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Contravariant Components and Covariant Projections in
Gyrodynamics

F.P.J. Rimrott, B. Tabarrok

The concepts of kinetic energy and complementary kinetic energy permit to distinguish between two different
Jormulations of what happens to be the same quantity in Newtonian mechanics. These formulations turn out to
play a significant role in gyrodynamics in that they can be used very effectively to establish fundamental
equations. In the following Cartesian body-fixed coordinates and Fuler angle coordinates will be used to
express kinetic energy and complementary kinetic energy and their partial derivatives of a single rigid gyro.

1 Kinetic Energy and Kinetic Coenergy

For a single rigid gyro the definition for the kinetic energy T of rotation (Figure 1) is
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for the angular momentum vector. The Cxpz cooordinate system is gyro-fixed, principal and orthogonal, and
has its origin in the mass centre C of the gyro (Figure 2). Since /, = Ao, H, = Bo,, and H, = Co,, and
with

7] =

& & K

o W o

[ IR=1N=}
—_
~
N’

as the gyro’s inertia tensor expressed in Cxyz coordinates, the kinetic energy becomes
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Figure 1. Kinetic Energy T and Figure 2. Rectangular Body with Uniformly Distributed Mass,
Kinetic Coenergy T A> B> C, Mass Centre C, and Body-fixed Cxyz

Coordinates

The complementary kinetic energy (ot kinetic coenergy) T is defined by
» 1
=5 [ o, ©)

Upon integration, it results in the well-known

*

1
T = E(Acoi%— Bmi+ Co)f) @)

In Newtonian mechanics the two quantities 7(H) and 7" (o) are equal, they merely differ in the variables used

(Figure 1). This distinction (Rimrott et al., 1993) is of significance in Analytical Mechanics, where one uses
e.g. definitions such as
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H, = . = Aw,
ar*

Hy = -a—(D_y = B(l)y
or”

H, = o Co,

We may write for the kinetic coenergy (7)

r" = 3o} [4]o)

with

and

400
[4] =]0 B o
0 0C

For the angular momentum (9) we may write

{1} = [4] {o}
with
H.!‘
{H} = | H,
HZ

For the kinetic energy (5) one may write

r= {u) [4]" (1)

with
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For the angular velocity (8) one obtains
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2 Eulerian Coordinates

In addition for the gyro-fixed Cartesian coordinates Cxyz , there are other coordinate systems, such as the Euler
angle system, or the Cardan angle systems (Rimrott, 1988), each with distinct advantages - and of course
corresponding disadvantages.

Very common is the Eulerian coordinate system consisting of the precession angle , the nutation angle v,
and the spin angle o, which we shall employ exclusively for the present paper.

The angular velocity vector ® (Figures 3 and 4) may be consequently expressed by

O, ]
o = [ex € ez] o, = [ew e, e(,] v (18)
o, G

and a relationship between the components can be established.

o, sinvsinc  cosc 0 ||
®, | = |sinvcosc -sinc 0| v or {04 = [1)a} k=wy,v,o (19)
®, cosv 0 l]|o

While the Cxyz coordinate system, with basis vectors ¢, ¢,, and ¢, is orthogonal (Figure 3), the Eulerian

system, with basis vectors ey, e, and e, is not (Figure 4).

Figure 3. Position of Gyro-fixed Cxyz Figure 4. Eulerian Contravariant Components
Coordinates in Euler Angles, and of the Angular Velocity
Angular Velocity o '

There is second possibility for describing the angular velocity, and that is to use covariant projections of the
angular velocity vector upon the Eulerian axes e, e, ande;,. We shall name these projections

@y, ®,, and @ ;. The transformation equation between Cartesian and second Eulerian formulation is
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Other relationship of interest are

sinc |
tanv
coso || Dy
tanv || ©,
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1

or {0} = [Valfor) = [1]7 {os}

since it can readily be shown that the Jacobian matrices [J, ] and [J,] are related, by [/,] = [/,].

H, [sinvsine  cosc 0 H,
H,| = |sinvcosc -sinc 0| H, or {#} = [7){H:}
H, | cosv 0 1| Hy
[ sinc  cosc 01
sinv sinv
H\U Hx
H,|=| cosc -sinc 0 ||H, o {H,} = [Jl]_1 {1}
1, i
sinc  cosc 1
L tanv  tanv J
[ sinc sing |
, cosc  —
sinv tan v
H, cosc . cosG || Py
S —SINGc = il
H,| = |sinv tanv || p, | or {7} = [Re) =[] {2}
a, Ps
0 0 1
The inverse of equation (22) is
Py sinvsinc sinvcosc cosv || H,
py | = |cosc —sinv 0 ||H,| or {p} =[n]{H)}
Ps 0 0 1 J|\H

z

The column matrix { pk} will be defined in the section following.
Equating relations (21) and (22) leads to

k=wy,v,0

(e} = [2170ped = AT (] (o) wion ) — 2

or
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An inversion of equation (23) results in
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An inversion of equation (19) results in
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An inversion of equation (20) results in

for} = [ o} = 1] o)
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W4 | = | coso — sinoc 0 @y
@, 0 0 1 0]
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A multiplication of equations (25) and (19) gives
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and an inversion leads to

{6} = [T 4] oo}

(26a)
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or
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L sin“v sin” v |

3 Kinetic Coenergy 7" (q.9)
We begin with equation (7)
. 1 2 2 2
T = E(A(Dx + Bo ), + Ccoz)

and use equation (19) to obtain the kinetic coenergy in terms of the Euler angles ¢, = v, ¢, = v, q; = 0,

and their time derivatives.

7"(q.9) = %(A(\i/sinvsino + \'/coscs)2 + B(\ysinvcoss — \’/sino)2 +C(ycosv + 6)2) an

The covariant angular momentum projections (Figure 7) then are defined as

Pe = ar’(g.q)
i O
in particular

2 ((Asin2o+ Bcoszc)sinzv + Ccoszv)\jf + ((A—B) sinvsincscosc)\'/ + (Ceosv)s  (28a)

ar’ — : 3 .5 i
py= o = ((A—B) smvsmccoscs)\y + (Acos o+ Bsin o)v (28b)
T : .
P = %—g = (Ceosv)y + C6 (28¢c)
If a (symmetric) matrix
(Asin2<5+ Bcoszc)sin2v+ Ccos’v (A - B)sinvsinocoss ~ Ccosv
[4] = | (4~ B)sinvsinccoso Acos’c + Bsin’c 0 (29)
Ccosv 0 C
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is introduced, the kinetic coenergy (27) can then also be expressed as

" 1,. .
1 = (84N G0)
An inspection of equations (28) and (29) shows that
{r} = [4]{d} GD

leading to the conclusion that the generalized (angular) momentum { p} can be obtained by a mapping
procedure. It is interesting to note, that while {q} represents the contravariant components of the angular

velocity vector @ , the quantity { p} represents the covariant projections of the angular momentum vector H .

4 Kinetic Coenergy 7" (q,0)

Beginning again with equation (7), and using equations (20), we obtain for the kinetic coenergy

x 1 sin 2 C
T"(q.0) = E[A[(“)w - oaccosv) sin(\:: +co\,coso) + B((colIJ - coccosv) S?ISIS

2
—co\,sinc) +Cm§] (32)

The contravariant angular momentum components then are defined as

or*(q.0)

H =
e éh)k

in particular

_ _ ) 2 sinGCcoso .2 2
H, = Gy Sinzv(Asm 6 + Bcos c)cow W( -B)o, - M(Asm G + Bcos c)coc
(33a)
ar” sinccosc . sinccosc
H, = — ke (4-B)o,, + (Acoszo +Bsm20)m v = (A= B, (33b)
or” , sinocoso 1 .
H, = = —~.——(Asmzc +Bcoszc:r)coW - ———(4-B)o, + (C o (Asmzcr +Bcoszc))m
0o sinvtanv tanv tan’v
(33¢)
If a (symmetric) matrix
R inoco 3 1
(Asmzcs + Bcoszc) . (4- )S—(.5~E - (Asm2cs + Bcoszc)—.——
sin“v sinv sinvtanv
sincc 1
[4]=| (4-B)T2 Acos’s + Bsin’s  —(4- B) 020 (34)
sinv ] tanv
—(Asinzc + Bcoszc),* - (A - B)w C+ (Asinzcr + Bcoszc)
sinvtanv tanv tan?v
is introduced, the kinetic coenergy (18) can then also be expressed as
N 1, 7
r* = 2o [4lfo) )

76




and an inspection of equations (33) and (34) shows that
{1} = [4]{o} (36)

leading again to the conclusion that the angular momentum {H } can be obtained by a mapping procedure. In
equation (36) the {m} column matrix contains the covariant projections of the angular velocity vector o ,

while the {H } column matrix contains the contravariant components of the angular momentum vector H .

5 Angular Velocity o , Angular Momentum H and Torque M

The angular velocity vector ® may be expressed in gyro-fixed Cartesian coordinates and in Eulerian
coordinates (Figure 5) by

(Dx \i]
© = [ex e, ez] o, = [ew e, ec] v 37
o, o}

Since Eulerian coordinates are non-orthogonal, there is the possibility of representing the angular velouty
vector o by means of covariant projections ®,,, ®,, ando, (Figure 6), as given by equation (20). The

magnitude o of the angular velocity is obtainable from

o? = 033 + mf, + a)z (38a)
o = % + V2 + &% + 2\yScosv (38b)
1 2cosv
2 2 2.2 2
0 = 0, +tosin‘y +os) - ® y,® 38c
sin2v< i Y 0) sin?v ¥ ° )
\ ¥
o
Figure 5. Contravariant Components of the Figure 6. Covariant Projections of the
Angular Velocity Angular Velocity
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The angular momentum (Figure 7) is

H, Hyg
H = [ex e, ez] H,| = [ew e, ec] H, 39)
H, H

There are also covariant projections Py, Py, and p; (Figure 8) of the angular momentum, as given by

equations (22). The magnitude H of the angular momentum is obtainable from

H® = H? + H, + H} (40a)

H? = Hy, + H, + HZ + 2H, H,cosv (40b)
1 2¢osv

H? = 2 S BSINTY HP) = 40¢

(P +plsin®y +p3) — 22y (40¢)

Ay

bC
Figure 7. Contravariant Components of the Figure 8. Covariant Projections of the
Angular Momentum Angular Momentum

The torque M (Figure 9) acting on the gyro can be expressed by

M, M,
M=e, e e.]| M, =[ey e ec] M, @1
M, M,



It may also be expressed in terms of the covariant projections Oy, Oy, and Q; (Figure 10). The magnitude A/
of the torque is obtainable from

M? = M + M2 + M} (42a)

M? = My + M7 + M + 2M, Mcosv (42b)

B = (03 +0sin*v +02) - LY (42¢)
sin®v \" ¥ sin’v ¥

v
MG
M. =0
v 2o ) c
Figure 9. Contravariant Components of the Figure 10. Covariant Projections of the
Torque Torque

6 The Sum of Kinetic Energy and Kinetic Coenergy

Using vector representation, we have (Figure 1)

T+7T" =Hao 43)
Using gyro-fixed Cartesian coordinates we may write

T+ 7T =Ho,
For subscripts i and & the summation convention is to apply, thus

T+T =Ho,+Ho, +Ho, (44)
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Using Eulerian coordinates, we have either

T+7T = Pl
ie.

T+ T =py+pyV+ ps6
or

T+T =Huo,
ie.

T+ T =Hyoy + Hoy + Hyog

7 The Lagrange Equation

(45)

(46)

The celebrated Lagrange equation is associated with the kinetic coenergy in the form 7~ (q, c'1) . The coordinates

i = W, g, = v,and g; = o are the three generalized coordinates required for the description of the angular

motion of a single rigid gyro. Lagrange’s equation in its fundamental form is typically written

d o" o 0
dat oq, o ~ ~*

or, in particular

d or" or
Erall etk O

dt oy oy

e *

d or" or
dt ov & =D

d or" o 0
a o5 o =°
where, according to equations (28)

*

or’
oy Pv
or”

v P
or”

26 Pe

(46a)

(46b)

(46¢)

are the three generalized momenta. The represent covariant projections of the angular momentum vector H .

The terms Q,,, Q,, and O, are the three generalized forces. They represent covariant projections of the torque

M (Figure 10).



8 Origin of the Mapping Matrices

The mapping matrix [AO] , equation (12), is composed of

o] [1126]

[4o]

with

[o]

]
<o o =

0
1
0

_-— O O

and [/] from equation (4).

The mapping matrix [A,] , equation (29), is composed of
[4] = [4] [1]4]

with [J;] from equation (19) and [£] from cquation (4).

The mapping matrix [4, ], equation (34), is composed of

[4] = [2] [7]1V:]

with [J, ] from equation (12) and [1] from equation (4). Since [J2] = [4 ]_T , one may also write

[4] = A 1A

9 Contravariant Components and Covariant Projections

Contravariant components are vector components. Covariant projections are not.

“47

(48)

(49)

(50)

D

The sum of kinetic encrgy and coenergy represents an invariant quantity, i.c. independent of the coordinate

system used to compute it. We shall use this property to establish covariance and contravariance.

Let us now change from the Cartesian formulation (44) to the Eulerian formulation (45). First we observe that

oo, .
B, = ==t
i aqk dk

from equation (19). Thus, from equations (44) and (45),

» oo ; )
T+7T =Ho, = H—=q, = p,q,
aq;,

Consequently

oW,
= —LH,
Dy aqk i
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To demonstrate the contravariant transformation (52) in more detail we write

O, = o+ —=2v + —%0 (55a)

o+ avV“L 25 (55b)

z—a\i,\'wa-v' P (55¢)

Relationship (19) supplies the partial derivatives appearing in equations (55), leading to

®, = \psinvsinc + vcoso (56a)
®, = \sSinvcoss — vsinc (56b)
©®, = JYcosv + & (56¢)

Figure 11 depicts the situation, for ¢ = 90°and o , = 0. Note that o is the diagonal of a parallelogram of

sides \y and & , i.e. we deal with vector components.
As is well known a transformation where

- U,

Yn = H% (57)

n
is classified as contravariant in tensor theory, where as transformations of the kind

_ 9,
ym_‘ax

X, (38)

m

are cassified as covariant. Thus we conclude that equation (52) represents a contravariant transformation, while
equation (54) represents a covariant transformation.

c¥ g
X
Figure 11. Angular Velocity at the Figure 12. Angular Momentum at the
moment where o, = 0 moment where H, = 0
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Coordinates Cartesian Coordinates Eulerian Coordinates

Contravariant Covariant
Decomposition | No Distinction Components Projections
Angles ® d@x, dey, d@z d\[/, dV, dG d@w, d@v, deg
Angular
velocity Oy Oy, O Gy =W, qy=V, 45 =6 Dy, Oy, Og
vector o
Angular
momentum Hx: Hya f[z H\va’Hc pwa Pvs Ps
vector H
Torque
vector M M. M, M, My, M,, M Dis Gis s

' Only an infinitesimal angle d0 has vector characteristics, with

d®® = dol + do’ + do’
do* = dy® + dv* + do® + 2dydocosv
2cosv

a? = (403, +d0%sin® v +do2) - do,,do
- o 2 W v [e) i .9 y*ro
sin” v sin” v
Table 1.  Contravariant Components and Covariant Projections for Cartesian Coordinates and for Eulerian
Coordinates

Now let us have a look at equations (54). With the help of equation (52) we find for the covariant projections

oo ow 0w ,
py = =—H, + ZXH, + —H, (59a)
ow dw ow
= —2F 4 —LH 4 —2H 59
pv 5. x 5 y 5 z ( )
1.0} 1.0} 1o
= —*H +—2H +—2H 59¢
B Sy e I, 0, (59¢)

that is, using equation (22a),

py = H,sinvsinc + H sinvcosv + H,cosv (60a)
py = H,cosc — H,sinc (60b)
s = H, (60c)

a situation depicted in Figure 12, for ¢ = 90° and H, = 0. Note that p,and p, are projections of the
angular momentum vector H .

In order to interpret the transformations involved in using {co k} and {H k} , we realize that now {H k} is the
key variable. To change from the Cartesian formulation (24) to the second Eulerian formulation (21) is

OH., oo,
H = —L = L 1
T oH, Hy aq, By @b
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where the partial derivatives are the elements of the Jacobi matrix [J 1] , equation (19). Equation (61) represents
a contravariant transformation. From equations (44) and (46) we have

* o,
T+ T = Himi = _,—I“Hk(l)i - Hkmk (62)
04y
Consequently
0, oo ;
Op = 7—=0; = —0,; 63)
oqy. 0qy

which represents a covariant transformation (Table 1).

10 Kinetic Energy 7(q, p)

We make use of the fact that in Newtonian mechanics 7 = 7", and use various substitutions to obtain for the
kinetic energy (1) of the gyro
c ¥t 2
- p,Sinc +E DS

111 Sin 2 1 Cos
SO

(64)
The contravariant angular velocity components are then defined as
_ o7 (q. p)
Py
in particular
. or 1 [sin’o s cos’c , Sino cosc( 1 1) 1 sin’c . cos’c (653)
V= py T sin?vl 4 B |Pv sinv 4 B)P  sinv tanv{ A B )P
_ T _sinc cosc( 1 1) " cos’c . sin’c sinc cosc( 1 l) 65b)
",  sv 4 B)PIN\TZ4 TTB Ty 4 B)Pe
_or 1 sin’ o . cos’ & sinc coso ( 1 lj : 1 . 1 (sin’c . cos’ &
T, sinvtanv| 4 B )P v 4 BT T v\ A B )|Pe
(65¢)
Equations (65) may also be written in matrix form
[(sin%c N cos’o)| 1 ( 1 1] sinG coso sin’o cos c 1
A B )sin’v A B sinv sinvtanv
v ~ ( i l) sinccosc cos’c . sin’c ( 1 lj sinc coso Py
Y “|\4 B) sinv A B B) tanv Py
S 2 2 2 5 Po
sin o cos’o 1 (1 1) sinG cosG 1 N sin o cos’o 1
4 B |sinvtanv A B) tanv . A B ) tan’v
_ 66)
or, in shorthand notation,
. -1
{4} = [4] {p} 67)
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The (symmetric) matrix [Al]_l is the inverse of the transformation matrix of equation (29) and maps the

covariant generalized momentum projections p, into the contravariant generalized velocity components g, .

11 Kinetic Energy 7(g,H)

The kinetic energy (1) of the gyro may also be expressed as

T(q,H) = %(%(stinvsinc +H\,cos<5)2 + %(stinvcosc —H\,sinc)2 + —l-(HW cos v +HU)2)

C
(68)
The covariant angular velocity projections are then defined as
o, - TlaH)
§ oH,
in particular
or(q, H in® ‘o) . F 1 1) .
a, = % = [(—SJPA—G +COZ GJsxnzv + Egic—c— Hy, + ] ke H, + COSVHU
¥
(69a)
_ oT(q.H) _ (1 lj e cos’c  sin‘c
0, = THV———— =\\lz" 3 sinvsinocoso | H,, + F + B H, (69b)
oT(q, H H
0y = % = _CT" (69¢)
(o}
Equations (69) may also be written in matrix form
[ sinzc+coszo 2 +cos2v (l 1) . cosv |
Y 3 sin” v c 1B sinv sinc cosc C
v 2 2 H\v
1) . ; cos“c sin‘c
oy 1=l 7" 5 sinv Sinc CoSC 7 + 3 0 H, (70)
® H
N cosv 5 1 G
C C
or, in shorthand notation
{0} = [4]"{#) (1)

The (symmetric) matrix [Az]_1 is the inverse of the mapping matrix (34) and maps the contravariant angular
momentum components /7, into the covarient angular velocity components o .
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12 Canonical Equations

Hamilton’s canonical equations involve the Hamiltonian (see e.g. Tabarrok, 1994)

% = T(q,p) + V(q) (72)
Since the present paper does not use the concept of potential energy V, the Hamiltonian becomes simply

% = T(q,p) (73)

with the kinetic energy in the form of equation (64).
Hamilton’s canonical equations are then

on
-pp = — - (74a)
Pk aq, Ok
: ox
4 = T (74b)

Taking equation (73) into consideration, an inspection of equations (65) shows that they, in effect, represent
equation (74b). With equation (73), the first canonical equation (74a) assumes the form

. or
Pr + N = 0O (75)

An inspection of the Lagrange equations (46) shows that they may be written in the form

*

ar
oq,,
from which we conclude that

Pk - = Qk (76)

or(q,p) _ O (9.9
oqy 0q;,

(7N

The reader is invited to show that thus is indeed the case, e.g. by realizing that equation (45) is not a function
of the ¢, . Thus

5Sk—(TJr 1) =0

giving us again equation (77)

13 Axisymmetric Gyros

Axisymmetric gyros occur very frequently, and the equations presented in the preceding chaptes are then
considerably simplified. Axial symmetry can be represented by the inertia moments

B=4 (78)

The mapping matrices [4,], [4,] and [4,] are affected and appear in simpler form, in that they are no longer a
function of the spin angle & .
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From equations (4) and (12) we obtain

4 0 0

[4] =0 4 0

0 0 C

and
1 0
A

1
[4]" =10 A
0 0

From equations (29) and (66)

Asin® v+ Ccos® v

[4] = 0
Ccosv
and
1
Asin® v
[t =] o
cosv
L4 sin’v
From equations (34) and (70)
i A
. 2 0
sin” v
0 A
[4,] =
A
B .C(;S v 0
sin“ v
and )
sin® v N cos’ v
A C
[4]" = 0
cosv
C
L

€y o

=]

o

o ;;|._.

o;b_],_.o

1
+

Ccosv

Cosv

Asin® v

Acosv |

sin? v

Acos? v

sin? v

Cosv

Al o 0O
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(79b)

(80a)

(80b)
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14 On Notation

The reader’s attention is drawn to a somewhat inconsistent notation. The symbol p, for the covariant

projections of the angular momentum does not fit too well (a capital letter would be more suitable). However its
widerspread use in the literature leaves little choice. The symbol ©, for the covarient projections of the

angular velocity fits well into equation (46), it would fit just as well for the contravariant components since it is
common practice to use the same symbol for the contravariant components of a vector as for the vector itself,
We have opted for the former approach.

A minor irritant is the same letter for the principal inertia moment 4 and the mapping matrices
[45], [4/]and [4,], a problem also engendered by common practice. We have attempted to alleviate it by

using subscripts for the latter.

For the angular momentum we have used the symbols H and H, for the Hamiltonian the symbol ¥ .

Figure 13. Airplane Engine Rotor R during a Looping Manoeuvre

15 Example

The case of torque-free axisymmetric gyros is of particular importance in practical applications. Take €. g. a
fast spinning (o, = 6>>V), axisymmetric (B = A4)engine rotor R mounted in are airplane executing a

looping manoeuvre (Figure 13). The rotor is constrained such that w=y =0, and v = ®, = constant. Further
6 = 0. The torques required to maintain this motion are to be determined.
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From Lagrange’s equations (46) we have

; or
O =py — 5
. T
Qv =py — v
_ or"
G =P = 55
or”
With = 0,and
or’ o o :
Py = o = A v sinv sinc cosc—A4 v sinv sing cosc + C & cosv
py = C G cosv
Py = Py = C(6 cosv - V& sinv) = ~C V6 sinv

Thus, from equation (a), the required torque becomes

Qy = -Co, 0, sinv
with
or’ : : :
Py = —— = Avcosic + Avsinlc = Av
ov
py = AV =0
or” . T
i —C(\y cosv + c)\y sinv = 0
equation (b) gives
0,=0
and with
ar" , . :
Po = = = C(y cosv + &) = Co
ps =Cc =0
or"
=9
oo
from equation (c)
O =0

89

(a)

®

©

(d

©

®

(®

(h)

@

)

()

@

(m)

()



The magnitude of the applied torque is, from equation (42c),

1 1 e .
MY = — 5 0 = — 5 C? ot @3 sin’ v
sin® v sin” v (P

M=Co o,

The contravariant components of the angular momentum vector H are, from equation (25),

1 cosv . COSV cosv ..
H, = Dy — ps = C6—— - —Co =0 (@
¥ sinfv’ Y sin®v’° sin v sin’ v
H, =p, = 4Av = Ao, ()
_ cosv 1 _ coszvc. 1 Cs = Co =
Hﬁ-——————.zpw+—————_2po——'2 6 + ——Co = Co = Co, (s)
sin” v sin” v sin” v sin” v

The magnitude /7 of the angular momentum is obtained by using equations (40).

1 i 2cosv

BHE = L = — 5 (pi+p35m2v+pc2,)—— — = A%0? + Clo?

sin® v sin” v )
H = A%?2 + CP?

The covariant angular velocity projections are, for our example,

©®, = G COSV = m; COSV (u)
By =V =y )]
(DG — 6 = (01 (W)

The magnitude @ of the angular veloity is obtained by using equations (38).

2cosv

® ,®
) yro
sin” v (x)

sinfv\ ¥

. 2
O = 05 + 0]

; ; 1 :
0* =V +3% = (co2 +o2 sin® v+cof,) =
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