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Canonical Equations in Terms of Generalized Impulse Variables

F.P.J. Riertt, B. Tabarrok

The Hamiltonian is expressed in terms ofgeneralized displacements and generalized momenta, and so are the

canonical equations. If generalized impulses and generalized extensions are used, complementary canonical

equations result. Ofspecial significance are generalized impulses that originate from the kinetic energy, in

particular the impulse ofthe centrifugalforce, which will be introduced and discussed by means of two simple

examples.

1 Introduction

In the conventional formulation the Hamiltonian H must be expressed as function of generalized coordinates q

and generalized momentap, i.e.

H = H(q‚ p) (1)

The canonical equations (Lanczos, 1986) then are

. 6H
_ ‚ = __

2p; aqi ( a)

and

. 6H
qi : _ (2b)

ÖPi

2 A Conservative System

Expressed in conventional generalized displacements, the mechanical system of Figure 1 has a kinetic coenergy

T* of

T” z lmr‘2 + lm r262 (3)

2 2

Where the generalized displacments q1 = q, = rand q2 = qe = 6 are displacements of the mass m („mass

focussed“ variables). The generalized momenta are

aT“ .

Pr = —.‘ = mi” (421)
0r

aT“ -
p9 = = erG

Realizing that in Newtonian mechanics the kinetic energy T (q, p) equals the kinetic coenergy T" (q, q‘) ‚ i.e.

T(q»p) I T*(q»ti)
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we obtain for the kinetic energy Tfrom equations (3) and (4)

l p2 l ä
T Z _ _’ + _ —

5
2 m 2 mr2

The potential energy is

l 2 1 2
V = V(q) z Ek,(r—r0) +5ke(6—60) (6)

with k, in N/m and k9 in Nm/rad.

   

Figure 11 Horizontally Mounted Rotating System

The Hamiltonian (Lanczos, 1986) for a conservative system is simply

H = T + V
(7)

such that for the system of Figure 1

1p} 1 p2 17 2 1 2
H = + + EMF—r0) +

where we have used r (instead of qr) and 6 (instead of qe) for convenience. The canonical equations (2) now

provide us with

. ÖH pe2

—p‚ = W : —W+kr(r—r0) (9a)

q, : f = 0—H = i (9b)
6p, m

. ÖH

—pe = E = 1%(8—90) (9c)

. - ÖH
qe = e z _ = p—ez

(9d)
öpe mr

Equations (9) and (4) result in the familiar equations of equilibrium
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mf — mre2 + k,(r—r0) = 0 (10a)

mrzé + Zmrr’Ö + ke(9—90) = o (10b)

3 Alternative Formulation

It can be shown (Tabarrok and Rimrott, 1994) that in the complementary alternative formulation the

Hamiltonian H must be expressed as function of generalized impulses S and generalized extensions e, i.e.

H = H(S, e) (11)

The canonical equations then are

. 8H

61- I

and

- öH
_S. : _

12b‚ aej < )

Let us use the system of Figure 1 to illustrate the alternative formulation. The variables S are generalized

impulses. They are "spring focussed" variables. Since there is a spring (in radial direction) in the system, we

select S1 = Sr with

S"1 = S, = —k,(r—r0) (13)

In addition there is a torsional spring. As a consequence we select an S2 = S9 with

5'2 = S'e = —ke(9—90) (14)

Both S, and Se are associated with the systems potential energy V. These is a third force acting (which derives

from the kinetic energy), viz. the centrifugal force. The third variable then is S3 with

S3 = mre2 (15)

We conclude that there are 3 variables in the alternative formulation, viz.

Sr, 59, 53 (16)

Now in the alternative formulation equilibrium must be satisfied a priori. In equation (5) we let

p, = Sr + S3 2 mr‘ (17a)

pe = 5(9 z mrzé (17b)

such that

(18)
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4 Generalized Extensions

For the Hamiltonian (11) one needs generalized extensions e. They may be obtained here simply by inspection.

For the translational spring k, we have

e, = r — r0 (19a)

For the torsional spring k3 we have

e9 = e — 00 (19b)

Both will be needed in the potential energy expression V. For the centrifugal force S3 we have

e3 2 r (190)

which is needed in the kinetic energy expression (18)

In a more formal fashion, the generalized extensions (3, and 69 are obtained Via the potential coenergy. The

potential coenergy V expressed in terms of variables (13) and (14) is

  

'2 ‘2

v* = +

2 k, 2 k6

The generalized extensions are obtained by writing ej = —aa% (Tabarrok and Rimrott, 1994) and result in

j

av* S, —k‚ r—re, = _as.r = 7r. z _(_krfl = H0 (21a)

and

aV* s“ k 6—6
es : _ I = __9 = _i(__0) : 9—90 (21b)

356 k9 ke

In order to find 63 we first bring the kinetic energy expression into a form that resembles the expression for the

potential coenergy V’k ‚ i. e. we introduce the centrifugal force S3. Then one can express the kinetic energy (18)

as

lgfifllrli

 

‘ 2 m 2 m92 (22)

where m92 is the "stiffness" of the centrifugal force field. For the extension 63 we form

8T S3 mré2
e : —‘- : +~ z _ : r

3 683 me2 m62 ( )

Equation (19c) or (23) entered into the kinetic energy expression (18) gives

1 2 1 2
T(S‚e) = _M + _-Si (24)

2 m 2 mes2

Equations (19a, b) or (213, b) entered into the potential energy expression (6) results in
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1 1
V(e) = Ehe} + 5keeg (25)

The HamiltonianH for the system of Figure 1 expressed as function ofS and e is consequently

2
S, +S 2

(————3) + + —1—k‚e‚2 + äkeeä (26)H:T+V: —1-

2 m 2mg32 2

5 Canonical Equations

The canonical equations (12), with the Hamiltonian (26), now result in

 

 

 

 

er = 3H 2 M (27a)
88, m

—S, = 8H = kre, (27b)
8e,

. aH Se
2 _ Z _

27C

ea ase me; ( )

- aH

A 6H S +S3
= _ = r

27
e3 m

( e)

. aH $92

‘53 z 5e— I _ 3 (2703 me3

Equations (27) represent the equations of motion already. They involve only first derivatives. If we want to

eliminate some variables we can express the equations of motion in terms of second derivatives. Then equations

(27a, b) result in

 

ä S S
k—’ + 3 = 0 (28a)

Equations (27c, d, t) give

" ‘2/3

Ä S3 : 0 (28b)k6 + m1/351/3

e

and from equations (27e, t) we obtain

35/3 .. 2S9 S, + 53

3m1/3SS4/3 3 _ 3m1/3Sä/3Sä/3 m : 0 (280)

 

For both, equations (28b) and (28c), we used
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2/3

S6
e : ——

3 1/3 ‘1/
111 S3 3

(29)

which is obtained by rearranging equation (27f). Equations (28) represent the (three) equations of motion in

impulse coordinates S. They correspond to the (two) equations (10) of motion in displacement coordinates q.

6 Kepler’s Problem

As a second example, we shall have a look at Kepler’s problem (Figure 2). In the conventional formulation, its

Hamiltonian

1i+1pä um

   

H = T + V = — — — 30
2 m 2 fnr2 r ( )

with q, = r and qe = 6 for convenience. The conventional canonical equations result in

. 6H um
_ = __ : __

31aPr 6r r2 ( )

2

qr=r=a_H=&_P_93 (31b)
6pr m mr

6H
_- = _ z 0

31cP9 69 ( )

. - 6H
qe=e=—=p—e2 (31d)

Öpe mr

m

Figure 2. chlcr’s Problem in Displacement Coordinates

Eliminating the generalized momentap one obtaines the well-known second order differential equations

mi‘ — mré2 + ”—2"— : 0 (323)
r

mré2 + 2er = 0 (32b)
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In the alternative formulation (Rimrott and Förster, 1994) the Hamiltonian becomes

S ins 2 2
H:T+V:l_(V—3)_+l_se_2_fl

2 m 2 me3 8,

with S6 = mrzé = angular equilibrium (integrated)

S, + S3 = mr‘ = radial equilibrium (integrated)

S3 = mré2 = centrifugal equilibrium

as shown in Figure 3. The alternative canonical equations (Tabarrok and Rimrott, 1994) result in

   

e. _ 6_H _ Sr+S3

r öS, m

‘ 6H pm
_5' z ___ _

r öe, 33

e" _ 6_H _ _._S9

e ÖSB me32

_S — a_H _ 0

e ace

6. _ if: _ Sr+S3

3 653 m

-3 ._ EEZ .. __§§_

3 693 — me33

The elimination ofthe generalized extensions 6 leads to the second order differential equations

1i—Hm .. S

+ j Z 0

S9 = constant

362/3 .. sr+s3

 

—. +
33ml/BSgl/3 m

(33)

(34a)

(34b)

(340)

(35a)

(35b)

(35C)

(35d)

(35e)

(351)

(36a)

(3 6b)

(36c)

Equations (36) represent the (three) equations of motion in impulse coordinates St The correspond to the (two)

equations (32) ofmotion in displacement coordinates q.
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Figure 3. Kepler’s Problem in Impulse Coordinates

7 Conclusion

In the foregoing the role played by the centrifugal force in the complementary generalized impulse formulation

has been investigated by means of two examples. It has been shown that the centrifugal impulse represents an

additional variable, and that a centrifugal extension is associated with the centrifugal impulse.
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