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5 Another Form ofthe Above Equations

In some cases, it may be convenient to indroduce the following new functions ‘1’ and q) :
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The total solution (52) satisfies equation (37). The rest must satisfy the following equations:
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In order to simplify the above equations ‚ we check the order ofmagnitude ofthe operator (54) in brackets.
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Thus we have

c1) = 0 (56)

and the total solution (52) becomes

1 D
[35 = 41’, [39 = ——‘l’,e w = [hawk (57)

Equations (53) are now reduced to

t 1 1 tan

DV4\|/ + 323R“ = q" + L(F, w+w0) ZV4F = EL(w, w+2w0) + Tq’wm (58)

The functions LP and (I) may be called displacement function and shear force function, respectively. From the

above analysis of order of magnitude, we can accept that the results for a sandwich cone with deformable core

will be acceptable for cases of large shear modulus G of core. But it would not be true for a soft core. Thus we

conclude that the theory presented here is for stiff cores.



6 Governing Equations of ,,Equivalcnt-Cy|inder“

The above equations for a sandwich cone are partial differential equations with variable coefficients. It is

difficult to solve them. In order get some useful information before we attempt even more complicated

problems, we introduce the assumption of ,,equiva1ent—cylinder“ to simplify these equations. Thus, we use an

average value sc , instead ofthe variable s. The assumptions are the following:

(a) The wall thickness ofthe cylinder is equal to that of the cone, i.e. the quasi-cylinder has the same facing

and core thickness as found in the cone

(b) The radius of the cylinder is equal to the finite principal radius of curvature at the middle of the cone

(0) The length ofthe cylinder is equal to the slant length ofthe cone

       

Figure 3. Simplification ofcone

Based on the above assumptions, we have the following simplified relations:

(a) Geometry

5—950 so = 53—? Rc = R—‘Z—R—Z Rc = sccoscp R. = sccotcp (59)

(b) Axial load

N0 = Nosincp = Nocosoc (60)



Under the above assumptions, we can get the governing equations ofthe „equivalent-cylinder“ as follows:

(a) Equilibrium equations in terms of internal forces and moments
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Q — Mm +M‚W — Ec—My Qy — MW +M„‚x + EMXy (61)

(b) Strains and curvature changes
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exy = v,x — s— + u,y + w,x w,y + w,xw0,y + w,yw0,x (62)
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Kx = ßxlx Ky = ßyry + S—ßx ny = ßy'x _ Fßy + Davy (63)
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(c) Shear forces in terms of shear angles
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Qx = Dl:ßx>xx_ gig-Bx +Tflwi] + D[—2—ßy7xy_ T Efiyay]

(64)
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(d) Stress resultants in terms of stress function F
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(e) Governing equations in terms of F, w, ßx and By
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If the small quantity 8 = 1/so aproaches zero, the above equations will reduce to those of a sandwich

cylinder. In former papers, this small term was omitted. For a sufficiently long cone, this small term may

indeed be omitted, but the shorter the cone, the larger the errors caused by omitting this term.

(68)
n
h
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(w+2w0),x+ (w+2w0),w] _ [m— Sim] [(w+2w„)‚„_ (w+2w0)„] + 7;.“
C

7 Prebuckling Axisymmetric Solution

Assuming an initial axisymmetric shape imperfection, one can write the prebuckling deflection as

w(x,y) = w‘(x) (69)

From Nx,x= 0, or Nx = —No, we have the solution of the Airy function in the prebuckling state in the

following form:

1 ‚u

F(x‚y) = —ENoy2 + F (x) (70)

For the axisymmetric state, the shear angle is

ßx(x‚y) = ß;(x) may) = 0 <71)

After substituting these solutions into equations (66), (67) and (68), we have the equations of the prebuckling

state.
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(F‘,m+ 23F*‚m+ 8215",“) = %[w,:(w*+2wo),x],x + 717%,,“ (72)

(13;,m— 813:,m+82fi;,xx) — %F*m + N0(w*+wo)‚xx — s [Fix (w*+w0),x],xb
k
l

These equations are nonlinear equations since there is a (small) nonlinear term. For the sandwich cylinder the

equations of the prebuckling state are linear equations. As initial axisymrnetric shape imperfection can be

adopted a Koiter type imperfection

 

w0 = —ucos(21nx) (73)
x

The order of magnitude of the imperfection amplitude relative to the imperfection wavelength 1x ‚ as required

by equation (3), is given by
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1?

 

s 0 (1) (74)

The above equations are nonlinear. Two solving methods can be used to get the solution for the prebuckling

state.



Perturbation method

The Solution can be expanded as follows:
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From physical considerations, particular solutions are taken to be of the form

t 2 . 2 „x ‚ 2

F0 (x) = Ncos( w0(x) : K + Mcos{ ßx0(x) = Psm[

x x x

t 270c „ 270c . _ 271x

F1 (x) = Nlcos l w1(x) = Mlcos l ßx1(x) = Plsm l

x x x

Galerkin’s procedure can be applied to obtain an approximate solution for the prebuckling state, and we have

then
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So we have following deflection:
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where

on = JAD y = JA/D x0 = a/R„.Gc p = 1/(J51x) (82)



1 = mun/y x0 = l/(4p2) + pz/(l+2xcp2)

and

20.7» . R.

N0 — 7‘:— l.C. Ä — END
(83)

From the above analysis, we can see that the deflection of a sandwich cone is larger than that of a sandwich

cylinder.

Direct analysis

Suppose the solution for prebuckling is of the following form:

   

w*(x) = K + Moos [3;(x) = #51421”) F*(x) = Ncos (84)

Substituting equations (84) into equations (72) and using Galerkin’s method, we have
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Axisvmmetric buckling of perfect cone

The solutions for a perfect cone can be obtained when the imperfection amplitude vanishes. In this case, the

axisymmetric buckling coefficient (la) for the perfect cone is obtained by minimizing X with respect to the

axial wave number p2 .
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When the axial core shear flexibility coefiicient kg is the only real root, we have
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2 l— 83/(47132) 2 S 1

(89)

._ 1 M (< 1 ) when x > 1

0 2X0 1+ 83/(47122) 2X6 0 —



The effect of imperfections on buckling

The above analysis can given some important information about the effect of imperfections on the buckling

coefiicient.

(a) If we have an approximate relation from equation (86),

l Y 2 2 ‘1 2 _
(kc—K)M + 803-—2— 1-80/ 47: M _x (—6) (90)

7E

one might expect that a calculation of the stationary buckling value of K5 on the basis of equation (90) might

be more reliable than the general relation (86). The maximization of Ä by use of equation (90) leads to

i 2 25 1 x
(1- _S) = A _Sp (91)

7"0 3752 Äc[l—8ä/(4n2)i 7Lc

This provides the mathematically palatable result 7»: —> 0 for u —> oo.

(b) Ifwe have an approximate relation
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(xc—xw— sä 9:: [1— 4:735] M3 = —xu (92)

the calculation for stationary buckling coefficients now gives
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The above Koiter relations (91) and (93) will be modified after we consider the postbuckling effect.

8 Bifurcation and Postbuckling Analysis

Under increasing load the amplitude of the lateral deflection M will grow in hyperbolic fashion until the

stationary point and/or bifurcation point is reached for imperfect cone and perfect cone, respectively. Let us

define the terms w” (x, y), f(x, y), bx(x, y) and by (x, y) as the second path solution, and write

F : —%N0y2 + F*(x) +f(x,y) W = W*(x) + Wp(x’)’)

ßx = Bloc) + bx(x‚y) By = by(x‚y) (94)

Substituting the above relations (94) into equations (66), (67) and (68), we obtain the nonlinear approximate

equations of neutral equilibrium.

(a) Compatibility equation
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(b) Equilibrium equations
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From the above analysis, we have the approximate solution
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Substituting (98) into the compatibility and equilibrium equations (95) — (97), we have

(a) Compatibility equation
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(b) Equilibrium equations
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A rigorous solution of the above coupled equations of neutral equilibrium with given boundary conditions is

difiicult. An approximate solution of the nonlinear Donnell type equations is obtained as follows: First, the

compatibility equation (99) and equilibrium equation (96) are solved approximately for the stress function

f (x,y) and shear angles bx(x, y), by (x, y) in terms of the following assumed radial displacement w” (x, y)

and the measured imperfection wO (x) . In these solutions, only the effect of the initial imperfection on the

buckling load is of interest. Hence, only a particular solution of equations (96) and (100) need to be considered.

Second, the third equation of equilibrium (100) is solved approximately by substituting therein

f(x, y), w”(x,y), bx(x‚y) and wo(x), and then applying Galerkin’s procedure. This approach will yield a set of

nonlinear algebratic equations in terms of the unknow amplitude ä (Arbocz, 1987).

An approximate solution can be obtained using an assumed mode of the form

w”(x,y) = ficos—qlEx— 005112 (ä ¢ 0) (101)

x y



For greater generality, it would have been proper to have taken

w”(x,y) = gees—TL: cos—kfl (102)

1x ly

and to compute buckling load curves for difl'erent values of k. The portions of those curves that correspond to

minimum buckling loads would, of course, be the governing buckling criteria. There is little doubt that the

minimizing value of k would be greater than zero for sufficiently large l . For the region of k in which k is

greater than about 3 or 4 it may even be sufficiently accurate, as in cylindrical shell buckling problems, to treat

k as continually variable and to formally minimize the general non-symmetrical solution with respect to k.

Aside from the appreciable additional compution that would be required to calculate buckling curve for various

values ofk, it would be inconsistent to do so unless better approximations were made for the initial symmetrical

state (Gjelsvik and Bender, 1962). ’

Substituting the assumed mode into the compatibility and equilibrium equations, approximate particular

solutions for bx (x, y) and by (x, y) are obtained in terms of the coefficient é , i.e.

7r

bx(x,y) = fialsinflcosl by(x,y) = ébicosEx—sinfl (103)

[x 1x 1y [y [X [y
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“c =1/(J51y) 6 = 81 a = va/v b = Vb/V (104)
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The compatibility equation will become approximately
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A Ix ly Ix 1y 1x [y Ix

(105)
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We have an approximate solution of the stress function

71x ny ‚ 31rx ny 2 271x 27ry . r

f(x‚y) -~ —§ flcos—cos— +f251n cos—- + a: f3cos +f4cos— +f551n
1x [y 1x ly 1x 1y 1x

(107)
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We substitute equations (101), (103) and (107) into equation (100) and multiply by

cosEcosn—y (109)

x y

In the Galerkin procedure, the integral over the whole shell is formed and equated to zero

nlx 2mR.

I coslgcos—Tiqj—dxdy = 0 (110)

o o x y

This yields an nonlinear algebraic equation for the coeflicient ä in the following form:

[kc—Monomlg +a2§2]§ = 0 (111)

where
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_ 5f2 „um + 35 m5 2p2kf1 +001 _ 9J§f2 ms Sfifz uyapxc

12nd 10—71 16H2 710—7» nap 167tocp kc—k 87mm ÄC—X

011 = —y12(fI —f4)/(201) dz = —y"cz(nf3 +3f5)/(2noc) (113)

and

_ _ k p2

kc = kc + (X0 Kc = —02 + ———-——2——— k0 = (ocp2+b1:2) [p212-52/(27E2)]

4p (p2+12) SZpZ/(an)

(114)

Since g i 0, equation (111) reduces to

710 — x + a0 + mg + 0126 = 0 (115)

This is a relation between K and amplitude ä , and is called the pressure-deflection relation (Hutchinson and.

Koiter, 1970).

If the nonlinear effect was not considered, the equation (115) becomes the following eigenvalue or bifurcation

equation:

10—2+a0=0 (116)

We find the value of x independent of the wave number m iny direction.
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Perfect Cones

The buckling load for a geometrically perfect sandwich cone can be easily obtained by setting p. = O in

equation (115), i.e.

x —x+ßl<:+ß2ä2=0C

where

1 2 2 2 52132 _l “21’2
= —— "c 2 r — —— — ——————

ß] 2 VP [p 211:2] 871:2‘c2 —52

1 YZT2 22 3‘5 6(12 2)
= —— —— +-— —— — +ßz 2n 87r2p2_82 [mt T 4 p2 2P "5

Ifthe nonlinear term is omitted,

k 2

Ä, :: —02 + —_2L__—__

4p (p2 +12) —52p2/(27t2)

For the sandwich cylinder, that is ö = 0 , equation (119) reduces to

1 (&+fy + f

Ä = (p2 +12)2

 

1+w21w»xc (p2+rz) 49

In the limiting case of a non-shear deformable core equation (120) reduces to:

V In I) 1_ wt_ _ +— ._ —.—2—pZ—_

From

d2 1( 1 J
_.__=_1___=0

dA. 2 IG

we have that any combination of p and ‘C that satisfies

p2 + '52 — fip = 0

will yield a minimum at k = 1.

(117)

(118)

(119)

(120)

(121)

(122)

(123)

Equation (123) is the well known Koiter circle for sandwich cylinders with non-shear deformable core

(Tennyson and Chan, 1990), which is the locus of a family of modes belonging to the lowest eigenvalue

RC = 1.0 (Arbocz, 1987).

For a sandwich cylinder, we get the generalized Koiter circle

((32+12)2 = 2p2‘ll +éxc(p2+rz)

11
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Imperfect Cone

The pressure-deflection relation (115) yields the limit buckling coefficient M for an axisymmetric imperfect

sandwich cone by minimizing 2» with respect to the circumferential wave number T for a given imperfection

wave number p . Because of the complexity of the equation, the minimization has to be done numerically in a

forthcoming paper and the smallest root ofeigenvalue equation is selected as M.

Since there is no asymmetric imperfection, in this case, the limit buckling coefficient will be taken to have the

following form:

M = to — — (125)

9 Conclusions

1. The imperfections have a pronounced effect on the buckling (Koiter, 1945).

2. Sandwich shells can be considered as a material imperfect, or damaged shell (x6) compared with ist

corresponding perfect shell

(Xe = 0).

3. The small parameter so or ö have an effect on the stationary value of the buckling coefficient. When the

parameter is increasing the buckling coefficient is decreasing.

4. The bifurcation value of buckling load and the stress for the perfect cone are

21cEt2 R
PC, = 21tR1toc, : —— —12tacoszoc (126)

3(1—v2) Re

Et 1 . Et 1
ca, = _— E-Äasmzm 2 —~——-— Flacosza (127)

3(1—v2) c 3(1—v2) c

5. The stationary value ofbuckling load and stress for imperfect cones are

27:32 R1
_ _ 2

PS .— ZantcS — ————2 R kscos on (128)

3(1—v ) c

Et 1 Et 1

cr = —- —7» sinzrp = _— ———l coszoc (129)
S 2 R S 2 R s

3(1—v ) c 3(l—v ) c

It should be noted that the above relations between the bifurcation coefficient and stationary coefficient for

buckling are very important in the practical design of sandwich cones.
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