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MHD Stability of Boundary Layer Flow over a Moving Flat Plate

T. Watanabe, I, Pop, F. Goto

The purpose of the present study is to establish the characteristics of the MHD boundary layer flow of an in-

compressible, electrically conductingfluid over a continuously moving flat plate in the presence of a transver-

se magnetic field. The temporal neutral stability theory for wavelike disturbances of the Tollmien-Schlichting

type are then presented for the velocity functions. The corresponding eigenvalue problem for the disturbance

amplitude functions is also solved numerically. The neutral stability curves and critical Reynolds numbers are

givenfor various values of magneticfield parameter.

l Introduction

From a technological point of view, the study of the flow and heat transfer over a continuously moving flat

plate in an electrically conducting fluid permeated by a uniform transverse magnetic field is of special interest

and has many practical applications in manufacturing processes in industry. It appears that an understanding of

the effect of an applied magnetic field on the flow and heat transfer is useful for the cooling process in the

presence of an electrolytic bath. Many metallurgical processes, such as drawing, annealing and tinning of cop-

per wires involve the cooling of continuous strips of filaments by drawing them through a quiescent fluid. In all

these cases the properties of the final product depend to a great extent on the rate of cooling. By drawing such

strips in an electrically conducting fluid subject to a magnetic field, the rate of cooling can be controlled and

final products of desired characteristics can be achieved. Another interesting application of hydromagnetics to

metallurgy lies in the purification of molten metals from non-metallic inclusions by the application of a ma-

gnetic field.

The first study of the magnetohydrodynamic flow over a stretching wall was conducted by Pavlov (1974), who

obtained an exact solution of the momentum equation. Further analyses of this problem have been made by

Chakrabarti and Gupta (1979), Vajravelu (1986). Kumari et al. (1990), Vajravelu and Rollins (1992), Anders-

son (1992), Watanabe and Pop (1995), and Andersson (1995).

In spite of the growing literature on magnetohydrodynamic flow over a moving plate and its obvious importan-

ce in polymer and electrochemical industry, it seems that the corresponding stability analysis has not received

an adequate attention so far. To the best of our knowledge only Takhar et a1. (1989) have investigated the linear

stability of the flow of a viscous electrically conducting fluid in the presence of an applied magnetic field over a

stretching sheet with respect to the three-dimensional disturbances of the Taylor-Gortler type.

The aim of the present study is to examine the stability of the magnetohydrodynamic boundary layer flow over a

continuously moving flat plate for wavelike disturbances of the Tollmien-Schlichting type. The neutral stability

curves and critical Reynolds numbers are given for various values of the magnetic field parameter.

2 Basic Equations

Consider a long flat plate, which issues from a slot and moves in an electrically conducting incompressible

fluid (with electric conductivity 6 ), which is at rest. We assume that a uniform magnetic field of strength B0

is imposed normal to the plate. Figure 1 shows the coordinate system and the flow configuration. The boundary

layer equations are
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Figure 1. Physical Model and Coordinate System

where (x,y) are Cartesian coordinates are the velocity components along the (x, y) -axes, and p and v

are the density and kinematic viscosity of the fluid, respectively. The boundary conditions are

y=02 u=U v=0

V—)oo: 14:0

(3)

Introducting the variables

w = x/vaf(x,y) n = yJU/vx (4)

where w is the stream function defined in the usual way, equations (1) and (2) reduce to the following parabo-

lic partial differential equation

3 2 2 2 a
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subject to the boundary conditions
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where mx is called the magnetic parameter and is defined by

N:mx:6Bäx/(pU) (7)

Further, we put X = mx ‚ and use the difference-differential method to solve equations (5) and (6) Since this

method has been described at length in the literature (see e. g. Watanabe and Pop, 1995), for details are omitted.

Thus, the solution of equations (5) and (6) can be expressed as

d .

fi- = fond—{gain (9)

where

“n 1 i

P(n) = exp[—L {5/5 +—6—(11fz. —18fH +9f‚.‚2 —2fi3)}dn] (10)
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The coefficient of skin friction is defined as

 

T

C = w
13

where 1w is the skin friction at the plate and is given by
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with it being the dynamic viscosity. Using equation (4), we obtain

Cf Re};2 : [2%ij : {1 +J:P(n)fon —g%dndn}fi (15)

where Rex = Ux / v is the local Reynolds number.

3 Stability of MHD Boundary Layer

We now consider the linear stability problem of the MHD boundary layer flow over a moving flat plate, in

which small disturbances of the Tollmien-Schlichting type occur. The stream function of the wavelike distur-

bances is expressed as

w = vRe¢(n)exp[l-(ax —Et)] (16)

where a is the real wave number, E is the complex frequency, t is the time and i =\/—l. The non-

dimensional disturbance amplitude function d) is in general complex and the physical quantities correspond to

the real part of complex functions. It should be mentioned that functions of wavelike disturbances of the Toll-

mien-Schlichting type (16) were previously used by Watanabe (1978, 1986) and Watanabe et al. (1995) to study

the stability of MHD boundary layer flow along a fixed flat plate, and the stability of free convection flow from

a vertical permeable flat plate, respectively.

As in Watanabe (197 8, 1986), we find that d) is given by the following ordinary differential equation

 

(f’-ß) (¢”—oc2¢) —f”’¢ = a]; — (20:2 +N)¢” +06%} (17)

subject to the boundary conditions

q) : ¢’(0) = = ¢’(oo) = 0 (18)

where Re = (Rex )1/2 is the modified local Reynolds number and primes denote differentiation with respect to

n . The non-dimensional quantities used in the above equation are defined as

 

a Z a5 ß = SZE/(vRe) = [3, +113,

B262 (19)

6 : x/Re N = G 0 = mx Re = (11%)“2
pv

327



where 6 is the boundary layer thickness, ß, is the wave propagation velocity in x-direction and [3,- is the tem-

poral exponential amplification factor. The subscripts r and i denote the real and imaginary parts of the com-

plex functions. Note that neutral stability corresponds to [3,- = 0 and downstream amplification (unstable flow)

occurs for [3,- > 0.

The problem of stability ofMHD flow over a moving wall has been thus reduced to an eigenvalue problem, to

find d), ß, and ßi from equation (17) with the boundary conditions (18) for given values of Re,oc andN .

4 Results and Discussion

Equations (8) and (9) were solved numerically for some values of the parameter N using Simpson’s rule. Ta-

ble 1 contains values of f"(0) which is related to the skin friction coefficient Cf given by equation (15). In

order to verify the proper treatment of the present problem, we compare the results obtained for N = 0 (there is

no applied magnetic field) with those reported by Ingham and Pop (1987). Thus, Cf Re}:2 2 —0.4438 from Pop

(1987), while our result is Cf Rel:2 z —O.44375‚ see Table 1 for N = 0. Therefore, the present results are in

excellent agreement with those from Pop ( 1987).

       

N No)

0.0 -0.44375

0.1 -0,50939

0.2 -0.57286

0.3 -0.63421

0.4 -0.69348

0.5 -0,75070

    

Tablel. Values of f”(0)

Figure 2 represents the velocity component along the plate for some values of N. It shows as expected, the re-

tarding effect of magnetic drag on the boundary layer. The distributions of the first- and the second-order deri-

vatives of the velocity along the plate are shown in Figures 3 and 4. These profiles are important for calculating

staibility curves of the known boundary layer velocity f’ . This problem has been solved in a similar way as

that described by Watanabe et a], (1995). The details are presented there and need not be repeated here.
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Figure 2. Velocity Profiles ofthe Basic Flow
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Figure 3. First-order Derivative of the Velocity Profiles of the Basic Flow
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Figure 4. Second-order Derivative of the Velocity Profiles of the Basic Flow

Figures 5 and 6 show the effect of Re on [3, and 13,-,for N = 0.0 (non-magnetic field) and 0.05 respectively. It

is seen from these figures that both ß, and [3,- curves increase with Re. On the other hand, we notice from

Figure 6 that for N = 0 ‚ the flow becomes completely stable ([3,- <0) when Re < 2218, while for N = 0.05 it

becomes completely stable when Re < 3245 .
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Figure 5. Wave Propagation Velocity (a) N = 0.0 and (b) N = 0.05
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Figure 6. Temporal amplification factor (a) N : 0.0 and (b) N = 0.05
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Figure 7 illustrates the neutral stability curves for the velocity profiles shown in Figure 3. These curves are

plotted against Re and for several values of N. As is evident from this figure, the critical Reynolds number

Rec increases as the magnetic parameter N increases. It is also observed that the wave number 0!. decreases as

Nis increased.
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Figure 7. Neutral Stability Curves

Finally, Figure 8 shows the variation of the critical Reynolds number Rec as a function of N. As is evident

from this figure, the critical Reynolds number increases with increasing the magnetic parameter N. The reverse

situation occurs for the corresponding problem of a fixed flat plate, see Watanabe (1978).
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Figure 8. Variation of the Critical Reynolds Number
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