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A Modal Approximation Method of Frequency Modification

Xiaochuan Zhang

By using the techniques ofmodal analysis, this paper discusses the reanalysis method in dynamic design for

obtaining a desired natural frequency through mass modification, and deriVes the corresponding reanalysis

formulas. Considering that the structure ofa e. g. crane can be simplified essentially as an assembly ofbeam

elements, thefree vibration ofa cantilever beam is discussed as a general method and the mode shape function

ofvibration is acquired. An example illustrating the general process with prediction ofmass modification for

the desired naturalfrequency is presented.

1 Introduction

The dynamic design of steel structures is often a process of redesign. Intending to achieve a predicted goal,

engineers usually give the structure some modification in design, by redesign and reanalysis. In recent years the

techniques of modal analysis have gained more extensive application. By means of these techniques, it is not

necessary to reanalyse the original system, but by utilizing modal paramenters and physical paramenters only,

through changing of mass, stifi‘ness and damping, one can modify the dynamics so as to satisfy the

requirements of design, and thereby realize economy and saving of time. The methods of redesign and

reanalysis of structures are usually divided into three categories, namely the reanalysis method based on small

modifications of the structure, based on local modifications or based on modal approximation. In this paper,

only the reanalysis method of modal approximation in modal coordinates is discussed. Utilizing this method,

the required modal paramentcrs ofthe original system can be obtained not only by the analytic method but also

by the FEM and the experimental modal analysis method.

2 Reanalysis Method of Modal Approximation

In many systems in practical applications, their damping ratios are very small (g < 0. 01), hence those systems

may be approximated as undamped systems. Thus, the free vibration equation of this kind of system may be

written as

[M]{56(t)} + [Kl{x(t)} = 0 (1)

If the mass and süfiness of the system are changed, then equation (1) becomes

[[M] + [Ami]{5c‘(r)} + [[K] + [Akll{x(t)} = 0 <2)

rearranging the terms of equation (2) yields

[M1560)} + [K]{x(t)} = - [Am]{5c'(t)} — [Ak]{x(t)} (3)

Let {f = — , then equation (3) can be interpreted as the equation of motion of the

original dynamic system under an exitation force {f
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Let {x(t)} = {X}ej"”,then equation (3) becomes

[‘mziM] + [K]]{X} = WW] — WNW} (4)

Consequently {X} = H(CO)[C\)2[AJ71] — (5)

H11(CÜ) Hum)

 

where H(oa)= E 5 (6)

1.1111(0)) Hnn(m)

X n l

HM“) = = r§1m¢fi¢lj (7)

Ifonly the kth degree-of—freedom mass is modified by an amount Amk, then

0

[Am] = [Amik = .Amt (8)

.I 0

and equation (5) becomes

{X} = cozH(w)[Am1k{X} (9)

Substitution of equations (6) and (8) into equation (9) yields
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Retaining only Xk , equation (1 1) becomes

Xk = (031%:ka ' Amk 'Xk

The modification Amk at the desired frequency on: can be evaluated from the simple scalar equation

Amk = (mngk(ms))—l (12)

n (Dzk

where Hkk(C05) =

Similarly, through changing the stiffness, we can find the follow result:

Akk = — (1L1kk(cos))‘1 (13)

3 Sensitivity Analysis in Redesign

For the above-mentioned undarnped multi-degree-of—freedom discrete system, through mass modification in a

certain coordinate, its natural frequency can be modified. After all, the problem is how to choose the location of

mass modification to yield the desired change of dynamic paramenters. This problem can be solved by using

sensitivity analysis. The scope of sensitivity analysis is very extensive. Only the sensitivity analysis of the

eigenvalue is discussed in the following.

3.1 Sensitivity Analysis of Mass Modification of Undamped System

Let {x(t)} = {X}ejw‘ , then from equation (1)

—0)2[M] + [K] = 0 (14)

postrnultiplying equation (14) by [(1)] yields

— w2[M][CD] + [K][CD] = 0 (15)

The partial differential equation of equation (15) with respect to mg is

     

— 2—2,;qu _ mza;:][d>] _ m2[M]%q:] + 685p] + [K] . 65:] = 0 (16)

Premultiplying this equation by [(1)]T yields

— ä[<I>]T[M][GI>] — Mm] — m2[d>]T agghfi + [®]T[K]öa[mq:] = 0 (17)
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Since [®]T[M][CD] = [1], [ ] = 0
Ömij

then, from equation (17), we obtain

_ 2606—0) _ (flap? 5[M1[CD] (18)

Also, since — 032[M] + [K] : 0

then from equation (18), we obtain

5—“): — lmq>„.cp. (19)
6mij 2 '7

When i=jandco = co,

603 l 2
r = _ _ .(p. (20)

ömij 203’ '1

Also, since a), = 2nf, (21)

Ä 1 are}, (22a)
6m 4

3.2 Sensitivity Analysis of Stiffness Modification of Undamped System

Similarly, from the partial differentials of equation (15) with respect to Ki], we obtain the following relation:

Bf; = _ 1 Qfimd (22b)
6K1] 27m),

 

It can be seen from the above equation that the sensitivity of eigenvalues to mass and stiflness is principally

dependent on the coefficients of the mode shape matrix. Therefore, if the eigenvalues and the related mode

shape vectors are obtained, then the sensitivity analysis of dynamic modification can be performed so as to

determine the optimum modification point and thus a fastest modification scheme can be formed, and blindness

of analysis and design would be avoided.

The structure of e. g. a crane can be simplified essentially as an assembly ofbeam elements. For beam elements

under different support conditions, after their cross-section dimensions and lengths have been determined, their

mode shape vectors can be obtained directly analytically. By utilizing the above-mentioned method to simulate

on a computer, and according to a predicted requirement to perform dynamic modification of the structure, the

requirement of its dynamic properties can be satisfied. Without loss of generalization, a cantilever beam is

selected as example for discussion of a generalized method ofdynamic modification.
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4 Dynamic Behavior Modification of Cantilever Structure

A suitable coordinate system for an undamped uniform cantilever system is shown in Figure 1.

   

j———————————————————————————————————————————————————————+4

Figure l. Cantilever Beam Configuration

Its transverse vibration equation can be written as

64y(x, t) + flair/(x, t) _

  

7 E127— ‘ 0 (23)

Let y(xa t) z (Du) - T(t), and substitutinginto equation (23), results in

‘ = if: (12:55) (24)

Thenlet _ = EILQIVÜ) 2

 

=0)

T0) pA cI>(x)

and let the boundary conditions of the cantilever beam be

x = 0, c1>(0) :0 0(0) = 0

x=L, (13"(L) = 0 <1)’”(L) = 0

From orthogonality, all mode shape functions of this beam can be obtained as

<Dl(x) = 0.51677(cosa1x — chalx — 0.734sinalx + 0.734sha‚x)

(132(x) = 0.518203(cosa2x — 1.0185111an + 1.0183ha2x)

d33(x) = 0.505909(Cosa3x — Cha3x — 0.999sina3x + 0.999sha3x) (25)

®4(x) = 0.52897(cosa4x — Cha4x — sina4x + sha4x)

where

a1 = 1. 8751040704141

a2 = 4. 6940911332876

a3 = 7. 8547574382376

a4 = 10. 995540735266
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Then the corresponding natural frequencies can be obtained as follows:

For the 8 points of the cantilever beam shown in Figure 2, the mode shape vectors corresponding to different

natural frequencies can be obtained from equation (25). The results of sensitivity analysis of mass modification

lst order:

0)] = 63.20 rad/s or fl = 10.06Hz

2nd order:

«)2 = 396.06 rad/s or f2 = 63.03Hz

3rd order:

(03 = 1108.97 rad/s or f3 = 176.5Hz

4th order:

(04 = 2173.3 rad/s or f4 = 345.86Hz

y

1 2 3 4 5 6 7 8

  

Figure 2. Discrete Model of Cantilever Beam

by using equation (22a) are shown in Table 1.

                 

Ä i i it Ä % fl Ä

Ömii emu" Ömii Ömii Ö’nii Ömii Ömii Ömii

1 —. 0056 -. 9539 -13. 4087 -67. 6687 -167. 1289 -264. 3944 -274. 5519 -163. 3318

2 -. 1268 -10. 8201 -49. 6100 -16. 8856 -48. 6510 -233. 3372 -84. 2908 -89. 4720

3 -. 3099 -16. 2550 -21. 1560 -28. 4629 -143. 9189 -. 0622 -333. 9741 -118. 3367

4 -1. 0809 -12. 5523 -17. 0389 -29. 8900 -145. 3215 -. 0539 -303. 7628 -118. 2962

5 -1. 7116 -4. 9425 -38. 7939 -13. 7247 -51. 3977 -235. 9675 - 84. 9744 -89. 1762

6 -2. 9891 -. 6176 -9. 2376 -70. 9490 -132. 5019 -95 .6856 -5. 7339 -79. 2800

7 -3. 5029 -3. 8544 -. 2371 -27. 4863 -205. 3789 -228. 1382 -136. 7220

8 -5. 3723 -33. 8541 -90_ 3472 -193. 5521 —316. 6131 -469. 7640 -653. 2208 -866. 7722

 

Table 1. Sensitivity Analysis
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From Table l we see that if we attempt to change the natural frequencies of the structure by means of mass

modification, then for frequency modifications of all frequencies from lst to 8th order, the most efficient point

is point 8. Through sensitivity analysis for the cantilever beam, it follows that after determining the optimum

modification point, the mass modification can be performed as desired. The process can be carried through as

follows:

From equation (12)

 

Also, u)=21rf

n 2

Amk ———q)'k = 1

r=l (if — 1

f

Thus

2 2 2

Amk (12)” + Amk C32" + -- Amk q?“ = 1 (26)

(f1) 1 (fiH <f" )—1
f f f

Let us transfer only the lst order natural frequency to f; = 8.05 Hz.

Considering that the influencies of higher components upon the lst order mass modification are not large, we

may let n = 8 in equation (26), and also on the basis of the number of points in the structure at which mass

modification is permissible, let k = 8, we can obtain the amount ofmass modification on the 8th point as

21mg = 0.5197 kg

Thus increasing the mass at point 8 by 0.5197 kg will satisfy the requirement of abovementioned modification.

In other words, increasing total mass of the beam by 14 % will cause the lst order natural frequency to decrease

by 20 %.

After this kind of modification, we would like to find out the new behavior of the modified system. Substituting

Amg into equation (26), we can obtain the natural frequencies of all orders, namely:

lst order: a): = 50.57964432872 rad/s = 8.05Hz

2nd order: a); : 329.6554397674rad/s

3rd order: co; 9848079022841 rad/s

4th order: a): 1959.118472330 rad/s
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Substituting 0): and Am,3 into equation (11) and letting Xk be an arbitrary constant, we can obtain the

corresponding mode shape vectors of the modified system .

 

i 1 2 3 4 5 ' 6 7 8

 

(D; —.604E-O3 -.l90E—01 -.891E-01 -.335E+00 -.716E+00 —.145E+01 -.222E+01 -.374E+01

 

(DZ. -.485E—03 -.162E-01 -.786E-01 -.314E+00 -.687E+00 .144E+01 .222E+01 .382E-Hll

 

‘93: -.526E-03 -.168E—01 -.800E-Ol .312E+00 .683E+00 .143E+01 .222E+01 -.383E+Ol

 

0:: -.505E-03 -.167E-01 .802E-01 .313E+00 -.683E+OO -.143E+01 -.221E+01 .384E+Ol

 

0; -.517E-03 .167E-01 .799E—Ol -.313E+00 -.683E+OO .143E+Ol .221E+Ol -.384E+01

 

(I); -.510E-03 .167E—01 -.800E-01 -.313E+00 .684E+00 -.143E+01 -.221E+01 .384E+01

 

0;, -.514E-03 .167E—01 -.800E-01 .313E+00 -.684E+00 .143E+01 .221E+01 -.384E+01

           

0;: -.512E—03 -.167E-01 -.800E-—01 -.313E+00 -.684E+00 .143E+01 -.221E+Ol .384E+01

 

Table 2. Mode Shapes.

Then according to further requirements of frequency modification, we can carry out the corresponding

sensitivity analysis, and utilize equation (26) to find the modification of the mass matrix. Therefore, the process

of regulation offrequency characteristics of the whole structure system is a repetitive process.

5 Conclusions

For other beam elements of difierent boundary c0nditions, cross-section areas and lengths, after obtaining the

mode shape function, we can apply the methods discussed above to carry out directly the frequency

modification on a computer and reconstruct the FRF matrix. If accompanied by FEM, or experimental modal

analysis, the application scope ofthe method presented in this paper can be further extended.
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