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A Hybrid WKB-Galerkin Method and its Application

V. Z. Gristchak, Ye. M. Dmitrijeva

An asymptotic approach presupposing the use of the hybrid WKB-Galerkin method is employedfor the solution

of some applied mathematics and mechanics problems. The extension of this methodology to some complicated

mechanical problems with mixed boundary conditions and to nonlinear problems is possible.

1 Introduction

The analysis of complex mechanical models of nonhomogeneous structures necessitates the solution of systems

of differential equations that contain variable coefficients and some small or large parameters. In these cases we

cannot obtain, in general, the exact analytical solution. One of the possibilities is using approximate asymptotic

methods. Geer and Anderson (1982, 1989, 1990, 1991) have discussed a two-step hybrid perturbation-Galerkin

method for the solution of some types of differential equation and applied mechanical problems that involve a

parameter.

The WKBWentzel-Kramers—Brillouin) method for numerous mechanical problems was discussed e. g. by Steele

(1971, 1989). It was shown by Gristchak (1979, 1988), that the WKB-method can be used for some linear me-

chanical problems as well as for nonlinear buckling and vibration problems of nonhomogeneous structures as

an inner expansion in the double asymptotic-perturbation procedure.

In the spirit of Geer and Anderson a hybrid WKB-Galerkin method for some applied mathematical problems

that arise, the description of the behavior of mechanical structures under external loading is discussed. The

results from the hybrid WKB-Galerkin method are compared with solutions obtained by purely numerical me-

thods and with exact solutions where available.

A hybrid WKB—Galerkin technique is especially useful for approximate solutions of differential equations with

the parameter near the higher order derivative. The main features of this approach include fully explored

WKB-terms in final solutions as well as possibilities to take into account singularities. In this paper we will

discuss some of them.

2 Description of the Method

The method we describe is a two—step hybrid analysis technique for the solution of linear differential equations.

The technique of this approach includes two steps of solution: in the first step of the procedure the WKB-

method determines the approximate solution of the initial equation; in the second step we use asymptotic coef-

ficients as trial functions in the standard Bubnov-Galerkin method.

Suppose we are seeking an approximate solution u(x, s) to the boundary problem

L[u(x,e),x,e] = 0 7 (1)

where L is some linear differential operator of n-th order (in the general case with variable coefficients), 8 is a

parameter near the highest derivative, x is located in some interval [ab], and u(x,a) is satisfied by the given

boundary conditions.

In the first step we present the problem solution u(x,e) in correspondance with the WKB-procedure in the

form
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u(x,e) = expflxZuI-(xhik) (1x) (2)
ll

\ i=0

where 7,-(8) is an appropriate asymptotic sequence (7,-(8) = EH) and each 14,-(x) can be determined by a stan-

dard WKB—method. The approximate functions ui(x) are chosen as coordinate functions for the Bubnov—

Galerkin technique and an approximation Lil-(36,8) for ui(x,e) is sought in the form

ü(x‚e) = expÜZä u‚-(x)6i(s) dx] (3)

where the unknown parameters 8,-(5) are complex functions of c and all Ill-(X) are approximate coordinate

functions that were found in the previous step. To determine the unknown coefficients 8,»(i = O, N) we substitu-

te equation (3) into equation (1). Thus we obtain a product of the right hand side of an expression (3) and some

expression in which a leading derivative of functions ui(x) is one less than the leading derivative in equation

(1).

x N

L[ü(x’ 8)’ x’8] = exp[J z5i(8)ui(x)dx] R(507 I I .5N 7 “0’. I 'qu M6. . Mgr/Pl): xv 8)

“ i=0

It is necessary to satisfy the right hand side of the governing equation (1), that is

R(80,--~5N, How-uN, 145,---14§$_1), Le) ——> 0 (5)

therefore we demand that the residual R be orthogonal to the N +1 coordinate functions over the interval

[ab] ‚ i.e.

b ‚ (H) _
JR öo,möN‚uO,---uN,140.-nuN ,x,8)u,-(x)dx — 0 (6)

with i = 0, -~,N

Equation (6) represents a set of N +1 equations for the N +1 unknown coefficients 5,-(8). If each 6k re-

presents a complex form as 6k : 5k1+i5k2 ‚ we obtain a set of 2(N +1) equations (i.e. N +1 real and N +1

imaginary parts) for the 2(N +1) unknown coefficients. While equations (6) must generally be solved numeri—

cally, their solutions are simpler than a direct numerical solution of equation (1).

For example, we will illustrate the hybrid WKB-Galerkin method for the next two-point boundary problem

Ezii + f(x)u = O ‚ (7)

with u(a) = Ma and u(b) = uh, f(x) > O over [a‚b]‚ which arises in some mechanical problems.

Step one. Following the WKB-procedure we represent the solution of equation (7) in the form

x 1

u(x, e) = expDfl(— uO + u1 + e u2 + mjdx] (8)
e

For our example we shall take into account only the first term in the WKB-expansion (8) and after the substi-

tution of equation (8) into equation (7) we obtain
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Step two. Now, following Geer and Andersen, we represent the approximation of u(x, e) in the form

I

ü(x‚e) = exp“ (501(8) + 802(8)) u0(x)dx] (10)

After the substitution of sequence (10) into equation (7) we obtain the residual, i.e.

R = ez[(öm+i802)2uä +(601+i602)u5] + f(x) (11)

Then we apply the Bubnov—Galerkin criterion (6) in order to obtain a set of equations

€2[(631—532) J:(Trf3/2(x))dx—602% man} + J:(if3’2(x))dx = 0

      

(12)

€2[fl501502 Lb(f3/2 dx— 601% J:f'(x) dx] = O

In this case

5 12_ \mw—fw>

01 _ 8 b 3/2
4f (x) dx

(13)

502 Z i figm— f<a>

4L f3/2(x) dx

Now we obtain the hybrid WKB-Galerkin solution of the initial equation in the form

ü(x,s) = expfiflm)dx) [c1 cos(Af1/2(x)dx) +c2 sin(Af1’2(x)dx] (14)

      

where A = , and cl, c2 are determined from the given boundary conditions.
12_ nw—mm

(a) 4J:f3’2(x)dx

If the function f(x) < 0 within the interval [a, b], our hybrid solution becomes

ü : (m) = exp fifflflfi dx) [c1 cos£AJ:f1/2(x)dx) +cZSin(AJ:f1/2(x)dx) (15)

(1
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at A =

We note here that for the turning point problem of the initial differential equation when

f(x)<0 at —as x<0, f(x)>0 at O<xsb, and f(0)=0, we can use a special presentation of the WKB

approximation through Airy functions.

Now we consider the general case where the coefficients of the initial equation are complex functions. Suppose

an approximate solution in the form

u(x,e) = Reu(x,e) + ilmu(x,s) (16)

to the boundary problem

ggf — f(x)u = 0 (17)

where f(x) = Re f(x)+ilm f(x), with u(a) : ua and u(b) = ub.

Step one. Following the WKB procedure the solution of equation (16) can be represented in the form

140 = i1/f(x) = iReuO i iImuO (18)

Step two. We represent the function u(x‚ e) in an approximate form, such as

x

ü(x,a) = exp“ 80(e)u0(x)dx] (19)

After the substitution of equation (19) into equation (17) we obtain the residual

R = 82(agug +50%) — f(x) (20)

or, from equation (18),

:82 2 x + —f’("> _' xR [60m so: M] m an

We apply the Bubnov-Galerkin criterion (6) and after that we obtain a quadratic equation for 80.

 

ÖäLbi-ZZ (ifs/2m) dx + 50J:€2[f’2(x)]dx _ J:(if3/2(x)) dx : O (22)

The solutions of this equation are

55.2 =

(23)
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Thus, finally we obtain the hybrid WKB—Galerkin solution of equation (17) as

 

(24)

The solutions for equations (14) and (15) can be obtained by substitution of corresponding functions f(x) into

equation (23).

3 A Hybrid Approximate Solution of the Euler Equation

For the case of Euler's equation, when the function f(x) =7 , the inltial equation (7) has an exact solution for

x

parameter 82 < 4.

 

u(x,s) = J; cos(colnx) + [ — cot to] J; sin(a)lnx)
1

Jetsinu)

where (D = ———

We take into account the boundary conditions as

Function (25) has singularities at

,3_ (a; (;+1)“2 1
n24 ’42n24. ’ ’n2n24’

After the substitution of equation (8) into equation (7) we obtain

 

x 1

exp [In u0 Hg)de +2guou1 +.<32u12 +8146 + e2u1’ +%) = 0

Equatng the coeffcients in equation (28) of the same power of e we find that

iuzi

O 2x

i

— and ul =

x

For this type of equation the two term WKB approximation becomes

1706,33) = «5003 + [%sinl —cotl]\/;sin[llnx)

e e 8 e 8

(25)

(26)

(27)

(28)

(29)

(30)

Following the approach that we have discussed above, the approximation to function u(x,s) can be written in

the form (10). Substituting equation (10) into Euler’s equation we obtain the residual R.

. . . 1

R = 82[(801+1802)2u§ +(801+1802)u0] + g
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The set ofequations (12) for the coefficients 501 and 602 becomes

82(3F551 :532 +502) + (:1) = 0

(32)

From equations (32) it follows that

1 1

ö01 = ‘7‘;

8 (33)
_ l

ö02 = +5

After the substitution of equation (33) into equation (10) and taking into account the boundary conditions (26)

we obtain the hybrid WKB-Galerkin first approximation solution of Euler‘s equation.

Hogs) = 5005(wlnx) + [ ]J§sin(mlnx) (34)—_— —coto)

JEsmm

where 0) = 501.

We can obtain the solution (34) at once ifwe substitute the functlon f(x) = —2 into equation (14). It lS easfly

x

seen, that the function fi(x‚s) coincides with the exact solution (16) using the one-term hybrid WKB-Galerkin

method.

The two-term WKB approximation in equation (30) is not exact but it is accurate up to some distance from the

singularity points. In Figure l we compare the calculations for the two-term WKB approximation with the

exact (or with the one-term hybrid WKB-Galerkin method) solution for parameter

1 1 1
_ _‚ 41:2 +— when — = 6.28.
8 4 8

  

   

   

  

  

   

u 200

A .

-—fl-— Uv - two-terms WKB-approx.

- one-term hybrid

100 — Uh WKB-Galerkin method

exact solution

O _

_ =

I | l

1 2 3

 

) X

Figure 1. Solution of Euler’s Equation by Hybrid WKB-Galerkin Method
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Some of the reasons why the hybrid WKB-Galerkin method provides a good enough approximation for problem

(16) we will discuss in the next section.

For comparison, in Figure 2 are represented the results of calculations according to the perturbation-Galerkin

. . . . 1
method in the sp1r1t of Geer and Andersen for this problem, w1th parameter E = 0.6 .

  

     

    

u 2

A _ —El—-- Uh1- two-terms hybrid solution

"—-9— Uh2- four-terms hybrid solution

1- —||— u - exact solution

O...

-1 .—

-2—

-3 . . .

1 2 3

Figure 2. Hybrid Regular Perturbation-Galerkin Solution

4 Application of the Hybrid WKB-Galerkin Technique for the Stress Strain State of an Orthotropic

Cone under an Axisymmetric Loading

Let an orthotropic shell of revolution be given an axis of rotation 2. Suppose that the shell is loaded axisymme-

trically with respect to this axis.

X=X(S) Z=Z(s) Y=0

The boundary conditions shall also be axisymmetric. The shell is an orthotropic body with an anisotropy of

rotation (Figure 3).

We consider the stress-strain state of the orthotropic conical shell given by a differential equation in complex

form (Ambartsumian, 1974).

   

- 2

ö — 1 6: — [t 1 — ’k am}; = CD(s) (35)
(S' _ Sf h(s' —S)
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X

Figure 3. Geometry of the Orthotropic Cone

The boundary conditions for this problem are

6(s0) = e(s1) = 0 (36)

where

.61le

6(5) = W(s) — 1 QO

 

m) (37)

A

and W(s) and V(s) are the functions to be determined, @(s) is the surface load function, 7» = Z3 : A—ZZ ‚ h is

1 1 1 1

QO

011/311

rigidity ofthe cone. One obtains

the Shell thickness, k2 =

 

‚ (20 = 611622 —0122, and c„‚c22‚c12‚A„‚A22 are corresponding parameters of

 

F ikz dF F
CDs : — 2 -— c —1 — c ———1— 38

( ) (s’—s)sinocA11 (s’—s)sinocQo[ 12 ds 22 s’—s ( )

where F,(s) are the functions of surface loading.

5 P0 s

F=‘I’—‘Ed+ —z——j’—'Ed1 smoc 30(3 s)s1noc , s cosoc 27: so(s s)smoc z s

(39)

S O S

— cos OLLO (s’ — s) sinoc Erds + sinoc[f—z7T —J (s' — s) sinocEzds]

30

F2

The quantities E, and E2 are the components of the surface loading with respect to the r and 2 directions re-

spectively, on is the value of the main vector of an external force applied to the circle s = S0 with the radius

r0 , as shown in Figure 4.
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Figure 4. Relations between the Components of Surface Loading

From Figure 4 it follows that

E, Zcosoc — Xsinoc

m II, Zsinoc + Xcosoc

Pz0 (T10 cosoc — NO sinoc)27rr0

(40)

Considering this problem for large values of the parameter k2 the solution obtained by Arnbartsumian (1974)

has the form

@(S) = (E1 cosß —F]sinß)e‘ß+ (E2cosß +Fzsinß)eß

 

_ Q _ _ . F
ms) = -:Z7[(E1smß +F1cosß)e ß— (Ezsmß Jammy] —

ll

where

ß = cotl/Zoc ds

2 so V S, — S

In order to construct the hybrid WKB—Galerkin solution we consider the initial equation (35) as

82 Z q, _ {_47‘11__ _ iM}¢ z (MS)

4k2 (s' — s)2 h(S' * S)
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where

qm) = q>(s)exp(—l Sis—j (44)
2 so S, — S

with the boundary conditions

(9(30) = (phi) = 0 (45)

where

ms) z c(s>exp(—l Si]

  

2 s ’—0 s s (46)

2
8 I k—Z

The partial solution of differential equation (43) is

* 0* ex 1 S ds ith 0* i C‘lkz (47): -—-—— ,— W : —

(p p 2 so s —s S20 cos(0()

where F2 is an external loading function. For example, we may assume the function F2 in the form

. Z0 I p0

F2 = s1noc(—2—(s—s0) (S+So—2s) +2—nj (48)

where 20 and p0 are parameters.

The WKB approximation of the homogeneous equation that corresponds to initial equation (43) is

WWKB(S) = (E1 cosß1 —Flsinß1)e(°°1+7) + (E2 cosß1 +F2 sinß1)e(_al+7)

(49)

Q . ‘ _ _ F s

VWKB(s) = — 02 [(E13mß1 + Flcosfilkm‘m — (E7 smß1 — cmosß1)e( WM] — L)

c11 ‘ cosoc

With

1 S 1 S 1 S 1
: — R : — R : — l

B1 8 so 2(S)ds “1 8 so 1(S)ds Y 2 s“ s —s (50)

R1 = Rafi R2 = Im f

Now we consider an approximation of (p(s) as

ms) = epr öo(PO(S)dS (51)

Following the Bubnov—Galerkin method we obtain a quadratic equation in the form (21). The solutions of this

equation for our problem are
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f(SI)-f(so)

   

6%),2 : 4—_ 3
(52)

4J1f5(s)ds

where

4Ä—1 00m

f s = ————-— “ i ‚ (53)

( ) 4k2(s’—s)2 h(s —S)

Thus we have obtained two solutions for the function (p0 (s)

ms) = Ms) = R1(s>+ ImR<s>

(54)

(MS) = -Jf(s) = -R1(S) - 1mR(S)

Finally the hybrid WKB—Galerkin solution of the initial equation (43) can be written as

WH(s) : (E1 cosß21 —Flsinß21)e(°°21+7) + (E2 cosß22 +F2 sinß22)e('azz+7)

(55)

S2 _ u _ ‚an A F s

VH(S) Z —Cnl(:2[(E15mß21 + Ecosß21)e( my) + (E2 5mß22 + F2 wsß22)e( kin] _ #202

where

[321 2 5%)1J; R2(3)ds + öäzj; R1(5)d5

1 S 1 S
OLZ1 = —601L R1(s)ds — 602L R2(s)ds

0 0

{322 Z *6ä1J; R2(S)ds * öäzjs R1(S)ds

   

an = —5%1Js R1(s)ds + öäzjs R2(s)ds

öäl 2 Re f(So)—3f(s1) +

4J1f5(s)ds

6%)2 Z Im f(io)“3f(51) _

4J1f5(s)ds
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_ 2_

531: Re f(SO)_3f(Sl) _ i2 + “SO—316(50)

4 75mm l ’3 4j 75mm

: 2‘

632 : Im _ 8—12 +

4J 1165(S)als 1 4J1f5(s)ds

The coefficients E1, E2, P1, F2 in the solution (55) can be determined from the boundary conditions. The exact

solution (Ambartsumian, 1974) of the problem is

_ I icota icotoc ‚ an2

G — — 82h X] + — ezh X] Jr [Egos—(1172

where Ip I_p (z) are Bessel functions.

  

5
To illustrate the accuracy of the hybrid method we consider the case when p : 7 . In this case the Bessel

functions can be expressed as elementary functions. We compare our hybrid WKB-Galerkin approximation (55)

with the exact solution (57) as well as with the one—term WKB approximation, with Ambartsumian’s solution

(41) and with the purely numerical solutions for small parameters s . In the Figures 5 to 7 are presented the

25
results of calculations for the same parameters e and for Ä 2E, 5:10, 0t 2%, h=05, €11 21.1,

no =09, x128,pS=7,X=O, 2:4.

  

   

1000

W -

0 -l

. numerical

'—-O—- hybrid

_1000 _ _fl— solution [13]

-—°-- WKB

-2000 - 8 = 0 2

—3000 - l - l - I I 1 -

   

O 2, 4 - 6 8 10

Figure 5. Hybrid WKB-Galerkin Solution for the Parameter a = 0.2
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W -—-fl-—- numerical

' —0— hybrid
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WKB

exact

        

10

t

80

V —-E!-' numerical

. —'—O—— hybrid

—I-- solution [13]

10

t

 

Figure 7. Hybrid WKB-Galerkin Solution for the Parameter e = 20

We note that the hybrid WKB-Galerkin method is accurate up even to large values of parameter s in compari-

sation with the one-term WKB-solution.
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5 Concluding Remarks

Special attention is paid in this paper to the analysis of mechanical systems whose behavior is described by

differential equations in complex form. Various mechanical problems of buckling and vibrations of structures,

especially with variable configuration and rigidity, may be solved effectively on the basis of the approximate

analytical—numerical approach presented. The proposed WKB-Galerkin method can also be used for more

complicated problems such as linear systems with mixed boundary conditions or investigations into the initial

postbuckling behavior ofnonhomogeneous system.
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