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5 Another Form of the Above Equations

In some cases, it may be convenient to indroduce the following new functions ‘¥ and @ :

1 1 D
B, = -, + @, B = — Y, - D, w = (1— ——Vz)\}' (52)
SCOSP 5COSP Ge

The total solution (52) satisfies equation (37). The rest must satisfy the following equations:

tang 1 1 tang
DV 4+ ——F =g, + L(F,,+wp) —ZV“F = 5L(w, w+2w,) + — s (53)
1-v D _,
- — V=0
(1 T ) (54)

In order to simplify the above equations , we check the order of magnitude of the operator (54) in brackets.

3
1-v D t
= B =V~ 1- (E) =] (55)

Thus we have

®=0 (56)

and the total solution (52) becomes

1 D
B, = -, Bg = ———Py w = (1—§VZJ\P (57

Equations (53) are now reduced to

t. 1 1 tan
DV*y + —E—ZEF,SS = q, + L(F, w+w,) ZVF = SL(w, w2w,) + T(Pw,ss (58)

The functions ¥ and ® may be called displacement function and shear force function, respectively. From the

above analysis of order of magnitude, we can accept that the results for a sandwich cone with deformable core
will be acceptable for cases of large shear modulus G of core. But it would not be true for a soft core. Thus we

conclude that the theory presented here is for stiff cores.



6 Governing Equations of ,,Equivalent-Cylinder

The above equations for a sandwich cone are partial differential equations with variable coefficients. It is
difficult to solve them. In order get some useful information before we attempt even more complicated
problems, we introduce the assumption of ,.equivalent-cylinder” to simplify these equations. Thus, we use an
average value s, instead of the variable s. The assumptions are the following:

(a) The wall thickness of the cylinder is equal to that of the cone, i.c. the quasi-cylinder has the same facing
and core thickness as found in the cone

(b) The radius of the cylinder is equal to the finite principal radius of curvature at the middle of the cone

(c) The length of the cylinder is equal to the slant length of the cone

Figure 3. Simplification of cone

Based on the above assumptions, we have the following simplified relations:

(a) Geometry

S5, S, = ﬁ—;i R, = &":Z_R_z R, = s.cosp R. = s.cote 59
(b) Axial load

N, = N¢sing = Ncosa. (60)



Under the above assumptions, we can get the governing equations of the ,,equivalent-cylinder” as follows:

(a) Equilibrium equations in terms of internal forces and moments

c SL‘
1
= “R:‘Ny + q, = 0
_ 1
0, =M, +Mxy,y N ;;—My Qy = My,y +Mn,,x + ;Mxy 61
(b) Strains and curvature changes
1 2 u w 1 2
v
€y = Vip — . oy, W W, W W, W, W (62)
c
1 1
Ky = ﬁx’x Ky = By’y + S_cﬁx Ky = ﬁy'x - ?c'ﬁy + Bx’y (63)

(c) Shear forces in terms of shear angles

1 1-v 1-v 3-v 1
Qx =D {Bx’xx‘— ?Bx +Tﬁx>yy} + D{Tﬁyuy— 2 gﬁy{y}
’ (64)
1+v 3-v 1 1-v 1
Qy = DI:—_Z—Bx,.xy + ) zﬁxsy:l + D{By{yy +T(By’xx_ S_zﬁy)}
(d) Stress resultants in terms of stress function F
_ 4 1
N, = —S—F,x b Ny = Fig Ny =F,y - S—F,y (65)
(¢) Governing equations in terms of 7, w, B, and B,
1 1-v 1+v 3-v 1
Ge (W’x+ﬁx) = D‘iﬁx’n_ Eﬁx—*- Tﬁx'}y} * D|: 2 By’).y_ 2 ;{:Byty:l
(66)

1+v 3—v

Ge (w,y+[3y) = D|: 5 ﬁx,xy+ 3 Siﬁx’yjl + D{By,yy+ 1_2v[Bylxx— sizﬁyj}

1 1 1 1
D l:ﬁx’mﬁ ?Bx?rx"’ s_2Bx9x+ Bx’x){yil +D |:By9ny_ S_Byuy'*' ?By»y"' Byyyyy}
c ¢

4 c

1 1 1 1
s —R:-F’“ |:F,W+ EF,x} (w+w0),xx+ F,u[s—(w+wo),x+ (w+w0),»,i| -2 {F,xy— E—F’y} ©7)

c 4

[(W+W0)’W" (W+W0)’yy] +q, =0



118 1 8 & 11 1
-Z -gx—z'-i' ; a-*- y F = ‘E zw,x+ W’W (W+2W0),xx + -i-w,xx
If the small quantity € = 1/s, aproaches zero, the above equations will reduce to those of a sandwich

cylinder. In former papers, this small term was omitted. For a sufficiently long cone, this small term may
indeed be omitted, but the shorter the cone, the larger the errors caused by omitting this term.

(68)
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7 Prebuckling Axisymmetric Solution
Assuming an initial axisymmetric shape imperfection, one can write the prebuckling deflection as
w(x,y) = w'(x) (69)

From N,,.= 0, or N, = —N,, we have the solution of the Airy function in the prebuckling state in the
following form:

1 *
F(x,y) = —-Z—Noy2 + F (x) (70)

For the axisymmetric state, the shear angle is
Bx(x.y) = Bx(¥) By(x.y) =0 (71)

After substituting these solutions into equations (66), (67) and (68), we have the equations of the prebuckling
state.

|

(B 685) = Wi + B

Cc

- Q

*

(F* ot 26F° et &2,

*

&l = %[w,:(w*+2wo),x],x + —]%w - 72)

(B:,m— sﬁ;,m+azﬁ;,xx) = %F*,xx + No(w*+w0),xx -g [F*,x (w*+w0),x],x

SEEN

These equations are nonlinear equations since there is a (small) nonlinear term. For the sandwich cylinder the
equations of the prebuckling state are linear equations. As initial axisymmetric shape imperfection can be
adopted a Koiter type imperfection

W = —ucos(zlnxj (73)

X

The order of magnitude of the imperfection amplitude relative to the imperfection wavelength /_, as required
by equation (3), is given by

4ym2

L

<0(1) (74)

The above equations are nonlinear. Two solving methods can be used to get the solution for the prebuckling
state.



Perturbation method

The Solution can be expanded as follows:

* »* »* * * L 3 2 * 2 *
L (x) =Wy +ewp + ewy + e ﬁx(x) = Pyo + EPy + &Py + o

L * * 2 * (75)
F(x) =F +ef +eF + -
(a) €°
D * * * * A *
aﬁxo’xx = Woox T BxO FZ)’Jowc = _ﬁ:wo’xx (76)
N 1 »
DBxO’m - EFE)’xx + NO(WO +w0)'xx
®) &'
D * *
aﬁxl’xx =Wy t ﬁxl
1 * * 1 * 1 » *
X (E P PE) mxx) = —R*—WI N E [Wo’x (W0+2W0),x] 0]
* * 1 * * *
D [Bxl xxx ﬁxOu:x] = Eﬁi o T NOWI xx [FO*’x (WO +w0)’x]’x
From physical considerations, particular solutions are taken to be of the form
* 2 " 2 * . (2
Fy (x) = Neos (—T—Lx—j wo(x) = K + Mcos (_nx] Bro(x) = Psm[ mj
]x IX 1x
(78)
. 2mx ,, 2nx . . [ 2mx
F (x) = Ncos - ™ (x) = Mjcos - Ba(x) = Bsin 7
X X X

Galerkin’s procedure can be applied to obtain an approximate solution for the prebuckling state, and we have
then

P = 22”7”“ W =t N = —-—2““7” (79)
(1+2p xc) (ho=2)1, Ao =R 20%()o - 1)
2,2 / 2.2
P Sy W A My = S BV (80)
3 142707 (%1 6m” (%-1)
1 « un? 4p%y
N, = - — 1- TR .y
1 P 2p2 (Xo—k)z { n [Y ( 0 )]
So we have following deflection:
* H}\. H}\. 81x 21x
Wwi(x) = K - ry— [1+xo~x 6n2}cos(1x) + e (81)

where

a = JAD y=+4/D 1. = o/ RGe o= 1/(ﬁlx) (82)



I = 2nJRe /vy Ao = l/(4p2) % pz/(1+2xcp2)

and

20 ; Ru
N, = —‘k:— 1.€. A= _Z_G._NO (83)

From the above analysis, we can see that the deflection of a sandwich cone is larger than that of a sandwich
cylinder.

Direct analysis

Suppose the solution for prebuckling is of the following form:

w'(x) = K + Mcos (21—705) Bx(x) = -Psin (277“—) F*(x) = Ncos (Z;UCJ (84)

Substituting equations (84) into equations (72) and using Galerkin’s method, we have

1
po . 1 " = {

/ 2 o2
* 1 w2y 0 [1+ﬁ%} .

o4

2p2

M +80;—Y2M(M—2}L):] (85)
T

47?

-1 -1
4p2y2 c2 3 40>
24Py 0 3 Y € PYH 2
e N Ty e [ - M
% 9n* ( 4n? 0352 4n? O 2

-1
2py €5 2pyp

teg -2 | |1 4g M+ 2h=2,)M = 2
0343 [ 4n? 0 3n2 ( C) 3

(86)

where

- -1
1 83 9 sé 5 sg )
A, = —|1-—— + 1-———| |1+ 2 1+—— g = 8l, = = 87
‘ 4p2( 4712] P P 4 fo =k =5 OGN

Axisymmetric buckling of perfect cone

The solutions for a perfect cone can be obtained when the imperfection amplitude vanishes. In this case, the
axisymmetric buckling coefficient (la) for the perfect cone is obtained by minimizing A with respect to the

axial wave number p2 ’

=

2
c _ 2 5 0 2 22|15 = (144 )20 88
P p P %e = (1+%,) e (88)

When the axial core shear flexibility coefficient A, is the only real root, we have

1+ €} /(4n?
. =1- Xe 7 0PN ) ( ) (< —&j when o,

>
Il

2 - s%/(4n2) 2 =1
(89)
= 1 1_—__8_3./_(.{“_2) (< ! ) when ¢y, 21
¢ 2Xc 1+ 8(2)/(47152) 2Xc °



The effect of imperfections on buckling

The above analysis can given some important information about the effect of imperfections on the buckling
coefficient.

(a) If we have an approximate relation from equation (86),
‘ Y 2 AT 2 _
(Ae—A)M + soz 7 [1=s5/(4n’)| M =2 (-1 (90)
T

one might expect that a calculation of the stationary buckling value of A, on the basis of equation (90) might
be more reliable than the general relation (86). The maximization of A by use of equation (90) leads to

(- M)Z - 1 = a
he 3% f1-e3/(4n?)] P

This provides the mathematically palatable result A, — 0 forp — .

(b) If we have an approximate relation
2p%y? . =i
=AM — gd—— |1- 2| M3 = -1 92)
( ¢ )  ggt [ 4n2J H (
the calculation for stationary buckling coefficients now gives

12

A )3’2 3 2p%y? 1 9
1- 22| - 23] Sl =0 (93)
( Mo 27717 onf xc[l—s?,/(zmz)] M

The above Koiter relations (91) and (93) will be modified after we consider the postbuckling effect.

8 Bifurcation and Postbuckling Analysis

Under increasing load the amplitude of the lateral deflection A/ will grow in hyperbolic fashion until the
stationary point and/or bifurcation point is reached for imperfect cone and perfect cone, respectively. Let us

define the terms w? (x, y), f(x, ), b.(x,») and b,(x,y) as the second path solution, and write
F = —%Noy2 + F*(x) +f(x,y) w = w*(x) + Wp(xr}")

Be = Br(®) + b.(x.%) B, = by(x.») 94

Substituting the above relations (94) into equations (66), (67) and (68), we obtain the nonlinear approximate
equations of neutral equilibrium.
(a) Compatibility equation

2
1(* @ aZJ " 1

—| =+ e—+ — x,y) = wh, (w +wy ) + 5wl +wf  wF,
A[axz & o2 f(x) W( 0) R w 5)

w?

2 * *
P p 4 p r p
- [W ,xy] + g [W " (W +W0),xx H Wy (W +W0),x T whLwh e T 2w 'y "y



(b) Equilibrium equations

1-v 1+v 3-v
Ge (w?,,+b,) = D[bx,xx—-sszJr ——z—-by,w} % D[—b . y,y}

2 VX

(96)
Ge (wP,y+by) =D [ﬂ[; 3= gbx,yil I:By,w+ —1—:2—‘—)-(bym_ Szby)]

[b — b, .+, + bx,W] + D[by,,ay o+ e, +by,m]  Foo R+ BT,
- [W +Wo ’xxf’yy - F*u:xwp,yy +f’xxw ')y +f,yywp:xx - 2fuywp9xy 7

* * *® *
+¢g [f,x w”,xx+f,xxw",x] -t [F e Wt F o wp,x+f,x[w +w0],xx + [ o [w +w0],x]
From the above analysis, we have the approximate solution

2nx * oLpA
cos R ——s——CO0S

"~ K- F
i =k, 2p*(h, 1)

] (98)

X

Substituting (98) into the compatibility and equilibrium equations (95) - (97), we have
(a) Compatibility equation

& o0 & A [20°mh,  2mx , R s 3
[—a—;{ +8‘a—x‘+ ij— E {—7:—:"7\’—005 l yy TW s +A|:W xx W sy~ (W ,xy)}

99)

2ptyh, A [ | 2mx 2mx
b4 PP c 2| x b4 4
+Ae[w i T 2 W xy] +e—™ "% R |2m —=sin I w¥, . +cos W

x

(b) Equilibrium equations

D [Buose= Sgrnet 8%00sst by | + D [byosy = Sbyomyt €7yt by | = % [ ot 20007 ]

1y 2mx 1,
Rl e el L S B S L

1 ! YU 21 o 1 HA
i | _ x - P - —
+s[f,xw et S o W ,x] R 8271 xc_ksm I (2p Ao s — CAW ,H) €

2
cos = (szkcf,x —ockw”,x)
IX

(100)

A rigorous solution of the above coupled equations of neutral equilibrium with given boundary conditions is
difficult. An approximate solution of the nonlinear Donnell type equations is obtained as follows: First, the
compatibility equation (99) and equilibrium equation (96) are solved approximately for the stress function

S(x.y) and shear angles b,(x,), b,(x,y) in terms of the following assumed radial displacement w?(x, y)
and the measured imperfection w, (x) . In these solutions, only the effect of the initial imperfection on the

buckling load is of interest. Hence, only a particular solution of equations (96) and (100) need to be considered.
Second, the third equation of equilibrium (100) is solved approximately by substituting therein

S(x,¥), wP(x,), b,(x,y) and w (x), and then applying Galerkin’s procedure. This approach will yield a set of
nonlinear algebratic equations in terms of the unknow amplitude & (Arbocz, 1987).

An approximate solution can be obtained using an assumed mode of the form

wP(x,y) = F,cos—’lzx— cosz;z (& = 0) (101)
x y



For greater generality, it would have been proper to have taken

wP(x,y) = écos—TLi cos—kﬂ (102)
Lo,

and to compute buckling load curves for different values of k. The portions of those curves that correspond to
minimum buckling loads would, of course, be the governing buckling criteria. There is little doubt that the
minimizing value of & would be greater than zero for sufficiently large A . For the region of A in which £ is
greater than about 3 or 4 it may even be sufficiently accurate, as in cylindrical shell buckling problems, to treat
k as continually variable and to formally minimize the general non-symmetrical solution with respect to 4.
Aside from the appreciable additional compution that would be required to calculate buckling curve for various
values of &, it would be inconsistent to do so unless better approximations were made for the initial symmetrical
state (Gjelsvik and Bonder, 1962).

Substituting the assumed mode into the compatibility and equilibrium equations, approximate particular
solutions for b, (x,y) and b, (x, y) arc obtained in terms of the coefficient &, i.c.

bx(x,y) = éalsinzsx—cosﬂ by(x,y) = &bicosﬁx—sinﬂ (103)
Lo Lo Lo
where
= 1/(J21,) 8 = el a=vV,/V b=vV,/V (104)
1 5 1 1- 5? I-v ¢, 1 8
Va=1+ 4XC(P+T)+§TXC‘2“R7 Vb=1+TXc(P+T)+EXC—2;7

vl L (v, o 1w 8 . Loy 2+52 (1+vj2
= _— ——— ———— ———— IO—— — rt
kel 3 P T Ay | P +5 = TP’

The compatibility equation will become approximately

R ™ T . 3nx T 2nx 27 2
7[V4f +ezf,,“] ~ —EaC0S—c0s—Y — Easin—cos—Y + iza{cos +cos—y} + £%a,sin

Lk I ' I, b 1,
(105)
where
2 2 2 3
a 2p2ﬂ 14 2T, g = 3 mp yudh, 12
/ A —A 42 A% 1
(106)
0 = T 0 = Q@Lﬁﬂzj
8 22 . 20t 2

We have an approximate solution of the stress function

2 2 2
cosl;——} + & {j@cos—nﬁ +f4cosﬂ + fssin di

/ / l

x ¥y x

3mx
7;—y + f,sin ]
y x ¥

S(x.y) ~ =& [f]coslzcos

(107)



2 3
YA 1 T ap yudA 1
= 20p% |1 + 2 = e 2
) “P l: x”—K} ( 2+12)2 _Ei 2 & V2 ek (9 2+12)2 -9 zi
p Py p P p Py
Pz 2
f= 20 P = g (108)
; 87152p2 - 52 ¢ 8n’t? - 82 ° 4p2 87:2[)2 ~ 52
We substitute equations (101), (103) and (107) into equation (100) and multiply by
cosEcosﬂ (109)
x y
In the Galerkin procedure, the integral over the whole shell is formed and equated to zero
nl, 2mR.
J. [] colecosl;dedy =0 (110)
0 0 * 7
This yields an nonlinear algebraic equation for the coefficient £ in the following form:
[xc—m%mlg +a2§2]§ =0 (111)
where
-1
o P2y, [(pz H2)z ~ 82p2} 0 Wyt 2p%f +ak
o7 A,-A 2 8no Ao —A 2
¢ 2n ¢ 4ap 112)
5wk, . 3V2 s 20°M +ah 92 wd . 5V2f wdph,
12no0 A, -A 161% A,—A nop 16map A, —A 8nnow A, —A
oy = —-‘{Tz(fl~—_f4)/(201,) By = —y"cz(nf3 +3f5)/(2noc) (113)
and
— - k p2
Ao = Ay + 0 Ao = —02 + Z ky = (ocp2+b1:2) [pztz—ﬁz/(%tz)]
ap (p2 +12) 3%p? /(27r2)
(114)
Since & # 0, equation (111) reduces to
Ay = A+ oy + o + 0, =0 (115)

This is a relation between A and amplitude &, and is called the pressure-deflection relation (Hutchinson and.
Koiter, 1970).

If the nonlinear effect was not considered, the equation (115) becomes the following eigenvalue or bifurcation
equation:

Ae —A + 0y =0 (116)

We find the value of A independent of the wave number m in y direction.
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Perfect Cones

The buckling load for a geometrically perfect sandwich cone can be easily obtained by setting p = 0 in
equation (115), i.e.

Ae —A+PBE+PL =0 (117)

where

I 55 2.2 52P2 B “2Y
= —ypT°|2 T — -
P 2 w [p 2n ] 8n’1? - 32
(118)
1 v ) 3W2 8 (1 2 2)
= 0 ———— |t +—— — | =p°+T
BZ 2n 8n2p2_82 I: 4 p2 2p
If the nonlinear term is omitted,
k 2
Jo = s g —F (119)
4p (p2 +12) -8%p? /(27t2)
For the sandwich cylinder, that is 8 = 0, equation (119) reduces to
2. 2\?
pr+T 2
A= — L (42)+ 922 (120)
- 2 2 p 2
1+2xc(p +t) (p +r)
In the limiting case of a non-shear deformable core equation (120) reduces to:
2
A = 1(A+ IJ A= (pZHZ) 121)
S 20 A S 2p?
From
a\ 1( 1 )
— = —|1-—|{ =0 (122
dA 20 A )
we have that any combination of p and t that satisfies
PP+t —2p =0 (123)

will yield a minimum at A = 1.

Equation (123) is the well known Koiter circle for sandwich cylinders with non-shear deformable core
(Tennyson and Chan, 1990), which is the locus of a family of modes belonging to the lowest eigenvalue
A, = 10 (Arbocz, 1987).

For a sandwich cylinder, we get the generalized Koiter circle

(p2+’cz)2 = 2p2‘/1 +%Xc(p2+’cz) (124)
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Imperfect Cone

The pressure-deflection relation (115) yields the limit buckling coefficient A, for an axisymmetric imperfect

sandwich cone by minimizing A with respect to the circumferential wave number t for a given imperfection
wave number p . Because of the complexity of the equation, the minimization has to be done numerically in a

forthcoming paper and the smallest root of eigenvalue equation is selected as A, .

Since there is no asymmetric imperfection, in this case, the limit buckling coefficient will be taken to have the
following form:

B =0, = ok (125)

9 Conclusions

1. The imperfections have a pronounced effect on the buckling (Koiter, 1945).

2. Sandwich shells can be considered as a material imperfect, or damaged shell (xc) compared with ist
corresponding perfect shell

(e = 0).
3. The small parameter €, or 8 have an effect on the stationary value of the buckling coefficient. When the

parameter is increasing the buckling coefficient is decreasing.
4. The bifurcation value of buckling load and the stress for the perfect cone are

2nE R
P, = 2nR(o,, = L, cos’a (126)
(1-v?) R,
Et 1 Et 1
Oy = ——— i—xasinz(p = F?»acosza 127
3(1 v2) ¢ 3(1 vz) c

5. The stationary value of buckling load and stress for imperfect cones are

2nE* R

e = 2
P = 2nRkto, = T T Asc08 oL (128)
1-v?) e
Et 1 Et 1
Oy = ———— —Agsin’p = ——— — ) cos’a (129)
g 2% R, ° 2\ R, °
1-v?) 31-v7) %

It should be noted that the above relations between the bifurcation coefficient and stationary coefficient for
buckling are very important in the practical design of sandwich cones.
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