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Laminar Boundary Layer Flow and Heat Transfer along a

Moving Cylinder with Suction or Injection

I. Pop, T. Watanabe, H. Taniguchi

The steady boundary layer flow and heat transfer over an isothermal longitudinal circular cylinder which is

moving in a viscous incompressible fluid at rest is studied. It is assumed that a uniform suction or injection of

fluid can take place through the cylinder surface. The two—dimensional boundary layer equations are solved

numerically using an efficientfinite-diflerence method, and velocity and temperature profiles, as well as skin

friction and heat transfer coefficients are calculated. It is shown that fluid suction/injection can affect theflow

and heat transfer characteristics considerably.

1 Introduction

The problem of boundary layer flow and heat transfer over a moving or stretching surface is of great

importance in View of its relevance to a wide variety of technical applications, particularly in the manufacture

of fibres in glass and polymer industries. The investigation of drag and heat transfer in such situations belongs

to a separate class of problems in boundary layer theory, distinguishing itself from the study of flows over static

surfaces. The boundary layer behavior on moving surfaces in a Viscous fluid at rest was first considered by

Sakiadis (196l), whose work was subsequently extended by Rotte and Beck (1969), Bournc and Elliston (1970),

Crane (1972), Karnis and Pechoc (1978), Lin and Shih (1980), Choi (1982), and Eswara and Nath (1992). On

the other ‚band, Pop et al. (1990) have studied the problem of boundary layers past a moving longitudinal

cylinder in a non—Newtonian power-law fluid at rest. However, none of the above papers has dealt with the

possibility of mass transfer through the cylinder wall. If the wall of the cylinder is porous or perforated, fluid at

a prescribed temperature can be blown into the boundary layer (injection) or fluid at the wall surface can be

withdrawn (suction). These mass transfer processes may measurably alter the flow and heat transfer

characteristics.

The aim of the present analysis is to extend the problem ofboundary layer flow and heat transfer over a moving

longitudinal circular cylinder in a viscous fluid to the case where fluid injection or suction can take place

through the cylinder wall with the intention of controlling the boundary layer characteristics. The transverse

curvature of the cylinder and the mass transfer bring nonsimilarity into the governing equations. The

transformed partial differential equations involving two independent variables are approximated by nonlinear

ordinary differential equations using a very efficient finite-difference method as described by Katagiri (1969).

Solutions of the ordinary differential equations are expressed in a form of integral equations which are then

solved numerically using Simpson's rule. This scheme proved to be stable, accurate and efficient compared with

other methods (e. g. local similarity and perturbation solutions (Lin and Shih, 1980). The effects of the mass

transfer parameter 6 on the velocity and temperature profiles are studied and the skin friction and heat transfer

coefficients are calculated. It is proved that fluid suction or injection at the wall affects the skin friction and

heat transfer rate considerably. Finally, it is worth mentioning that our results compare very well with those of

Lin and Shih (1980), who used a different method for zero mass transfer (c5 = 0) .

2 Basic Equations

Consider the steady flow of a viscous and incompressible fluid along a longitudinal cylinder of radius rO , which

moves with the constant velocity U. It is assumed that the surface of the cylinder is at a uniform temperature

Tw, which is greater than the ambient temperature Tm. All over the cylinder's surface, fluid is sucked in or

ejected with a constant radial velocity vw. We use the coordinates x and r, where the x-axis is taken along the

cylinder axis and the r-axis is in the radial direction, as shown in Figure l.
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Figure 1. Continuous Moving Cylinder

Under the assumption of boundary layer theory, the governing equations are
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where u and v are the axial and radial velocity components, T is the fluid temperature, v is the kinematic

viscosity and 0c is the thermal diffusivity ofthe fluid. The boundary conditions of the problem are

for r=r0 u:U vsz T=Tw (4)

andfor r—)oo u=0 T=Tno

where vw is the velocity of suction or injection, when either vw < 0 or vw > 0, respectively. In order to

facilitate a numerical solution, we introduce the following dimensionless boundary layer variables:

 

The axial coordinate parameter g = vx/ U)1/2
(Sa)

ro

2 2. . . . r — r0
the Similarity variable n : 2

(5b)

é "o

and the temperature parameter (Xi, n) : (T — ’1;o) /(7}„ — Tm) (SC)
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Further there is the stream function

w = ro(va)“2f(§,n)
(6a)

defined by

ru = g and rv = —%
(6b)

so that using equations (5), the velocity components become
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Thus, the set of equations (1) and (2) is transformed to
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and the boundary conditions (4) become, for}; 2 0,

_ Z _ i = - Zat n — 0 an — 2 f+ 56: 20‘; 6 1 (10)

andat n—>oo g =O and 9:0

where o : rovw/4v
(11)

is the fluid suction (c < 0)or fluid injection (0 > 0) parameter. Using Gregory-Newton backward finite-

difi‘erences, the solution of equations (8) and (9) subject to the boundary conditions (10) can be expressed as
(see Katagiri, 1969)

 

ff = —(ih)c + eng—{26171

(13)

91. = 1 + [071%dndn-{HE P(n)Ion%(1%dndn}%((3

(14)

where

E01) = exp[_-Ln {Hihn (’71 +f£ +5111? _18fi‘1 + gfi’z — 2/19)idn]
(15)
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and where h is the step size. The dimensionless skin friction coefficient and the local Nusselt number are

defined as

Tw

 

and Nu = Q

Cf Z pU2 k(Tw—Tw)

where the skin friction 1w and the local heat transfer Q per unit length of the cylinder are given by

  

1w 2 „(g—3:140 and Q = —27rr0k(%) r30

g Present results Lin and Shih (1980)

0.0 - 1.77499 - 1.77497

0.05 - 1.79401 - 1.79077

0.1 - 1,81289 - 1.80622

0.5 - 1.96076 - 1.93135

1.0 - 2.13911 - 2.10325

1.5 - 2.31154 - 2.24323

2.0 - 2.47914 - 2.41258

    

Table 1. Comparison ofthe Skin Friction Coefficient SFP for c5 = 0
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After some calculations, we obtain the following skin friction and heat transfer parameters

   

62f °° "F(n) 1SFP=4CR“2=— 0:—1+JEI—d—— 23f ex önz (i, ) 0 (TOO Tl G(Oo) ( )

w n
HTP = (ijNu = —§(§,0) 2 1+ I P01)! Qfldndn —1— (24)

4n an o o P(n) R(oo)

where Rex = Ux /v is the local Reynolds number.

Present results Lin and Shih (1980)

g Pr = 0.72 1.0 10 0.72 1.0 10

0.0 0.71216 0.88749 3.36058 0.71217 0.88749 3.36059

0.05 0.72134 0.89700 3.37064 0.71948 0.89526 3.36934

0.1 0.73043 0.90644 3.38069 0.72692 0.90314 3.37813

0.5 0.80208 0.98034 3.46079 0.78852 0.96724 3.44792

1.0 0.88990 1.06955 3.55996 0.86611 1.04736 3.53217

1.5 0.97585 1.15577 3.65804 0.95695 1.13854 3.61983

2.0 1.06009 1.23957 3.75500 1.03830 1.22279 3.70241

  

Table 2. Comparison ofHeat Transfer Coefficient HTP for c = 0

3 Results and Discussion

The numerical scheme used for the solution of equations (12) to (14) consists of applying Simpson's rule. Since

this method is described in detail in the papers by Katagiri (1969), Pop and Watanabe (1992, 1994) and
Watanabe and Pop (1995) its description is omitted here. Results are obtained for various values of the axial

coordinate ä with the suction or injection parameter c: ranging from -2.0 to 2.0 and for the Prandtl number

Pr equal to 0.72 (air), 1.0 and 10, respectively. In order to assess the accuracy of our method, the particular

case of zero mass transfer (6 = 0) of our results for the skin friction and heat transfer coefficients has been

compared in Tables 1 and 2 with those of Lin and Shih (1980). It is seen from these tables that the present

results are in good agreement. However, some differences are noted, which can be attributed to the use by Lin

and Shih of the local similarity method, i.e. deleting the terms containing partial derivatives with respect to

i in equations (8) and (9), and considering a as a parameter.

Sample results presented here consist of velocity and temperature profiles, as well as of skin friction and heat

transfer coefficients for various combinations of the parameters é, 0' and Pr. However, the results presented in

Figures 2 to 11 refer to air (Pr = 0.72) only. We notice that the effect of suction is to reduce the velocity and

temperature profiles. Fluid injection, on the other hand, increases these profiles. Further, Table 1 and Figure 10

show that the skin friction coefficient decreases as suction increases while it increases with the increase of

injection. The contrary happens for the heat transfer coefficient, see Figure 11. It should also be noted that

when <5 = O (zero mass transfer) our results compare excellently with those of Crane (1972).
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Figure 2. Velocity Profiles for ä = 0.5

2.0 l I l

g H

O]

.ä‘

g -

8

Similarity variable, 77

Figure 4. Velocity Profiles for o = —05
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Figure 6. Velocity Profiles for o 0
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Figure 3. Temperature Profiles for ä : 0.5

    

when Pr = 0.72
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Figure 5. Temperature Profiles for c 2 ~05

when Pr = 0.72
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Figure 7. Temperature Profiles for c5 : 0

when Pr = 0.72
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Figure 8. Velocity Profiles for c = 0.5
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Figure 10. Skin Friction Coefiicient versus ä
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Figure 9. Temperature profiles for o : 0.5

when Pr = 0.72
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11. Heat Transfer Coefficient versus é
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