.7 Crack Closure Effect

For certain materials and certain conditions of loading, the defects may close in compression. This is often

the case for very brittle materials. If the defects close completely, the area which effectively carries load in

compression is no longer 3‘ , butS . In fact, the real defects of complicated shapes do not close completely.

The effective area in compression 3“ is such that

S—SD<S“ <S

Let as write this expression as 5“ = S —hSD = S(1— Dh), where h (0 S h _<. 1) is a crack closure parameter

which depends upon the material and the loading (Lemaitre, 1992).

In this case is more convenient to work with dual transformation of the state potential specific free energy,

i. e. the Gibbs specific enthalpy w: , which is given by

1 _‘‚1_ w 1 _ 2

————2p(l_D)c.a .G———————2Ep(1_D)[(l+v)G,-jcij vckk]

III
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where E and v are Young's modulus and Poisson's ratio of the material.

The Gibbs specific enthalpy written as a function of (off) or (—0,» and crack closure parameter l1 is:

ll‘

We =mkh"V)<Gij ><Gij>_ V<Ckk>21+mkl+V)<—c5ij><—cij>— V<-Gkk>2]

where <0,» =0 if c5 20,
if if

<6,» =0 flop-<0.

Then the damage strain energy release rate is written as

(1+v) <6Ü><GU> +11<~0ij><—G,j>]_ v [<—O‘kk>2 + 14—0“)?

— 6

2E (1—D)2 (1—Dh)2 2E (i—D)2 0—th ( )

1.8 Potential of Dissipation

Restricting ourselves to isotropic plasticity and isotropic damage, ductile plastic damage, as plasticity, is a

phenomenon which does not depend explicitly upon time. Within these hypothesis the main features of

ductile plastic damage can be described by a potential of dissipation restricted to the three variables

(Lemaitre, 1992; Germain et a1, 1983)

FD(Y;(p9D))9
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from which the damage rate is derived

~ _ öFD .

D — W190 -— D)

The variable p ‚ which governs the damage evolution, also gives the irreversible nature of the damage, as

p is always positive or zero.

2 %

H383? (7)

In our work we used following damage potential (Lemaitre, 1992):

A, _ Y2

FD (Y;(p‚D)) =erp—pp) (8)

Then

D — Y 'H
_ Ep (II-pp) (9)

with the rupture condition for crack initiation,

D 2 DC (10)

S ——> energy strength of damage

pD —> damage threshold function the material and loading,

H l if p 2 pD (11)

(MD) 0 if p < pD

1.9 Damage Threshold

The damage threshold pD (or s FD in one dimension) corresponds to a nucleation of microcracks which

does not produce any change in the material properties. The formula, which gives the value of the damage

threshold pD for any kind of loading and for elastic-perfectly plastic material is (Lemaitre, 1992)

cry—c:

p0 = e, 31—0" (12)
eq f

with

%

3 D D

where

6€ —> deviatoric part of 6,-].

8ID —> plastic threshold

cu —+ ultimate stress

cf ——> fatigue limit
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1. 10 Rupture Criterion

The rupture criterion in pure tension is

C
R : C"

1— D10

 

GR —> radial stress at rupture at the pure tension test

D16 —> the critical value of the damage for the case of reference under tension

In three dimensions, for the case of perfect plasticity in proportional loading we obtain a

function for the critical damage DC like (Lemaitre, 1992)

  

2 1 (l3)

Geq R .

N 0'

where (Seq 21:21)

2 2

C

Rv:—(1+v)+3(1—2v)[ H] (14)
3 (Seq

v ——> Poisson's ratio

CH —> hydrostatic stress

2 Quasi-Brittle Damage

When the behaviour is brittle at the mesoscale but localised damage growth occurs at the microscale, we are

dealing with quasi-brittle damage. Consider a mesovolume element exhibiting elastic behaviour everywhere

except in a small microvolume u representing a weak defect subjected to elasticity, plasticity and damage

(Figure 2).

 

Ela t' last'cK/ SlC(p 1 )

E (0y ,0“ ,csf)

Elastoplastic and damageable

E 0?, 6’} , S, pD‚ DC

    

Figure 2. Two-scale volume element

The matrix is elastic with a yield stress G}, and a fatigue limit of . The inclusion has the same properties

as the matrix except that it is perfectly plastic with a plastic threshold 0‘; and a fatigue limit 0"} . Its

weakness comes from the value of the plastic threshold, which may be taken equal to the fatigue limit of

the material, as it is the lowest stress giving rise to possible damage a? = of .

Furthermore, the weakness also comes from the fatigue limit 0’} assumed to be reduced in the same

proportion as the plastic threshold

u G?

The complete inclusion problem will be solved numerically by the DAMAGE code using "locally coupled

analysis". Here, however, some approximations allow us to derive the rupture conditions without
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resolution of the complete set of constitutive equations. Starting with the kinetic damage law for the

inclusion,

. y“

D z ——— '
S P

we wish to express Y“ and j)“ as functions of macroscopic quantities such as the elastic strain a and the

stress 6. According to the Lin-Taylor hypothesis, we may assume that the inclusion is subjected to the state

of strain (or strain rate) of the matrix, which is taken to be uniform

u

é“ :é

Neglecting the elastic strain a?” in comparison to the plastic strain a” H in the inclusion allows us to write

2 72 2 „D „D % 2 D D %
pP- :[585H 85“) :(Egif 81;]. j :(3-gij gij) :ggq

where is the deviatoric part of 8,-1- and the damage strain energy release rate is

The inclusion being perfectly plastic, then from the yield criterion,

 

u

0-H] u .

—=0 17
l—D S

t )

Finally,

H2 2 2
. GS CH _ _ ‘

D=2E E(1+v)+3(1—2v)[€} seq if bqupD (18)

with

- of” “ - G: “ — 19 20 21
pD_8PD u_6i} (Sf—Gfs: Gs ‘O-f ( )s( )>( )

3 High Cycle Fatigue

If the amplitude of the loading is low, the amplitude of the plastic strain may be very small, even negligible

at the mesoscale in comparison with the amplitude of the elastic strain. This corresponds to high values of

the number of cycles to failurc.For instance NR >100 000.

Another feature which makes the damage analysis of high cycle fatigue difficult is its high degree of

localisation. Very often only a very small microelement damaged at the free surface of the body gives rise to

one microcrack by slips which later propagates perpendicularly to the loading. Then, for high cycle fatigue,

materials may be considered as quasi-brittle and modelled by a damageable microinclusion embedded in an

elastic mesoelement. Its complete numerical analysis, including high cycle fatigue, is performed by the

DAMAGE code

4 Locally Coupled Analysis

Quite often, the damage is so localised that the volume of the damaged material is small in comparison to

the macroscale of the structural component. This allows us to perform an uncoupled analysis at the

macroscale and to consider the coupling between strain and damage only on the small volume of the critical
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point as shown schematically in Figure 3. This is the case of smallscale damage. The method of locally

coupled analysis may often be used with good accuracy for brittle and fatigue types of damage.

//_\ Coupled
Initial Elasto-(plastic) . w I ‘ .

conditions constitutive equations < Malena] 9/ CI‘IMO‘PI‘EF‘C an“! damage

/ constitutive equations

Structure Stress and Critical Crack initiation

Eco/nifj strain fields pomt conditions

L_______ w

Structural analysis Damage mechanics

Figure 3. Locally coupled analysis of crack initiation

          

    

                          

4.1 Localisation 0f Damage

Damage localisation results from stress concentration, of course, but also occurs because some weakness

always exists at the microseale. Let us generalise, for any kind of damage, what has been said for quasi-

brittle materials. The mechanical model was a two scale volume element, elastic or elastoplastic at the

mesoscale and elastoplastic and damageable at the microscale ( Figure 2 ). The only material characteristics

which differ in the matrix and in the inclusion are the yield stress of the inclusion 0’; and its fatigue limit

0;. This has taken into account the mierointernal stresses and the weak defects always existing

everywhere in all materials. The second assumption which simplifies calculations is the Lin-Taylor strain

compatibility hypothesis s“ = e .
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5 Description of the Postprocessor DAMAGE

The DAMAGE code was built on the base of code DAMAGE 90 (It Doghri, 1990) published in (Lemaitre,

1992). We assume the material perfectly plastic at the microscale with considering the microcrack closure

effect (material parameter h). In this code we may use for piecewise perfect plasticity, several values of

plastic threshold of: as the loading or the timelike parameter vary. This allows us to take some cases of

high values of strainhardening and cyclic stress strain curves for multilevel fatigue processes into

consideration. Then the material parameters must be considered as follows:

E and v for elasticity,

of, 0' and 0,, for plasticity,
y

c5:l : of for pure plasticity,

a? = 65m given as a input piecewise plasticity,

S , SPD ‚ D10 ‚ h for damage.

The input of the calculation is the time history of the strain components 8U- (t). We can use two loading

cases:

— general loading history where the loading history is defined by the value of the strain

components at the given timelike parameter values. DAMAGE interpolates linearly between these

values.

— piecewise periodic loading for which the loading is a certain number of blocks of cycles defined by the

two consecutive maximum and minimum set of strain components and the number of cycles in each block.

The strain interpolations are also linear. It is capable of accounting for initial values of damage DO and

plastic strain p0 .

6 Applications

The DAMAGE code was applied for the computation of the number of cycles after which the damage of

material reached the critical value DC in the critical point ofconsidered body (in a single Gauss integration

point) subjected to loading. The results were compared with the data gained from the Manson-Coflin curve

for low cycle fatigue and from the Wohler curve for high cycle fatigue of material STN 12 060.1 (carbon

steel for refinement) (Bodnav, 1993). The following material properties were used for the computation:

E = 200300 MPa SPD = 0.3

v = 0.3 D16 = 0.4

of = 189 MPa p0 = 0

0y = 250 MPa D0 = 0

cu = 621.4 MPa h = 0.2

S = 12 MP3 for low cycle fatigue and S: 34 MPa for high cycle fatigue

0’; was obtained from a cyclic strain curve (Bodnar, 1993).

The loading was 3-dimensional with

smax 2 +811 and 8mm = —sl

822 Z 833 = iVSlI

812 =813=52320

The comparison of the computed data with the experimentally given ones implies that the utilisation of

damage mechanics for the solution of fatigue processes gives a good agreement between of theory and
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practice. The advantages of damage mechanics are displayed markedly when the possibility of combination

of cycles with difierent nonsymmetry coefficients and different amplitudes under the 3-dimensional loading

is taken into consideration.
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Figure 4. Comparison ofLow Cycle Fatigue

   

  

81

1.953 -

4 a - gained data

‘ b — computed data

1.753 _

1553 _

1.35.3 7

1.1E—3 I I I I I I I" I If I

1.035 3,095 5095 7.085 9.095 1.1E+6

Cycles Nf

Figure 5. Comparison ofHigh Cycle Fatigue
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