
TECHNISCHE MECHANIK, Band 15, Heft 4, (1995), 303-314

Manuskripteingang: 10.0ktober 1995

Forced Vibrations and Sound Emission of an Elastic Hemisphere

Fixed in an Endless Plane Screen

A. Korenkov

The axisymmetric lowfrequency vibration and the sound emission of a hemisphere clamped to an infinite plane

screen are analyzed. The boundary value problem for an integro—diflerential system is formulated and the

asymptotic expansion ofthe exact solution is constructed. The acoustic pressure far awayfrom the hemisphere

is determined. The polar pattern of emission is constructed and its dependence on thefrequency ofexcitation is

analyzed.

1 Vibration Equations of a Thin Spherical Shell

We consider a thin spherical shell of radius R and thickness h. We write the differential equations of axisymme—

tiic vibration with angular frequency to in non-dimensional form

AU + (2+9»)U — 9t(2+v)w = p(6) +f(6)

„um +2Aw] + (1—1—v2)w + (mp = pa) + f(e) (1)

where A is the Laplace operator in spherical coordinates.

 

1 a . a

A — sine aimless]

In equations (1) f is the harmonic external force, p is the acoustic pressure at the surface of the shell,

pm2R2(1—v2) _ .

71 :—— 18 a non-dimens1onal frequency parameter, E is Young‘s modulus, v is Poisson's ratio and

2

p is the shell denSIty. The system contains a small geometrical parameter p4 2?R2 , which is the relative

shell thickness. We introduce non—dimensional variables as

* * * Eh 1 Eh

u=Ru szw p:

  

The auxiliary function U depends on the tangent displacement u and the deflection w and is determined by the

expression

 

1 a

U = sine[%(usm9)] + (1+v)w (2)

The polar angle G satisfies the condition 0 S 6 S

N
I
F
I

We solve problem with clamped boundary conditions at the shell equator.

11: TC , n _

[4(5) — 0 W(E) — 0 w(2] — O (3)
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System (1) is based on the Kirchhoff—Love shell theory and for u = 0 it corresponds to the membrane theory,

and in this case the order of the system reduces to two and we need keep only the first of conditions (3). Note

that in this case an exact solution of the problem may be constructed.

2 Acoustic Medium

The shell is clamped to an infinite plane screen and is in contact with the acoustic medium that fills the upper

half-space. The acoustic pressurep satisfies the Helmholtz equation

32p 28p 1 B . öp 2

57+7E+m%31n956 +kp—O

wR „ „ _ ‚ _ „ ‚

where k =C— 13 the wave parameter and c0 is the sound veloc1ty 1n the acoustlc medium. We Introduce the

o

non-dimensional coordinate r* = Rr .

We consider the boundary condition of the acoustic reflection at the screen. The acoustic pressure and the de-

% „1: Äsw(6) at the

a R
Shell, and älefl): O at the screen. Here a =ppLh is a non-dimensional density parameter and p0 is the li—

flection satisfy the Euler equation (Skudrzyk, 1971) at the surface of a shell. Thus

 

quid density. The acoustic pressure also satisfies the Sommerfeld condition at infinity (Skudrzyk, 1971).

lim {3—er flip) = O

r—>°o

Let us examine the Neumann problem for the Helmholtz equation in the upper half—space. Then the acoustic

pressure at a point with the polar coordinates (r. 9) may be represented as

1c/2
(I)

p(r,e) = AEZQn+1)—-}5&——P,,(cose)[Meg)l;(coseo)sineodeO (4)

(n) MSW/c) +kh‚(11+)1(k) 0

where h,(,1)(z) are Hankel spherical functions, P„(z) are Legendre polynomials of the nth order. The value of

the deflection w(9) contained in equation (4) is unknown.

The contact pressure at the surface of the shell is given by

1c/2

p(e) = as jG(9,90)w(60)sineodeO (5)

0

Here

G(9‚ 60) = z(2n +1)K„ (k)P„ (cos 6)P„ (cos 60)

(”)

where

hnk)
(1)

Kn k = ————

” MW) was)

The summation is taken for all even n.
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Equations (l), (2), (5) and boundary conditions (3) form the boundary value problem for an integro—differential

system of sixth order from which we can determine the amplitude of the tangent displacement u and the de-

flection w. Then we obtain the acoustic pressure p(r, 6) at an arbitrary point as a result of substitution of w into

equation (4).

3 Recursive Algorithm

We assume that the non-dimensional parameters satisfy the following conditions k,7t ~ 1. Thus, we limit our

consideration to the low frequency case. The solution of the boundary value problem is based on the asymptotic

expansion in powers of the small geometrical parameter u . The solution may be constructed by means of an

algorithm similar to that of Vishik-Lyusternik (1957) and Wasow (1965). The applications of an asymptotic

method to the problem of shell vibrations without a liquid may be found in Goldenveizer et al. (1979). For the

integro—differential systems with a small parameter at the derivatives and a smooth kernel a similar asymptotic

approach was developed in Lomov (1992).

We seek the asymptotic solution in the form

WW) = We») + WOHL)

Wim) W941) + Mm)

U(am) lWW) + uZÜÜw)

Tc _ _ — , . _ . .
where n = u’1(9—§) and the functions w,u and U keep their orders under differentiatlon. These functlons

may be found in the form

W97“) = fiow’u) + Main) +

(9,”) = 71700341) + HW1(6aH) +
(6)

mu) = me») + man) +

E
!

The functions Mia} and [7k are determined recursively from nonhomogeneous boundary value problems with

the right hand sides depending on the previously determined functions.

The usual procedure to obtain these auxiliary problems is to substitute expansions (6) into equations (1) to (3)

and (5) and equate the coefficients of u" . This is the so—called first or main iteration process (Wishik and Lyu-

stemik, 1957). This algorithm must be adapted to the problem under consideration, since the kernel in equation

(5) is a singular function. The functions W,ü and Ü are the integrals of the edge effect in the neighbourhood of

the edge 9 = They may be found in the form

Mm) = Mn) + um“) +

30141) = üo(n) + mun) +
(7)

ÜÜHL) = ÜO(6‚u) + „(2(11) +

The approximations ijk and Ük are determined from auxiliary nonhomogeneous boundary value problems

with the right hand sides obtained by means of equating of the coefficients of uk , depending on n , after the

substitution of equations (7) into equations (1) to (3) and (5). The construction of the functions W, ü and Ü is

called the second or the additional iteration process. This process is similar to that for boundary value problems

for ordinary differential equations. The functions Wk , 17k and Uk satisfy the following conditions:

vT/k(n) —> O ük(n) —> 0 as n —>—oo (8)
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with k=0,l,2---.

When we consider singular boundary value problems for differential or integro—differential equations with

smooth kernels, the first iteration process deals with the degenerate nonhomogeneous systems. In particular, if

we examine the asymptotic approach to one-dimensional problems of free shell vibrations, the first iteration

process deals with the boundary value problems of the membrane theory (Goldenveizer et al., 1979). In our case

equation (5) is the improper integral where the kernel G[9,90] has a logarithmic singularity at 60 =6

(Brebbia et al., 1984). So, if we use the membrane approximation to construct the main iteration process, then

the solutions of the auxiliary problems would have less derivatives than the exact solution. Therefore, we have

to keep the higher derivatives in the first iteration process. Each auxiliary problem consists of the nondegenera—

te system similar to equation (1) and the symmetry conditions with respect to the plane screen.

_ TC _- 717 _, TC

were Mao were
_ TC ~ —- TC _, TC

“15(3) 2 —uk0 = 0 = 0

where N(9) is the shear force. If we consider the case of free vibrations without liquid, the solution of this

problem differs from the solution in membrane approximation, but the difference is of order 0(u4> . At the

same time the accuracy of the Kirchhoff-Love theory is only 0(tt2).

We estimate the components of the acoustic pressure, corresponding to the solutions Wk (11) of the additional

problems. Later we will prove that the values

n/Z

1k” : u‘l Jök(n)1’„(cose) sin Ode

0

are limited as u —> O. Thus, we may consider these components as the perturbations of the right hand sides in

the corresponding problems of the main process. We introduce

12(940 = flan) + M30941)

where

Here 5,49,”) denotes equation (5) for w(6) = Wk(6,11) and5k (au) denotes equation (5) for w(6) = „_lvT/k

Thus, we get the recursive algorithm. Note, that an interaction between the first and second iteration process

occurs only through the boundary conditions.

4 Solution of the Initial Problem

Let us substitute expansions (6) into system (1). Then for an initial approximation we have the system

A170 + (2+t)t7O — x(2+v)w0 = 170(9) + f(6)

„fimwo +2AW0] + (1—t—v2)w0 + (1+v)t70 = 130(9) + f(e) (9)

wean mac we”
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Due to equation (2), the functions (70 and WO depend on the tangent displacement HO .

The solution of equations (9) may be represented as Fourier series in Legendre polynomials.

m=2wmmm m22ümm®

m m

We write

A" = [u4(n(n+1)~1)2+ (l—vz—ÄÜ (2+Ä—n(n+1)) + k(1+v) (2+v)

  

(10)

+ thn(k) [n(n+1) — (1—v+?»)]

then

W0" 2 [1—v+A—n(n+1)]f: (11)

I70” = [u4(n(n+1)—1)2+ (1+v) (1—v+l)] Z:

Here

n/2

f” = (2n+1) Jf(6)P„(cosG)sin6d6

O

For 6 =3- we get

 

Wag) : get” (’2?)

i.e. the initial solution does not satisfy the second of conditions (3). We use the initial approximation of the

additional process to eliminate the residual in the boundary conditions.

Let us consider N harmonics in the Fourier expansion of the external force, where N ~ p'm. If we omit in

equations (10) and (11) the coeffcients of p ‚ the errors in the expressions for wg and US will be of the order

0(u2) . Therefore, here we can use the membrane theory.

5 The Edge Effect

We substitute equations (7) into system (1), expression (2) and boundary conditions (3) and equate the coeff—

cients of no , depending on u. . Then we get the auxiliary boundary problem

4~
2—

dW—O‘Sn) + 4K4W0(n) = 0 where 14“: u

(12)
n

%@—_mbj %@=o

We have the following expressions to determine 170 and Ü0 :
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”’(n) = -—-%(n) flan) = 12—:(2+v) wem) (13)

The behavior of the solution of system (12) and functions (13) is determined by the sign of 1~v2 —?t. The

degeneracy is regular for 7» < 1— v2 . Then the solution has the form of an edge effect, and it satisfies condition

(8). In this case

Wem) : —Wo[g)em(cosm—sinm) and fiom) : —O(%]Z%em comm

therefore

M0) z filmt—’25) (14)

6 Perturbation of the Acoustic Pressure

Let us substitute the value of W0 obtained from equation (12) into equation (5). Evaluating the integrals

‘rc/2

[g = u” Jfl(cos9)wo(n)sin6d9

o

we should take into account only the contribution in the neighborhood of the point g .

a

For it ~ 1 integrals are evaluated by the Laplace method and equal

l _

1:: —;wo(g}1>„<o> + am) (15)

For n >>1 we use the asymptotic expansion for Legendre polynomials

2 1/2 1 Tc
_ < _ __ -1

P„(cosG) — (rinsing) sm{(n+2)6 +4} + 0(n )

We have

 

11/2

„ f 2 „aß—218
JPn(cosG)expmsin1cnsin6dG = u(—l) ’2 ———K—7——4; +0012)

0 7m 4K +n u

1:12

f2 8x3
P e ‘ ade = .1'”2 _.—_.. 0 22,)- n(cos )expmcosmsm u( ) mt 4K4+n4p4 + (n )

These expressions are obtained by integration by parts while the exponentially small terms are neglected. Then

2

un

10— _—
n 1_ „ 2 [ j‚o = Walt—1) ar——‘2 wt)
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Finally,

new) = x82(2n+1)Kn(k)Isa(cose)

(n)

where 16‘ is calculated by equation (15) for n ~ 1 and by equation (16) for n >>1. It is evident that the 15’ are

limited as u a 0 in the both cases.

7 The Correction for a Mode

The next term in expansion (6) must satisfy the nonhomogeneous boundary condition for ü] , i.e.

we = we
For the tangent displacement u we get

1

sin 9

 

u(9) =

9

“U— (1+v)w]sin ade (17)

0

We represent the following approximation in the form

a :ü1+(p(6) 171 =U1+w(e) W1 2w]

where

6

(p(9) = jw(e)sinede

o

TC

The function ü1(9) has to satisfy the homogeneous boundary condition 121( 2 )2 O . Then due to equation (14)

1: ~ TC

it follows that ((3) =—u0 and the function w must satisfy the relation

m 1+v n

jw(9)sm9d9 = —Tw0[§)

0

Thus, for Ü1 and W1 we have

AÜ1 + (2+Ä)Ü1—Ä(2+v)w1 : i51(6) +f1(6)

u4[AAW1+2Afi/1] + (1—>„—v2)w1 + (1+v)Ü1 = m6) + g1(9) (18)

fie — o wg) = o am = o
where

13(9) = 130(9) - OHM/(9) and g1(9) = 130(9) - (1+V)\v(9)
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The solution of equation (18) we seek in the form

me) = Zv‘vmcose) ms) = Emma)

(fl) (n)

We take “1(9) such that

1+v_ TC

me) = ——wo[5}Po
K

Hence for n = 0 we obtain

 

_ O 2+v 1—v2+7w —7»8K k

Ulo:(1+v)t-v+t)wk)%4mm MW >< A0) o<>

_ IO 1_ 1c 2 —

wlO z (l—v+7x)}„gK0(k)—AiO + Ew0(5) (1+v ) A0

 

For n = 2,4,---

16'
7!

U1” : [u4(n(n+1)—1)2+ (1+v) (1—v+}t)] (2n+1)7t£Kfl(k)

15

71

5f = [1—v+x—n(n+1)] (2n+1)9t£Kn(k)

due to expressions (15) and (16) one can see that the coefficients (71", W1” are proportional to the residual

W0 in the second of the boundary conditions (3).

8 The Polar Pattern

Let us determine the acoustic pressure in the far zone by means of a construction of the polar pattern. The

functions h£1)(z) have the asymptotic expansion

- l_ln+

hfll)(z) : z eiz for 2 >> n + ä— (19)

 

By virtue of equation (19) we get the following approximate expression for the acoustic pressure:

iexp(ikr)

p(r‚e) = x8 kr ‘I’(6) (20)

where ‘I’(6) is the polar pattern (Skudrzyk, 1971)

‘I’(9) = 2w"P,,(cose) (21)

(")
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Here

n (71)n/2+1 (2” +1) W/Z .

2 —— P” cost) w 6 s1n (MG (22)

"’ änhw) + k (121(k) J ( ) ( )

Note that series (4) includes components for which r ~ n . It may be proved that expression (19) may be used in

1

the derivation of equation (20), despite the fact formally the condition z >> n +5 is violated.

Note that the expansion

_1 n/2+1 72/2

“I” ~ ik”g ggf—nimm J-P„(cos 9)w((-))sin GdG

e
0

is valid for n >>1. Here we use the asymptotic value for h‚(‚1)(k) for n >>1 . The integrals on the right hand

side of the last expression go to nought as n —> eo due to the Riemann-Lebesgue lemma (Olver, 1974). Thus,

one can retain only N ~ “‘1” terms in equation (21).

9 Numerical Results

The sound emission of the steel hemisphere submerged in water for harmonic external force such that

f0 =1 and f ” = O for n > 0 is examined. We use the following values for physical and geometrical parame—

ters: R is the shell radius, 1 m; his the shell thickness, 0.01 m; E is Young’s modulus, 19.6 x1010 N/ m2 ; p is

the density of the shell, 7700 kg/ m3 ; v is Poisson’s ratio, 0.35; CD is the sound velocity, 1500 m / s; pO is

the density of the liquid, 1000 kg/m3. Only the three lowest resonance frequencies satisfy the condition

7t < 1— v2 .

The form changing of the polar pattern in the vicinity of resonance frequencies

20595 Hz, 2913 Hz and 3294.8 Hz is presented in Figures 1 to 3 (solid lines). On each drawing the appropria—

te frequency in Hz is indicated. For better representation we plot also the polar pattern for the initial approxi-

mation (dashed lines) on each drawing. The external force under consideration has the form of a semicircle.

We notice, that the form of the polar pattern sharply changes at passage through resonance. The drawings show

also the process of the occurence of additional petals in the characteristics. Twenty-five terms in series (21) was

considered reasonable for the calculations.
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Figure 1. The Polar Patterns (2059.5 Hz)
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Figure 2. The Polar Patterns (2913 Hz)
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Figure 3. The Polar Patterns (3294.8 Hz)
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