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On the Stability of the Eye Shell under an Encircling Band

S. M. Bauer, P. E. Tovstik, A. B. Katchanov

The problem oflocal stability of the eye shell under an encircling band (circlage) is considered. An algorithm

for construction ofan asymptotic solution is proposed.

1 Introduction

The medical treatment of retinal detachment is one of the most important problems in ophthalmology. One of

the methods for reattachment is the encircling band (circlage). The most commonly used variant of circlage is

that located exactly along the equator (see Figure 1).

The material for circlage is one of either silk thread, stainless steel band or silicone (elastic) band Giriberg,

1990). Silk thread or a stainless steel band may be considered to be nonextensible. Besides the advantages of

this ophthalmic surgical procedure there are a series of complications which must be considered. With large

pressure, cutting of the eye shell may occur. Sometimes even with lower pressure, shrinking of the retina has

been observed. The pressure disturbs the circulation of blood and leads to oedemata. Apparently, this is caused

by local loss of stability in the neighbourhood of the circlage line. In this paper the problem of local stability of

the eye shell under circlage is considered. We assume that in the neighbourhood of the equator the eye shell is a

thin elastic spherical shell of radius R and constant thickness h. Circlage is considered to be a superposition of

an edge efiect along the equator and the membranous state

cornea

   encircling band

   

Figure l. The eye shell under circlage

2 Axisymmetric Deformation under Circlage

Let the band pressure per unit length be qo. Later the width of the band will be neglected. We introduce a

coordinate system s,q> on the sphere, where s is the length of the meridian arc and (p is the angle in the

circumferential direction. We assume that the band is located at the equator, i. e. at s = O (see Figure 1). We

will find the axisymmetric normal displacement of the eye shell w0(s) under pressure qo. Subsequently we

will study the buckling of the axisyrnmetn'c state. We limit ourselves to the determination of the approximate

deflection in the neighbourhood of the equator. We use the equation for a simple edge efiect

183



d4 Eh Eh3

D w0+———wo=0 with D=———2—

12(1—v )

 

(1)
d54 R2

whereD is the bending stiffness, E is Young’s modulus and v is Poisson’s ratio.

Displacement wO(s) is an even function in s, therefore it suffices to determine it only for s > 0. We seek the

solution of equation (1), satisfying the boundary conditions

 

dwo ‘10 dSWo
—dS = 0 and Q0 = 7 = ~D ds3 for S = 0

wO —) 0 as s —> oo (2)

The unknown solution has the form

0 a - . S

w s = w e cosa ~sma With a z v— (3)on < ) m

Here w0 is the maximum shell displacement (under the band), u > O is a small parameter, and

 

O qOR 4 h2

w = and u = ————— ‚ (4)

NEE/2 12(1— v2)R2

Solution (3) does not take into account the intraocular pressure p. If we take into account the intraocular pres-

sure then the stretching men'dianal stress T1 = pR/ 2 is not equal to zero and we should replace equation (1) by

d4 d2 Eh

(ISO ‘ 71—w0 + —w0 = 0 (5)
D

a’s2 R2

Boundary conditions (2) remain the same. The solution ofequation (5) has the form

wo : qOR\/2+ö0 ‘11 . .

w0(s) = w e"‘[cosa2 ~Zsrna2] With 4Eh (6)

where

sV2+8 S 2—5 pR
a : a = 6 Z 7

   

In solution (6) the dimensionless parameter ö takes into account the influence of the intraocular pressure.

3 Equations ofAxisymmetric State Bifurcation

We seek the adjacent nonaxisymmetric equilibrium mode with m waves in the circumferentional direction in

the form

w(s, (p) = w(9)cos(mcp) (8)

In order to construct the adjacent equilibrium mode we use the Donnell system of equations for shallow shells

(Donnell, 1976). After separation of variables (8) and introduction of dimensionless variables this system may

be written as
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uZAACD + Akw = 0 ( )

where the differential operators A, Ak and A, are given by

M _ 1 d (w) m2
“ b d6 d6 b2

1 d [bdwj m2(1+1<?)
AkW — '17 Fe- %- — TW

2 o
m t

Atw = — bzz w

In equations (9) w(6) represents an additional displacement and (13(6) is the stress function. Dimensionless

variables in equations (9) and (10) are related to the corresponding dimensional variables by

 

b=sin6 6:} 05637: (11)

In equation (10) the functions

0 wo 1 dzw
tz(e) = H—zfi and Km) = E def (12)

describe the main prebuckling stresses and deformations. One can show (Donnell, 1976) that the effect of the

other prebuckling stresses and deformations is small and is ofrelative order HZ .

We now introduce the loading parameter 7» and the wave number parameter p and the band pressure qo .

O 2 M m2, 2

W=HÄR=W €10: R W P=Hm (13)

The problem would be solved if we find the smallest (by the parameter p) value of the loading parameter Ä ,

such that there exists a nontrivial solution of system (9), decreasing as it moves away from the parallel s = O ‚

 

4 Asymptotic Integration of System (9)

System (9) contains the small parameter u at the derivatives, therefore we can use the asymptotic method. We

rescale the independent variable

e=3+wg (14)

and use the expansion

H‚2&2

2 + (15)sine =1-

 

Then the solution ofthis system can be represented formally by asymptotic series
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w(6‚;‚t) = imwng) and qt“) z z„"®„(g) (16)

We construct only the zeroth-order aproximations w0 (ä) and (DO (ä) which satisfy the system of equations

AOAow0 + Amwo — AkOQDO = 0

AoAOÖO + Akowo = 0

 

where

dzw

Aowo ‘ 20 ‘ Pzwo

dzw

AIcowo dggo — P2(l+7¥K1o)wo

Azowo = Mgowo

and

t§0(§) = e“°(cosa0 —sina0) a

a0 = T

2

K?O(E_‚) = —e“°(cosaO +sina0)

5 Asymptotic Solution of System (17)

System (17) has variable coefficients r3°(g) and K?0 (i) . We rewrite them in the form

1+i 1—1' 1—“ 1+'tgo : 2 eal‘é + Teazfi and K30 = __21_e0h§ _ 718062:

where

1+i
l-i

(X1 = f and (X2 = JE

The linearly independent solutions of system (17) satisfying the conditions of damping

w(§), @(é) —> 0 as ä —> —oo

we seek in the form
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n=0 n1+n2=n

(22)

(j) _ °° (n pl]; :
CD _ Z anhnze 12
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where pm are the roots of the characteristic equation of system (17) for Kim 2 tgo = 0, i. e.

4 2

(192 -p2) + (p2 #32) = 0 (23)

and

3R(p(f)) > 0 (24)

Series (22) are convergent. The algorithm for the evaluation of the coefficients WEIsz and (13E,an is described

in Tovstik (1995).

To satisfy the boundary conditions at i = 0 we need four linearly independent solutions. Unfortunately, the root

p = p of equation (23) is multiple and the corresponding solution has a form which differs from equation (22).

In order not to change the algorithm, we may modify system (17), assuming that

d2

Akowo = 7%) — p2(k1+7u<10)w0 with k1: 1 + a s<<1 (25)

This system describes an ellipsoid close to a sphere. Now

4 2

(p2 — p2) + (p2 — quz) = 0 (26)

becomes simple.

6 Boundary Conditions

In the general case eight conditions for the generalized displacements and forces should be fulfilled along the

line E, z 0 . But we consider the buckling mode with deflection w(§) , where w(§) is an even function in ä .

There may be two formulations of the problem. In the first we assume that the pressure qo does not change

during buckling and in the second case we assume that the pressure qo changes due to the shell deformation

during buckling.

In the first case for an even buckling mode we have the following boundary conditions

u=S=AQ1=y1=0 for §=0 (27)

where u is the projection of the displacement in the meridional direction, S is the shear stress and AQ1 is the

additional shear stress, yl is the angle of rotation of the tangent to the meridian. Expressing the variables in

equation (27) through the fundamental variables w and q), we can rewrite it in the form

dw d3w dcp d3c1>

d§3d§d§3

 

= 0 for ä = 0 (28)
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from which it follows that the buckling mode is even. Now let the change of the pressure be taken into account.

The pressure q(cp) is found from

1 ‚ 1 62w
q((p) = T0 [17+ K2] With K2 = F —2 (29)

where T0 = qOR is the band tension, which is assumed to be constant under buckling, K2 is the change of cur-

vature for the line s = 0 during buckling. The shear stress Q1 is discontinuous at s = 0 ‚ and yields

 

R

Q1 = g and AQI = 51—3—19 (30)

Now the boundary conditions have the form

dw d3 dCD d3c1>
_=_‘:_fixp2w:fi= 3:0 for i=0 (31)
d: dg dä d:

7 Results

In Table l the critical (minimum) values of the loading parameter?» and the corresponding value of the wave

number parameter p for the following loading are given for different values of intraocular pressure parameter

ö . These values correspond to the symmetric buckling mode. The antisymmetric mode gives higher critical

loading.

  

ö 0 0.1 0.2 0.3

2» 2.157 2.276 2.414 2.584

P 0.69 0.67 0.64 0.60

   

Table 1. The values of the parameters X and p vs the values of the parameter 6

      

ö = 0.2 ö = 0.3

H In X H In 7»

0.12 6 2.4193 0.12 5 2.5840

0.13 5 2.4146 0.13 5 2.5916

0.14 5 2.4234 0.14 4 2.5910

0.15 4 2.4193 0.15 4 2.5840

0.16 4 2.4144 0.16 4 2.5888

 

Table 2. The critical loading X for different values of the parameters u and ö

According to many authors (Friberg, 1990; Kobayashi et al., 1973) for the eye shell Poisson’s ratio

v = 0.45, R = 11-12 mm and Young’s modulus E =10 -l4.3 MPa . Hence the dimensionless intraocular pres—

sure parameter ö = 0.3 corresponds to 34-36 mm Hg. (If the intraocular pressure is larger than 34-36 mm Hg

the blood inflow into the eye shell is interrupted.)

Taking into account that the buckling wave number m should be an integer, we can list more precise critical

values for some values ofthe parameter u as has been done in Table 2.

In order to create critical (buckling) conditions an encircling band of a length shorter than 211R must be instal-

led. Ifthe circlage is made of silk thread or a steel band, both of which may be considered nonextensible, then
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due to equations (9), we get the critical length reduction of thread or steel band, (i.e. the amount by which it

must be shorter than the length of the equator, i. e. 21tR without band). For these materials the critical length

reduction is 3.4-4 mm.

Next we consider the circlage made of a silicone (elastic) band. Let S be the cross-sectional area of the silicone

band, and ES Young’s modulus of silicone. Then for a band reduction of Al , the relative shortening of the

band

_ (10R _ Al—27rw0

' ES ‘ 27tR—Al
S 

where the critical value go is to be found from equations (9). Hence

21tRe+w° Ehz 2

Al: (1+8 and 8=Ezm

The plot of the critical length reduction of a silicone band vs the cross section area of the band for various in-

traocular pressure parameters ö is shown in Figure 2. Young’s modulus of silicone is Ex = 1.93 MPa.

Thus these results show that the usage of the silicone bands for circlage is preferable.
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Figure 2. The critical length reduction of a silicone band vs its cross sectional area
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