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An Algorithm for the Construction of Influence Matrices for

Shape Controlled Plates

S. M. Bauer, A. L. Smirnov, P. E. Tovstik, M. I. Ulitin

The algorithm for the construction of the influence matrix that allows the determination of the mirror surface

points displacements and its mean square deviation from the given surface is proposed. From the minimum

condition for the mean square deviation the optimal reactions in the supports are found. The proposed

algorithm is appliedfor the providing of the optimal control of a circular mirror of constant thickness under

external loading.

1 Determination of the Displacement of an Arbitrary Point

The nonuniform heating and the influences ofthe other external factors lead to the deformations and distortion

of the geometric form of a plate. If the plate is the reflecting surface one has to control its form to get the

desirable characteristics of the wave front (Tovstik and Ulitin, 1991). The algorithm for construction of the

influence matrix proposed below helps to determine the displacements of the mirror surface points and the

mean square deviation of the surface from the given surface. By choice ofthe support reactions the mean square

surface deviation can be minimized. We consider a thin elastic plate. In n plate points Mj with the coordinates

x], y]. the strings of stifiness c] are attached. Let the low ends of the springs get the displacements zj- . These

displacements cause the deflections (normal displacements) w(M) of a plate, where M is an arbitrary point

with the coordinates {x, y, M(x‚ We denote the deflections of the plate points Mj as w]. : w(Mj). The

set of forces , with which the springs act on the plate are determined as

F]. = c].(zJ-—wj) j = 1, 71 (1)

We suppose that there are no other forces acting on the plate. Then from the plate equilibrium equations we get

2F]- =0 2913-20 END-=0 <2)
j=l j=1 j:l

We try to find the linear relations between the deflections wj of the plate points M - , the forces and the

displacements 21- such that

n n n

_ W _ Z _ W ' _

E _ FU. w]. wz. — Wszz]. or 4-21.ij. l _ 1, ...= n (3)

1:1
j:1 J':1

or in other words to find the matrices FW, W2, Z”

71

17‘“: i,j z 1, n 2‘” =

Firstly we find the plate deflections caused by the force F]- : 1, acting on the point Mj . Since there is only one

acting force, the plate can not be in equilibrium. For that reason we apply at the plate point O (x = y = 0) the
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compensating force F = —l and the compensating moment M0 (equal by absolute value to the distance

1/2
2 2

0M]. = (xj+yj) .

We denote as w(M, Mj) the deflection of an arbitrary plate point M. This deflection is defined with accuracy

to the term b1 + bzxj + b3yj (b,- are arbitrary constants), describing the displacements of a plate as a rigid

body. We fix b,- and assume that the functions w(M,Mj) are known. For the circular plate without shear,

these functions are given in explicit form in Section 4.

We introduce matrices X of n x 3 size and matrices C and G of n x n size

1 X1 yl 01 0 0

l xn yn 0 O cn

where gt]. = w(M, M1.) and the vectors

w = (WI, ...‚ wn)T Z = (21, ...‚ zn)T F = (1171,...‚Fn)T

where wj are the deflections of the points Mf caused by the displacements zj. Then

w = GF + XB B = (b1, b2, b,)T (3a)

xTF = 0 (3b)

We solve system (3a - 3b) with respect to vectors F and W and rewrite this system in the form

’1‘ * * * F * W

GTzw G=[T] F=[] W=£j (4)
x 0 B 0

Splitting matrix (G*) into the same blocks as matrix G* in equations (4), we find

i —1 FW Bw

(G):[ ] F=FWW 13:wa
BWT Bq

Now submitting these expressions into equation (1) we get Z, from which it follows that

Z” = E + C’IFW

Remark

We assumed above that none of the points Mj coincides with the point O. In connection with this, the

additional forces and moments applied to the point 0 are mutually annihilated according to equations (2). Now

let the point Mk coincide with the point 0 (Mk = 0) . In this case k-column of the matrix G is to be simply

changed into a column of zeros, and the action of the force, applied at the zero-point, would be taken

automatically into account according to equations (2). the deflection of an arbitrary point M(x, y) may be

calculated by the formula
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w(M) = gT(M)F + YT(M)B (5)

where

g(M) = {w(M,M1), w(M‚M„)}T Y(M) = {1‚x‚y}T (6)

and F and B are the vectors found earlier.

2 The Determination of the Mean Square Deviation and its Minimization

Now let us have the function f( M) = f(x, y) and n points Mj . We are required to set the displacements w]-

at these points such that the mean square deviation of the surface w(x,y) from f(x, y) is minimal

6 = sllmww) —f(M))2dS] (7)

where S is the area of the plate surface. Evaluating equation (7) after submitting w(M) from equation (5) we

get

02 : FTKIF + ZFTKZB + BTK3B — 2FTK4 — 2BTK5 + K6 (8)

where

K1 =S’1HggTdS (nxn) K2 z 84”gYTdS (nx3)

S S

K3 = S‘lflYYTdS (3x3) K4 = 5—1”gde (nxl) (9)

S

K5 =S-1flSdeS (3x1) K6 = S4Hf2ds (1x1)

S S

The sizes of the corresponding matrices are shown in parentheses. The evaluations of integrals (9) for the

circular plate are given in Section 4 of the paper. The right side of equation (8) can also be written in the form

02 = F*TKF*— 2F*TK° + K6 (10)

where the vector F* is the same as in formula (4) and

let“; K2) K° = (K4)K2 K3 I{5

Using equations (8) or (10) one can solve some problems of the plate deflection regulation.

Problem 1

Let the displacements w - of the points M1- be given, i. e. the vector W is determined. For example, one can
J

require the deviation of the deflection w(M) from the given function f(M) be equal to zero at the points

Mj,i.e.

w]. = f(Mj) <11)
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To solve this problem we firstly get the vector F* from equation (4), and then the value ('5 = 01 is obtained from

equation (10).

Problem 2

Let the forces satisfying equations (2) of equilibrium be given. Now it is necessary to find the value of G in

supposition that the displacements of a plate as a rigid body (vector B) are selected according to minimum

conditions for G . From minimum conditions on the left side of equation (8) we get

B z K;1(K5 —K§F)

and then we find the value c = 02 from equation (10).

Problem 3

We are required to determine the deflections co j or to minimize O' . We search for the minimum of c5 in

(10) with respect to F“ under conditions (2) and obtain the equation

Kit-*Frlok = Kovk

where

K1 K2 X F K4

K“ = KZ K3 0 F“ = B KO" = K5

XT 0 0 A 0

Here A is a Lagrange multiplier, appearing under consideration of the expression 02 — ATXTF‚ where

A = (A],A2,A3)T. Solving equation (12) we determine the value 6:63 from equation (10) and the

corresponding deflections wj from equation (3).

3 The Control of the Deflection of a Loaded Plate

Let a plate be under the external load of intensity q(x, y) and under a temperature gradient along the plate

thickness. Let wg(x, y) be a deflection of a free plate under self balanced load q0(x, y). This load can be

obtained from q by subtracing the force P211 , the moment with projections qu, Fq3 on the axes x, y applying

to the point 0 and the temperature gradient. Here

Fq 2 {Elk qu’ 513V 2 ”qus

S

where vector Y is the same as in equation (6). In this case the solution of Problems 1, 2 and 3 is obtained by the

same scheme as above with the following changes:

(i) Equation (2) is changed into

XTF + Fq : 0

In particular, the forces determined in Problem 2 have to satisfy this equation.
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(ii) The right side of equation (4) transforms into

w" = [whys] W; = {W3(M1)2W3(Mn)}T

(iii) The vectors K4, K5 and a value of K6 are replaced by KZ, Kg, Kg, which are obtained from

K4, K5, K6 replacing f in equation (9) by f" z f— wg.

(iv) Relations (l 1) in problem 1 are changed into

O

wj = f(M]-) — wq(Mj)

(V) The right part K09“ of equation (12) is changed into

0* T T TT
Kq ={K:{,Kg1,—Fq}

4 Circular Plate

Now we try to construct the functions w (M, M1.) and to evaluate integrals (9), containing these functions. We

consider a circular plate of radius R, cylindrical stiffness D and Poisson's ratio v . The equation of the plate

bending has the form (Donnell, 1976)

DAN?) = q (13)

We nondimensionalize equation (13) in such a way to make plate radius equal to unity. We consider the de—

flection v?» (r, 4)) at the point M(r, (b) ‚ whose position is described by the polar coordinate

r, d) (0 s r 31, O s (b S 27c) ‚ under a self-balanced system of forces, connected with the point Mj(rj‚ 43].). This

system consists of the force applied to the point M a, the force - and the moment M0, applied to the

plate center 0. We represent the deflection v?» (r, 4)) in the form

A

¢) = Fjw‘wj

where the dimensionless deflection wj is equal to

w]. = w(M, M1.) = w(r, q), r].‚ 4%.) = uk(r,rj)cosk(¢—¢j) (l4)

k:O

Functions uk are given by diiferent expressions for r < r] and for r > r]. Denoting these functions by u;

and u; respectively we get
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“5 : (87‘)_1r2[vlrj2 +14“ (r /rf)]

„g = (8n)'1rj2[vlr2 +1+1n (r/rj)]

u; = (47:)_1rr]- ln (r /rj) + (16nr‚.)'1r3(v2rf — 1)

u: = —1>
u; = Cfrk + Cgkrk+2 for k 2 2

+_ +k +~k +k+2 +24:

uk—Clr +C2kr +C3kr +C4kr

  

c; = ka +k1r]?"‘ C1; : rfkl[(rf(1— k) + kv2 +v3 m]

gk : —k2r]k+2
C4+k : klrjk

C37: z (73+): ’ kzrfk (73+,C = —k2v2(k + 1— 10f);ij

where

l—v l— v 8 (1+v)

V1 : V2 2 v3 :—

2(l+v) 3+v (l—v)(3+v)

and

k1 = (87tk(k -1))‘l k2 = (87rk(k +1))’1

In integrals (9) the components of vector g (M) have the form of equation (14), and

Y = (l, r cosd), r sin¢)T

We introduce the expansion of the functionf into a Fourier series

f z Z[f,fcosk¢ + fkssink¢]

k:0

Then it is possible to make the integration over (bin integrals (9). We denote as KW, KM, K331], KM, K5),- the

elements of the corresponding matrices. For their evaluation we have

Km] = Z§kII§COSk(¢1'¢j) 50 = 2 5k = l fork > 0

k:0

l; = Euk(r,r;)uk(r,rj)rdr

Kl,-1 = 2j:uo(r,r;)rdr Kli: = licos (of) K233 =l,-Si11¢,-

l. = I1u1(r,1;)r2dr

0
l

K3 = diag(1, 1/4, 1/4) KM = 25k[likccosk¢i + lfssinqui]

k:0

1

like Z Iluk(r‚ri)fkc(r)rdr liks z I“k(r:ri)fks(r)rdr
0

0

1 1 l

1(5)1 = 2_[O foc(r)rdr K532 = L ff(r)r2dr K53 = J0 fi(r)r2dr
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K6 Z 2]: (foc(r))2rdr + k2: “für” + (Jr/50))? rdr

5 The Compensation of Deflections, caused by Temperature Deformations

The deflection wg ofthe circular plate, caused by temperature deformation is equal to

wg = —>;r2+c g z aATRZh-Uz

where 0L is the coefficient of temperature expansion, R-radius of a plate, h-plate thickness, AT -temperature

difierence between face surfaces.

Taking wg = r2 in equations (10) and (3) we find dimensional values of cs for arbitrary vector W and for

vector W* respectively , which gives the minimum for 6. To obtain the dimensional value of oits

dimensionless value has to be multiplied by E_‚ .

To estimate the rate of decreasing of the deflection with moving supports, we note that without the restriction

G : 0.288,

We consider two cases. In the first, the plate is supported at n = 2110 + 1points (one point in the center and

no points on each of the circles of radii rl and r2 ). In the second case the plate is supported at 2nO points

(without support in the center). One can see the results of calculation in Tables 1 and 2.

 

 

 

 
 

 

 

 

 

I’10 n 1‘1 V2 61 63 no n 7'1 r2 0] C53

3 7 0.5 0.8 0.152 0.071 3 6 0.45 0.8 0.200 0.157

4 9 - - 0.103 0.060 4 8 - - 0.105 0.062

5 11 - - 0.070 0.038 5 10 - - 0.067 0.039

6 13 - - 0.054 0.025 6 12 - - 0.053 0.035

3 7 0.45 - 0.160 0.074

4 9 - - 0.100 0.059

5 ll - - 0.067 0.036

6 13 — - 0.053 0.037

Table 1. Meansquare deviation of the plate Table 2. Meansquare deviation ofthe plate

points with 2110 + 1 supports points with 2110 supports

Here 01 corresponds to the zero deflection at the points of support and 63 corresponds to the minimal

deflection. Making a regular triangle mesh with the distances between the points equal to 0.45, we obtain for a

plate supported in n = 19 points that C51 = 0.030 and (53 = 0.020.

Making a regular rectangular mesh with the distances r0 between the points, we obtain for a plate supported at

n = 21points that

 

w(r) = §w2(r) + C g = PRZ/q P z nqu

(3+v) r210 r r4

w§(r) = r 32n(1+v)——8ffl+a

where P is the plate weight and D is the cylindrical stiffness.
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