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Asymptotic Methods in the Statics and Dynamics of Perforated

Plates and Shells with Periodic Structures

1. V. Andrianov, V. V. Shevchenko, E. G. Kholod

An analytical solution, describing homogenized coefl’zcientsfor static and dynamic equations for periodically

perforated domains, has been obtained by asymptotic methods and two-point Padé approximants.

1 Introduction

The analysis ofperforated plates and shells is of significant practical value: a lot of problems, arising in machi-
ne design, civil engineering etc, can be reduced to perforated plates and shells. The problems posed are often

solved using numerical methods such as finite element procedures. Nevertheless, a numerical approach does

not adequately fit the requirements of optimal structural design ideology. Then approximate analytical expres-

sions, if they are accurate enough, will be of great practical advantage for these needs.

The presence in the solutions of slow and fast varying parts is the main obstacle on the way of numerical inve-

stigation ofperforated structures. In many physical problems, some variables vary slowly, others fast. It is natu-

ral then to pose the question whether it might not be appropriate first to study 3 global structure, digressing

from its local distinctive features, and then to investigate the system locally. It is the homogenization method

that is aimed at a division into fast and slow components of the solution. Without going into detail — the more

because the method has at present a lot of modifications - it will be noted only that it involves the introduction

of ,,slow“ (macroscopic) and the „fast“ (microscopic) variables whose equations are separated and can be solved

independently, or sequentially.

This method was developed for and gained wide use in solving problems in celestial mechanics and in the non-

linear oscillation theory, which are characterized by common differential equations. At present, the method is

used with great advantage for solving variable coefficient partial differential equations in such disciplines as the

theory of composites, or the design of reinforced, corrugated, perforated, etc. shells (Andrianov et 31., 1983,

1985, 1988, 1991; Bakhvalov and Panasenko, 1989; Bensoussan et 31., 1978; Berdichevsky, 1983; Bourgat,

1979; Caillarie, 1984; Cioranescu and Paulin, 1979; Duvaut, 1977; Kalamkarov, 1993; Lewinsky and Telega,

1988; Lions, 1980, 1982; Mignot et al., 1981; Nazarov and Paukshto, 1984; Oleynik et 31., 1986; Sanchez-

Palencia, 1980; Suquet, 1980; Vanninathan, 1981). An original nonhomogeneous medium or structure is redu-

ced to a homogeneous one (generally anisotropic) with some effective characteristics. The homogenization

method allows not only to obtain effective characteristics but also to investigate nonhomogeneous distributions

of mechanical stresses in different materials and structures, which is of great significance for evaluating their

strength. Then the main idea of the method is based on a separation of ,,fast“ 3nd „slow“ variables. As a start, a

certain periodic boundary problem is formulated (,,cell“ or ,,local“ problem) and its solution, assuming periodic

continuation of boundary conditions, is obtained. For that purpose the local coordinates (,,fast“ variables, in the

case of the multiscaling method) are introduced. After that averaging upon local („fast“) coordinates is perfor-

med. The approach presented fills the substantial gap between numerical methods of thin shell theory, which

methods lack generality and the possibility to grasp the common features of behavior of the structures con-

cerned, and approximate design schemes, based on heuristic hypotheses. Methods proposed are wideranging in

applications and lead to simple and clear design formulae, useful for practical analyses, The aforesaid opens

new prospects in the analysis of new important problems arising in modern engineering and not yet solved

fully and effectively enough.

The theory of homogenization has been developed for perforated media by many authors in recent years (see

above). Mathematical foundations of the method have already been established.

The main task in this field then is in solving the so-called cell (or local) problem. This problem has been

usually treated by numerical methods. We have used asymptotic methods (perturbation of the domain size and

perturbation of boundary conditions, singular perturbation) and two-point Padé approximants for solving the

cell problem and have developed the approach in this paper.
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The present paper covers the following problems:

0 Bending of rectangular plates with periodic square perforations

o Eigenvalue problem of perforated plates

0 Analytical approach for a large hole

0 Matching of asymptotic expansions by means of two-point Padé approximants

o The plane theory of elasticity in the perforated domain

0 Perforated shallow shells

2 Bending of Rectangular Plates with Periodic Square Perforations

We consider the biharmonic equation

DV4W = P(x, y) (1)

in domain G which consists of a perforated medium with a large number of square holes which are arranged in

a periodic manner with period 2a (Figure l).

Gk as, öG

                                

 

 

 

 

 

 

 
 

Figure l. Perforated Element

Here D denotes the plate stiffness, D = Eh3/(12(1—v2))‚ and V2 = 62/6x2 +62 /öy2 is the Cartesian

form ofthe Laplace operator.

The study of such problems is important from a theoretical as well as a numerical point ofView Because of the

complicated structure of the perforated domain, any kind of calculation is difiicult to perform. If we treat the

boundary value problem we have to impose the boundary condition on the boundary of the holes which are

many in number. So, we would like to approximate the given problem by a homogenized problem on a domain

without holes. By the method of asymptotic development, a problem on a periodically perforated domain is

reduced to solving problems in the basic cell and in the domain without holes. Let the boundary of holes 6Gk

be free of stress, such that
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(V2w)nk _ (l—v) [0.5 (Wm—WW)sin29 — ny cosZGL WG = o (2)

VZW + (1—v)(nysin26 — Wxxsinze — Wyycosze)laG = 0 (3)
k

where 6 is the angle between axis OX and normal nk. Boundary conditions (without loss of generality) along

the domain boundary öG (Figure 1) may be formalized as follows:

W = an = 0 on 6G
(4)

We denote

81: Za/l (81 <<1) :2 gflx n = efly

The method used here is a variant of multiscaling techniques used in Andrianov et a1. (1983, 1985, 1988,

1991), Baker (1981), Bakhvalov and Panasenko (1989), and Bensoussan et al. (1978). Let us represent the

solution in the form of a formal expansion

W(x9y) z Wo(x»y:§=TI) + 81W1(x>}’‚‘:>71) + 812%(x9y>§’n) +

where x = x1, y = y1.

Changeability pcriod l in respect to variables in} for the functions W] (j = 1,2, is admitted. The opera-

tors ö/öxl and ö/Öyl applied to afunction become

6/0x1 = 6/6x1 + sie/6% ö/öy1 = a/ayl + eiö/ön (6)

Substituting series (5) into boundary value problem (1) to (4), taking into account relations (6) and splitting it

with respect to the power of 81 , one obtains the following recurrent sequence ofboundary value problems:

M1[W2] a [VI/x41 —(l—v)sin29] + W2„„[1 —(1—v)cos2 e] + (1—v)W2én 9:129ka = —M2[W0] (7)

Vi‘W3 —4[(V12W2)xi + (VZWH (8)

L1[W3]aGk = —L2[WO] — 3%mi sin6[1 +(1—v)c0526]

— (2W2yin +W2m) c056[1 +(l—v) (1451199)]

_ 31/1/szi cose[1 +(l—v)sin2 6]
(9)

— (Zszan +W2y§§) sin8[l +(1—v)(1—3cos26)]

M1[W3]6Gk = —2WM[1 —(l—v)sin26] — 2Wm[1 —(1—v)c0526] _ (l—v) (szn+W2y§)sin29 (10)

V4W0 + vg‘W4 + 4 [(22ng +(V12W3)yn] + 2 “VW/2))“ +(V12W2)yy+ 2 (VI/m5 „um/„m +W2W)}

= P(x,y)/D
(11)
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L1[W4]6Gk = —3 (W3xäg+ng) cose [1 +(l—v)sin29]—3 (an+Wm§) sine[1 +(l—v) (l—3cosze)]

—(W3mm +2W3yni +2W2m +W2yyé) c059 [1 +(l—v)sin26] (12)

_(wsyää +2W3er +2Wm§ +ng) sine [1 +(1—v)cos26]

Let us introduce parameter 82 = b/a and consider the case 82 «1 (it means a small hole, case 82 =1is

considered in section 4).

Then we can use asymptotic methods of perturbation of domain size and boundary form perturbation (Nayfeh,

1981; Guz and Nemish, 1989). For this purpose we neglect in the first approximation the outer boundary of the

cell and pass to polar coordinates. Then function W2 is represented by an 82 - based expansion in polar coor-

dinates.

W2(p:<1>) = Wzo(p‚<P) + 82W21(p‚<p) + 8%2(p‚cp) + (13)

Then we can translate the boundary conditions from line p = R(1 + 82 cos 4cp) to circle p = R by Taylor’s

formula (Nayfeh, 1981; Guz and Nemish, 1989). Substituting equation (13) into the boundary value problem

(7) and splitting it into a recurrent system of similar boundary problems one obtains

V‘Z‘W20 = 0
(14)

LBW/20] E [WZOPPP +R~2W209qxp _R_1W20pp ‘2R—3W204xp

(15)
—R’2W20p +(l—v) (R‘ZWZOPW —R‘3WZOW)] = 0

=R

M3[W20] E [Wzopp +V (R72W2ocpq) *R71WZOP)] :

= —V2W0 + 0.5(1—v)[W0xx(l—cos2cp) +W0W(l+cos2<p) —W0‚g‚sin2cp]

Here

62 a 62
2 = __ —1_ —2___

V2 6 2 + p öp 6(P2

The solution of this problem may be written in Cartesian coordinates in the following form:

W2(x,Mm) = 0.5 (CZOOInN + DZOONlnN)+ N’2(B202M + 235mg) + N‘1(D202M + ngozg)

+ 82[N’2(BZIZM + ngug) + N’1(D212M + 2D2'12Q)+ NflBmL + ZB§14QM) (17)

+ N‘3(D214L + 2D2’14QM) + N‘6(B214MK + ng14QP) + N‘5(D214MK + 2D2'14QP)]

where

N=§2+n2 M=€2—n2 Q=§n

L zg4—6g2n2 +714 10:3>g4—101;2n2 +3114 K=§4—14§2n2 +114

C200, D200, 3202, are very complicated coefficients, and are not given here.

Function W2 does not satisfy conditions of periodicity (conditions on the outer boundary of the cell). For the

correction term WZH we obtain the following expressions, taking into account only the principal ofthe series
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[WZH]:: = 1301) = 1301) [mäßig = f3(n) = f4(n) (18)

[W]: = we) [W51]: = we) [m]: = m) [ng j: = m) (19)

where

f1(n) = ~42V71§5 = 4N‘znfi75 = —8fi_1§§5 f4(n) = 241V4nZE

N=N §=S [2140225) 57:81—10 5:D202+82D2'12 W1(§) =f1(71) (im)

Now we consider problem equations (18) and (19) in the simply connected domain S 81’112, [nl S 81’151)

ignoring the hole. One easily obtains the solution of equations (18) and (19)

a

°° . m; mm . mmWZH = Z[[A£21)srnh7n + B£21)cosh—a— + C£21)n51nh7

n=l

+ DS‚21)T1cosh2:—n)cosnalä + (Affnsinhnaiä + B£22)cosh% (20)

+ C5122)gsinhfi + D’gzzkcoshfijcosg]
a a

Then one may satisfy boundary conditions on the boundary of the hole, ignoring conditions of periodicity, and

so on. This is the main idea of domain size perturbation (Neuman-Schwarz alternating method) (Kantorovitch

and Krylov, 1949).

The boundary value problems ofequations (8) to (10) have been solved on the basis of the approach presented.

11

W3(x,y,n,é) = '0~5{N[IHN —?j (DZOOx: +D200y71) + N71[(D202x ‘D202y)§5 ‘(Dzozy +D202x)TlS1

+ N_l[(C301+82C311)§ + (C§01+82C3,11)Tl] + 0-51nN[(D301+82D311)§ +(D3’01+82D3’11)T1]

+ NV3[(B301+823311)§S + (33,01 +8zB§11)nS1] + NA2[(D301+82D311)§S +(D§01+82D3I11)n31]

" 0'582{N—1[(D212x ‘D212y)§5 — (D212x +D212y)nSl] + N—3[(D214x ‘D214y)§T ‘(D214x +D214y)nT1]

V ‚ ‚ w „ mm mm _ mm+N 5 (D216x—D216y)§H — (D216x+D216y)nH1]} + Z[[A£31)51nh—a— +35,31) coshT +C£30nsmhT

n=l

+ 09% cosh—mm) cosfl + (145,32) sinhß +B‚(,32) coshn—nä + C92): sinhE + D£132)§ coshn—nä’) cos—mm]
a a a a a a a

(21)

where

S = £2 —3n2 T : 2:4 — 10222712 +5714 H = g“ — 21:4712 + 356114 — 7116

31:3 T1=T H1=H(§=n)

Substituting solutions of cell boundary value problems (7) and (8) into equation (10) one obtains the homogeni-

zed equation

A(WOM+WOW) + 2BWOW = P(x,y)/D (22)

where A and B are the very complicated coefficients, and not given here. The homogenized boundary conditi-

OIlS aIe

W0 = WOW: 0 on öG (23)
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Coefi'icientsA (curve 1) and B (curve 2) are calculated for a] = 0.125, 82 = —l/9, v = 0 and v z 0.3 (sec Figu—

res 2 and 3).
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Figurc 2. Homogenized Coefl'lcients A and E versus Ratio 5/5 for v = 0
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Figure 3. Homogenized Coefficients A and B versus Ratio 13/2?for v = 0,3

Now we examine the accuracy of the homogenized coefficient computations. Let us consider simply supported

square plates with stress-free circular and square holes, loaded by a uniformly distributed lateral pressure P. In

this case 8] equals to 1, and it represents the worst case for our method. Calculated nondimensional deflections

and bending moments W*and M*(W* = WD/Pa4, M* = My(Pa2)) are shown for circular holes at a point

(15,0) for various values of parameter b/a (see Figures 4 and 5, curve 2).
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Figure 4. Nondimentional Deflection at Point (b, 0) versus Ratio b/a
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Figure 5. Nondimentional Bending Moment at Point (b, 0) versus Ratio b/a

Coefficients W*and M* along the edges x = a for v = 0.3 for square (82 = —1/9) holes are shown in Figures 6

and 7 (curve 2).
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Figure 6. Nondimensional Deflection along Edge x = a for v = 0 versus Ratio b/a
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Figure 7. Nondimensional Deflection along Edge x = a for v = 0,3 versus Ratio b/a

The results, obtained by the Fourier series method (Pickett, 1965), are presented in Figures 4 to 7 by curve 1.

The discrepancy for deflections does not exceed 5 % (for bending moments 10 %)‚ which confirms an accepta-

ble accuracy of the method presented.
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3 Eigenvalue Problem for Perforated Plate

Our aim is to describe the asymptotic behavior of the various eigenvalues when the number of holes in the do-

main increases to infinity. Using the notations introduced in chapter 1 we consider the following eigenvalue

problem

V4W — W = 0 (24)

where l = (Duh/ D, and m is the natural frequency. For equation (24) we may formulate boundary conditions

(2) to (4). We represent eigenvalue 7» and eigenfunction W in the following forms:

W(x,y) = W0(x,y) + 812W2(x,y,§,n) + efW3(x,y,E_,,n) + (25)

i = to + 81x1 + 2»:ka + 8%, + (26)

Substituting expansions (25) and (26) and boundary conditions (2) to (4) into equation (24) and splitting it into

powers of e, , one obtains a recurrent system of boundary value problems. The first step in the solution process

is the same as that above. One can obtain W1 2 0, W2 and W3 (see formulas (19) - (20), (21)) . It means that the

boundary value problems (24) is quasi-static. The homogenized eigenvalue problem may be obtained by

applying the averaging operator defined by equations (6)

A(W0W+WOW) + 23W0W — xOWO z 0 (27)

This equation must be supplied with the homogenized boundary conditions (23).

4 Analytical Approach for a Large Hole

Let us now consider 81 =1 (case of large hole, Figure 8).

                  

Figure 8. Parameters for Large Square Hole

In this case we can not use the previous approach, but the smallness of the parameter 6/b, where ö is the

thickness of the wall between two holes (see Figures 1, 8), must be taken into account. Then we may construct

an asymptotic solution, using a singular perturbation technique, similar to that proposed in Christensen (1979)
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(this a variant of another singular perturbation technique, see Nayfeh, 1981). Let us denote

§=sf15§, fi=8[18n. Then cell problem (7) to (10) may be formulated as a set of four strips

H1 = < 83 H2 = < 83 }, s3 = 8/ b <<l . Let us consider boundary value problem (7) for strip H1

W” + 2 2W“) + 4W(1) = 0 282% 83 2m 83 2m
( )

W0) 2 2— WW] z 2[ 2E: +e3( v) 2m En 0 (9)

(1) 2 (1) _ _ *2 v[Wzfi + swam]?$1 _ 81 5(W0xx+vW0yy) (30)

For function W2 we use the following asymptotic expansion

W20) z W200) + 8§W2(12) + gin/203) +
(31)

Substituting equation (31) into boundary value problems (28) to (30) and splitting it with respect to the powers

of 83, one obtains a recurrent system of boundary value problems. Restricting oneself only to systems of first

approximation, one has

W201) I 0
(32)

tit:

{Wg} = 0 (33)
iéé EA: :1

10) _ ‚2

[144%]5fl1— ‘81 5(W0NVWOW) (34)

Solving the one-dimensional boundary value problem (32) to (34), one obtains

W2(10) Z C21 + szg + C2352 + C2453 (35)

Solutions of boundary value problem (7) for a strip have been constructed in the same way and have been ob-

tained from equation (35) by a change of variables

W2(20) : D21 + Dzzfi + Dzsfi2 + D24fi3 (36)

Constants C12, D12 have no influence on the homogenized coefficients of either bending moment, so we ne—

glect them. Constants C22, D22 have been obtained from boundary conditions and additional conditions at

points A, B, C, D (see Figure 8). Thus we have the following expressions:

W200)

C21 — 0.5 (meWOWfiZ (37)

We)
2 D21 — 0.5 (WOWWWOXXM2 (38)

We have solved the cell boundary value problem (8) to (10) on the basis of the approach presented. The gover-

ning boundary value problem may be written in the form

W303) = 0 (39)
ääEÄ

149



[VI/3(10)} = zs;3ö3[W0m— (1—2v)WO‚g‚y] (40)
g: 11333

[W]333 E: :1

The underlined term has been added into boundary conditions (41) for the sake of solvability. Solving the one-

dimensional boundary value problem (39) to (41), one obtains

II i 281'353[W0m -(l—2V)VV0xyy] (41)

 

_ 1
W300) = C3] + @2815 1g + 5[W0m— (1—2v)VI/O‚w]g3 (42)

Solving for the strip I'I2 one obtains from equation (42) by setting x = y, ä : 11, C31 2 D31

_ 1
W300) 2 D31 + 1332815 In + §[W0w— (l—Zv)Woyxx]n3 (43)

Solving for term 1 281’3611/14)m — (1—2v)WOw] in the boundary conditions (41) one obtains the following

boundary problems:

W311i: + 2W5; + W941“ = 0 (44)

[WSW „mal—15 = [WSWJTFQIQHM Z 0 (45)

[W315 lnzgea Z l 315]„:g;1(5+2„)= 0 (46)

[VI/31€: 5:421'15 = 0 (47)

[VT/31: é: $845 = 7r 8I15(1-V)Woxw (48)

 

Boundary value problems (44) to (48) cannot be solved exactly, but we can use a variational Kantorovitch me-

thod (Christansen, 1979). Let us briefly present this method. First of all we must represent the solution for

equation (44) in a form satisfying boundary conditions (45) and (46).

2 2

WQH = x(§)q>(n) @(n) = (n -8I1a) - (81’117)

Then we substitute this expression into equation (44), multiply with (p(n) and integrate over n . Then we ob-

tain an ordinary differential equation with respect to x(§) , and after solving it and satisfying boundary condi-

tions (47) and (48) we may write

W3“ = [(n—sfla)2— (81412)? (A12cosh(o.51§/b)sin(B81§/b) + Blzsinh(a£1§/b)cos(B81§/b)) (49)

where
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Au : 21815(1—v)W0W[oc3 cosh%cos% — 3(xzßsinhg;sinpbä)

4b(oc2+ß2) (am? — [ism-2%]

21815(1—V)WW [30432 cosh%cosfibj — p3 sinh%sin[3b§]

4b(oc2+[32) (am? — 1351:1112?)

_ 21818(1—V)W0W[0c3cosh?cos% + 3oc2Bsinhi—55ini—8J

BIZ — 4b(a2+[32) (man? — ßsinh?)

21918(1—V)W0W(3(x[32cosh%§c05% + Wsinhfsin‘?)

4b(oc2+[32) (mm? — um?)

The solution for strip 111 has been constructed similarly and can obtained from equation(49).

_ 2 __ 2
.

.
W32H = [(11—81 1a) — (811b) ] (AZ2 cosh(0c8m/b) sm(ßsln/b) + B22 smh(oogm/b)cos(BSm/b)) (50)

A12 =1‘122 BIZ :322(x=y)

Substituting the solution obtained into equation (10), one obtains the coefiicients ofthe homogenized equation

A = 0.5(1— v)2 B = 0.7(1— v) (51)

For v = 0.3 we have A = 0.455, B = 0,49. Approximately we may assume B 3 0.455, then the plate

bending equation may be written as follows

0.4555(W0W + 2W0” +WOW) = P(x,y)/D (52)

For large circular holes we obtain

n 71

A = kA E 2 kB k = (1—82) (1— 182] (53)

The homogenized eigenvalue problem may be obtained in the following form:

14(W0m + WOW) + ZBWOW — XOWO z 0

where coefficientsA, B are defined by expressions (51) (for large square holes) or (53) (for large circular holes).

5 Matching of Asymptotic Solutions by Means of Two—Point Padé Approximants

Practically any physical or mechanical problem, whose parameters include the variable parameter s ‚ can be

approximately solved as it approaches zero, or infinity. How can this „limiting“ information be used in the

study ofa system at intermediate values of s ? This problem is one of the most complicated in asymptotic ana-

lysis. As yet there is no general answer, but in many instances it is alleviated by two—point Padé approximants

(Baker and Graves-Morris, 1981; Andrianov, 1991),
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Thc notion of two-point Padé approximants is defined by Baker and Graves-Morris (1981). Let

F(s) = Zaiei when a —> 0 (54)

1'20

F(e) 2 219,8" when g -—-)l (55)

1:0

The two-point Padé approximant is represented by the function

F(e) = [iakek] [Hz’lekek]

in which m+1 coefiicients of expansion in the Taylor series when s —> 0 and m coefficients of expansion in

the Taylor series when a a] coincide with the corresponding coefficients of the series (54) and (55).

In our case we have the following expressions (v = 0.3) for a square hole:

IIA = (1 — 0.650432) (1 — 0.231782)’l B (1 — 0.746682) (1 — 0443282)1

and for a circular hole:

A = (1 — 82) (1 — 0.578582)” B (1 — 82) (1 — 0.670182)‘l

Figure 9 shows the numerical results forA and B for square holes for 82 = 0.125 and v = 0.3 .

1.0

\0.8 B

>x

0.4 \

           

Figure 9. Homogenized Coefficients A and B for Square Hole and v = 0 3a

The values of coefficients A and B for circular holes are compared to theoretical results, obtained by a two-

periodic elliptic functions method (Grigoluk and Phylshtinsky, 1970) (curve 1 for coefficient A and curve 2 for

coefficient B in Figure 10).
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Figure 10. Homogem'zed Coefficients A and B

Experimental results for coefiicient A (Grigoluk and Phylshtinsky, 1970) are displayed in Figure 10 by dots.

The accuracy of the method proposed is apparent.

6 The Plane Theory of Elasticity in Perforated Domain

The governing boundary value problem for the perforated domain (see Figure 1) may be obtained as follows

(boundaries of holes are free of stress):

V4u/ = 0 (56)

- 2 2 - _[xi/m srn 0 + WW cos 0 — WW srnZGLGk _ 0 (57)

[0.5 (WW — w„)sinze + My c0529] z 0 (58)
k

where w is the potential function. Let us introduce expansion

w(x‚y) = wo(x‚y) + 83w2(x‚y‚ä‚n) + 813w3(x‚y‚ä‚n) + (59)

Substituting this expansion into boundary value problem (56) to (58) and splitting with respect to powers of 81

one obtains cell boundary problems for the whole domain.

VW2 E Wzééé: + 2W2ténn + ‘Vznmm Z 0 (60)

L3[\y2] E [ii/25$ sinze + me c0526 — \112511 sin20]öG = —\i10xrsin20 — why c0529 + ule sin20 (61)

k

M3[\|/2] E [0.5(\;121111 —w2¢§)sin29 + wzén cosZGLG = 0.5 (WOW—w0m)sin26 ~ “1203:0520 (62)
k

VIN/3 = —4[<Viw2)x§+ (Viw2)m] (63)
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[QM/Zum]: = —2 [Wm sinze + wzyn C0826 — 0.5 (kl/2m —w2y§)sin29] (64)

[Mahl/211%}: : —(w2yn—w2x:)5in26 ‘ (szn ‘W2y§)00529 (65)

V4‘Vo +V?W4 +4 |:(V12W3)xé +(V12W3)yn]+2 [(VlZWZ)xx +(V12W2)yy +2 (WOxxfifi +‘I’0an +2W0xy§n)] : 0 (66)

where V1 — V(x : i, y = n). The homogenized equation can be easily obtained by applying the average opera-

tor defined by equation (6).

v4w0 + 2 IG;

 

-1IH2[(V12W3)xg +(V12w3)yn ]+(V12w2)m +(V12W2)W +2 (xi/0m: +womn „xi/0%" (111 = 0

k

(67)

The cell problem has been solved on the basis of the approach presented in section 2. We obtain

w2(x‚y‚ä‚n) : A200 + 0-5 C200 IHN + N_2(3202M + ZBéon) + N71(D202M + ZDéon)

+ 92[N‘2(BmM + ngle) + N’1(D212M + ngnQ) + N’4(B214L + 432'14QM) + N‘3(D214L + 4D2’14QM)

+N’6(BZIÖMK + 435mg?) + N‘6(D216MK + 4D2’16QP) + ZKAS‘kinhnafl + BEDcoshnz—n + cg21)nsinhn—:Tl

n:l

+ D£21)ncosh%nj 005% + (AffnsinhgvE + B£22)coshna£ + C£22)§ sinhnaig + DEIZZ): coshjcosm]

(68)

whey/Em) = —O’5N71[(D202x ‘ DéOZy)E.>S _ (DZOZy + D£02_r)TISi]

+N‘1(Csm§ + Ca'om) + 0.5 111N(D301E.~ + 133’017!) + N73(B301§S + 35017151)

+ N_2(D301§S + D3'0m51) + g2 {—0‘5N—1[(D212x " DélZy)§S ‘ (Dzizy _ Délthsi]

_ 0~5N73 (D214x +D£l4y) ET _ (D214y _ D£14x)nT1] ‘ 0-5N4 (D216x ‘ Déléy)E.IH

‘ (D216y ‘ Dälsthl] ‘ N_1(C311§ + C311") + 05 1nN(D311§ + D32117!) (69)

+ N_3(5311ä3+33’11n51) +N‘2(0311§S+D3’1m51)}

+ Z[(Agal>smhfln + Bgmcoshm + qmmth + ngncoshm]
a a a a a

nil

+ [A,(132)T15inh1m—g + B‚(‚32)coshE + C‚(‚32)äsinhE + D51322 coshn—ni-jcos—mn]
(I a a a a

where

N=§2+n2 M= 52—112 Q = in L = €4—6 §2n2+n4 13:33—10 §2T12+3n4

K=§4-14 §2T12+n4 S = 6—3712 P = 64067125114

H2§6—21§4n2+35§2n4—7n6 51 = S T] z T H1 2 11(5):“)

C301, C3’01 ‚ n-are complicated coefficients,which are not given here.
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Substituting cell problem solutions (68) and (69) into equation (67) one obtains

C(W0x.m+ WOW) + ZFWOW z O (70)

where C and F are very complicated coefficients,which are not given here. Figure 11 shows the homogenized

coefficients C (curve 1) and F (curve 2) for sl = 0.125, 82 = —1/9.

 

c,/= __\ i

\ / 1

0.9 '

  

\
0.8 \2

0.7

     

0.6 ‚ i

O 0.1 0.2 5/3—

Figure 11. Homogenized Coefficients C and F versus Ratio 5/21—

 

7 Perforated Shallow Shells

For perforated shallow shells the governing equations are

vim + DV4W z P(x, y) (Eh)"\74w — vii/V = 0 (71)

52 62
where v: : k1——2 + kzäx—2 k1 = R;1 k2 = R;

and R1 ‚ R2 are principal curvature radii. If hole boundaries are free of stresses, we have Kirchhoff’s boundary

conditions for a free boundary

 

:wn sinze + xyyy cosze — \ny sinZBLGk = 0 (72)

.05.(\|JW —\yx„)sin26 + wxy cos29]aG}t = 0 (73)

:(Vzw)nk _ (1——v)[ 0.5(Wm — Wyysin29 — WW cosZGLkLGk = 0 (74)

:VZW — (l—v) (—W,xsinze — WW c0326 + stinzenam = 0 (75)

We assume (without loss of generality) the boundaries of shells simply supported. We obtain the asymptotic

expansions (5) and (59). Substituting this expansions into equations (71) and boundary conditions (72) to (74)

and splitting with respect to the powers of 81 one obtains recurrent systems of cell boundary value problems

and boundary value problems for the whole domain. Cell boundary value problems consist of boundary value

problems of plate bending and plane theory of elasticity. Then we can use the solutions obtained above.
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8 Conclusions

The asymptotic method proposed may be used for an analytical investigation of the static stress-strain state and

the investigation of oscillations ofperforated rectangular plates and shallow shells.

Literature

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Andrianov, 1. V.: Application ofPadé-Approximants in Perturbation Methods, Advances in Mechanics

14, N 2, (1991), 3-25.

Andrianov, I. V.; Lesnichaya, V. A.; Manevich, L. 1..: Homogenization Methods in Statics and Dynamics

of Reinforced Shells, (in Russian), Moscow, Nauka, (1985).

Andrianov, I. V.; Manevich, L. 1.: Method of Homogenization in Application to the Theory of Shells,

Advances in Mechanics 6, N 2/3, (in Russian), (1983), 3-29.

Andrianov, I. V.; Starushenko, G. A.: Application of the Averaging Method for the Calculation ofPerfo-

rated Plates, Soviet Applied Mechanics 24, N 4, (1988), 410-415.

Andrianov, I. V.; Starushenko, G. A.: Solution ofDynamic Problems for Perforated Structures by the

Method of Averaging, Soviet Math. 57, N 5, (1991), 3410-3412.

Baker, G. A.; Graves-Morris, P.: Padé Approximants, New York, Addison-Wesley Publ. Co., (1981).

Bakhvalov, N.; Panasenko, G.: Averaging Processes in Periodic Media, Mathematical Problems in Me-

chanics of Composite Materials, Kluwer Academic Publishers,Dordrecht (1989),

Bensoussan, A.; Lions, J.-L.; Papanicolaou, G.: Asymptotic Methods in Periodic Structures, New York,

North-Holland Publ. Co., (1978).

Berdichevsky, V. L.: Variational Principles ofthe Continuum Mechanics, Moscow, Nauka (in Russian),

(1983 ).

Bourgat, J. F.: Numerical Experiments of the Homogenization Method for Operators with Periodic Coef-

ficients, Lecture Notes in Math., N 704, Berlin, Springer-Verlag, (1979), 330-356.

Caillerie, D.: Thin Elastic and Periodic Plates, Mathematical Methods in Applied Science, 6, (1984), 151-

19 1 .

Christensen, R. M.: Mechanics ofComposite Materials, New York, J. Wiley and Sons, (1979).

Cioranescu, D.; Paulin, J. S. J .: Homogenization in Open Sets with Holes, J. Math. Anal. Appl. 71,

(1979), 590-607.

Duvaut, G.: In Singular Perturbation and Boundary Layer Theory, Comportement macroscopique d’une

plaque perforee, Lecture Notes in Math, N 594, Berlin, Springer-Verlag, (1977), 131-145.

Grigoluk, E. 1.; Phylshtinsky, L. A.: Perforated Plates and Shells, Moscow, Nauka, (in Russian), (1970).

Guz, A. N.; Nemish, Yu. N.: Method ofBoundary Form Perturbation in the Mechanics of Solids, Kiev,

Visha shcola (in Russian), (1989).

Kalamkarov, A. L.: Composite and Reinforced Elements of Constructions, New York, London, Wiley and

Sons, (1993).

Kantorovitch, L. V.; Krylov, V. 1.: Approximate Methods of Higher Analysis, Moscow, Nauka, (in Rus-

sian), (1949).

Lewinsky, T.; Telega, J. J.: Asymptotic Method of Homogemzation ofFissured Elastic Plates, 1. of Ela-

sticity 19, (1988), 37-62.

156



20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Lions, J.-L.: Asymptotic Expansions in Perforated Media with a Periodic Structure, Rocky Mountain J.

of. Math. 10, N 1, (1980), 125-140.

Lions, J .-L.: On some Homogenization Problems, ZAMM 62, N 5, (1982), 251-262.

Mignot, F.: Puel, J .-P.; Suquet, P.—M.: Flambage des plaques elastiques multiperforees, Annales Fac. Sci.‚

Toulouse 3, (1981), 1-57.

Nayfeh, A. H.: Introduction to Perturbation Techniques, New York, J. Wiley and Sons, (1981).

Nazarov, S. A.; Paukshto, M. V.: Discrete Models and Homogenization in the Theory ofElasticity Pro-

blems, Leningrad, L. University,(in Russian), (1984).

Oleynik, O. A.; Shamaev, A. S.; Yosif’yan, G. A.: Homogenization of Eigenvalues and Eigenfunctions

of the Boundary Value Problems in Perforated Domains for Elliptic Equations with Non-Uniformly

Oscillating Coeflicients, Current Topics in Partial Differential Equations, Kinokunia Co., Tokyo, (1986),

87-2 16.

Pickett, G.: Bending, Buckling and Vibration of Plates with Holes, in Developments in Theoretical and

Applied Mechanics 2, 1965, 9-22.

Sanchez-Palcncia, E.: Non-Homogeneous Media and Vibration Theory, Berlin, Springer-Verlag, (1980).

Suquet, P.-M.: Methodes d’ homogeneisation en mechanique des solides. Comportements Rheologiques ct

Structure des Materieux - CR 15eme (2011., GFR, Paris, (1980), 87-128.

Vanninathan, M.: Homogenization of Eigenvalue Problems in Perforated Domains, Proc. Indian Acad.,

Science (Math. Science) 90, N 3, (1981), 239-271.

 

Addresses: Professor Igor V. Andrianov and Professor E. G. Kholod, Department of Mathematics, Pridncpro—

vye State Academy of Civil Engineering and Architecture, 24a Chernyshevskogo, UA-320092 Dnepropetrovsk,

Nachruf

 

Professor Valeryi Schevtschenko (Shevchenko) ist am 2. September 1994 verstorben. Er wurde am 5. März

1949 in der Ukraine geboren, studierte von 1966 bis 1972 Elektrotechnik an der Staatsuniversität Dneprope-

trovsk, von der er 1988 auch seinen Doktorgrad in Mathematik und Physik erhielt. Zuletzt war er außerordent-

licher Professor fiir Mathematik an der Ukrainischen Metallurgischen Akademie in Dnepropetrovsk.

V. Schevtschenko ist Autor oder Koautor von 45 wissenschaftlichen Arbeiten über asyrnptotische Methoden,

Padé-Naherungen und Festigkeitslehre.

157


