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Modelling 0f Crack Tip Singularity

Ä. Horvath

Standard isoparametric elements are used as singular and transition elements in fracture mechanics

computations by placing the side-nodes in the vicinity ofa crack tip. Such elements are well known and have

already been applied to several two- and three-dimensional problems. The present paper demonstrates a

generalization ofthis method to higher-order strain singularities.

1 Introduction

Henshell and Shaw (1975) and Barsoum (1976, 1977) have independently shown that the inverse square root

singularity characteristic of linear elastic fracture mechanics can be obtained in 2D and 3D isoparametric

elements when the mid-side nodes in the vicinity of the crack tip are placed at the quarter point. Hibbit (1977)

investigated the properties of these elements. Pu, Hussain and Lorensen (1978) developed lZ-node quadrilateral

isoparametric elements. It was shown that the r‘”2 singularity of the strain field at the crack tip could be

obtained by placing the two side nodes at 1/9 and 4/9 of the length of the side from the crack tip. These singular

isoparametric elements can also be found in Akin (1982). Banks-Sills and Einav (1987) have used a nine-node,

distorted, singular isoparametric element.

Lynn and Ingraffea (1978) have developed a transition element possessing a singularity of order 7"”2 outside

the element. In practical applications of this element the principal parameter aflecting the accuracy of the stress

intensity factor is the ratio of the singular element length to the crack length. As this ratio approaches a small

value, the modelling capability of singular behaviour is lost because of the non-singular behaviour of the

neighbouring elements. A better model is obtained by replacing the non-singular neighbouring elements with

transition elements possessing the same order of singularity at the crack tip. The present paper shows that a

singularity of order rU—mym can be obtained by means ofan nth-order isoparametric element.

2 Higher-Ordcr Singular Isoparametric Elements

2.1 General Forming of Singular Isoparametric Elements

To create an element possessing a singularity of order ru—my'"consider a one-dimensional element which may

form one side of a 2D or 3D nth—order isoparametric element. Such an element is shown in Figure 1.
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Figure 1. Mapping ofthe Coordinates
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The nodes of the element, designated by 1, 2, ..., n+1 are mapped to E_‚ = i 1 on the a scale. The

transformation is accomplished using the usual isoparametric shape functions, or the following polynomial

interpolation:

x=ao+a1§+a2§2+m+am§m n2m22 (1)

As the element is isoparametric, the same shape functions or interpolations are used for the transformation of

the displacement.

u = [)0 + b1§+ bzgz + + bng" n 2 2 (2)

Substitution ofx and ä nodal values into equation (1) gives the following set ofequations:

0=a0—a1+a2—m:tam

2 2 2 2 '"
all = a0 + —1+— a1 + —1+— a2 + + —1+~ am

n n n

2 ‚„ (3)
2 2 2

ak1= a0 + —1+k— a1+ —l+k— a2 + + —l+k—— am
n n n

I=a0+a1+a2+m+am

To obtain a singular strain at x = 0 (ä = —l)‚ the reduced Jacobian, dx/dfi, must vanish at g = — 1. We

obtain this derivative from equation (1).

dx m—l

- = a1 + 2512?; + + mamä (4)

dä

Forä = ~1,anddx/d§ = 0,

al—2a2+3a3—--- ima = 0 (5)
m

We need further equations, as the number of unknowns is n + m (onl ,onz,---ocn_1,ao,a1,---,am). The higher

derivatives of x must vanish at g = — 1.

   

d x d3x d(""l)x
__ = __ = = = o

6

2 <2: —1 d§3 ä: —1 dgm”) g: —1 ( )

By substituting g = — l, we obtain the following set ofequations from equations (1) and (6):

2a2 ~— 6a3 + i m(m-—l)am = O

(7)

II O(m—l)! a‚„_l — m! am
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The last ofequations (7) gives

aw1 = mam (8)

The solution of the other equations (7) gives the coeflicients in general form

m

ai = I am i = 1,2,---,m

By means of equation (9) the last of equations (3) becomes

m m m m

l=[]a,n+[Jam+[]am+m+[]am=am2m (10)

0 l 2 m

From equation (10) we obtain

1

am z — (11)
2m

Substitution of equation (9) into equation (3) gives the coefficients in general form

(m) [ 2] (m) [ 2J2{m\ [ 2T”me "(k)”

l: + —1+k— + —1+k— + + —1+k— : 2 —

a" 0 Jam n L1 am n L2 Jam n Lmja’” am n (12)

Using equation (11) we obtain

1 1 2m 13
(xk — 2m n ( )

From equation (13) we have

k
„k z [Z] k = 1,2,3, n— (14)

Equation (14) determines the positions of the side nodes. If we take into consideration the values of

k = 0 and k = l, they will be the equivalent of (x0 = 0 and on" = 1. The exponent m determines the order of

the strain singularity at the singular point (node 1) and n is the order of the element. The case m = 1

corresponds to the standard (non-singular) isoparametric element. For m and n the following relation is valid:

In s n
(15)

If we take into consideration only equation (4), it will be the equivalent of the case m = 2. That means the

type of singularity is of order 171/2. If we take into consideration equations (4) and (6), they will be the

equivalent of the case m > 2. That means the type of singularity is of order rU’mW. According to relation

(15) an nth-order isoparametric element has (n—l) different types of strain singularity depending on the

placing of the side nodes.
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In order to obtain a singular isoparametric element to be used at the crack tip or front, the strain must be

singular. The required strain singularity is achieved by placing the side nodes into the corresponding position,

according to equation (14).

It can be shown easily that by means if the above-mentioned technique we obtain the inverse square root

singularity of the strain field at the crack tip. This is the required strain singularity in the calculation of the

stress intensity factors of elastic fracture mechanics.

2.2 Investigation of Type of Singularity

Substitution of equations (9) and (l 1) into equation (l) gives the following expression:

l/m

(1+:)"' or §=~1+2[i] (16)

1

gx:-——:-—-——:-—-—-———x
(17)

We have the displacement derivative from equation (2).

fl ._ 2 n—l
_ b1 + 2ng + 3b3g + + nbng (18)

This expression can be written in another form by inserting equation (16).

 

au l x “'"l l x “"‘T tg = b1 + 2b2L—1+2L7J J + 3b3|-—1+2L7J J + + nan—l+2L7J J (19)

Substitution equation (19) into equation (17) we have the strain 8x.

8x = Alxhflmym + Azxg—mym + + Anx("_"')/m (20)

where

A1 = C(bl — 2b2 + 3b3 — i nb„)

A2 = 11% 2[2b2 — 6b3 + 12174 — :t (n—1)nb„]

A" = 1(51)m 2("‘1)nb„

2 l

C = E 7,;
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Equation (20) shows that the strain is singular at x = 0 (g = — l). The leading strain term contains ach—"M".

As x —> 0, it represents the required strain singularity. Therefore, in principle, any derivative singularity from

—1/2 1 —l/(1+N)

x to x— is available. Rice has shown that the singularity in strain at a crack tip is of order x , where

N is a hardening exponent varying between 1 and 0 for purely elastic to perfectly plastic response. The two

exponents must be equal, so we obtain the expression

N = — (21)

Equation (21) determines the connection between the type of material and the type of singularity. When N = l,

the material is linear elastic. In this case m = 2, so the type of singularity is Fm. When 2 < m s n, we have

a singularity of order r(1_m)/m. In this case N < 1,which means a linear hardening material. As m and n are

always integers, the exponent (1—m)/m has discrete values, while the hardening exponent N varies

continuously. Therefore in practice only discrete types of singularity are available by means of higher-order

singular isoparametric elements.

2.3 An Example

Consider a side (71 = — l) of a 2D 4th-order isoparametric element, as shown in Figure 2.

singular point
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Figure 2. One Side (n = — 1) ofa 2D 4th-order Element

We examine an inverse square root singularity ofthe element. For simplicity the length of the side is unity,

l = 1. By substitution of n = —- 1, we have the localized shape functions

N1 = ~1-(1—é) (—8? +2a)
12

_ _8__ _ 2 2—

N2 — 12(1 a)(4a 2:)

N3 = E(1—52) (1—4232) (22)
12

N4 = T821142) (4§2+2§)

N5 = -1—(1+ä) (86—22:)
12
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As n z 4, m = 2, we obtain the expression, according to equation (14)

[16],” [k]2 k—123 23

ak— n _ 4 _ H ()

By means ofequation (23) the coordinates of the side nodes are:

x2“°‘“4_16 x3”“2_4_16 x4“°°3'4"16 ()

The relationship between the generalized position and nodal coordinates can be written in the following form:

5

x = ZNixi (25)

1:1

Substitution of equations (22) and (24) into equation (25) gives

8 2 2 1 12 2 2 4 8 2 2 9 1 3
x = 5(1—52 ) (4g ~21;)1—6 + 2—2—(1—1;)(1—4§)Tg + 50—: )(41; +2§)Tg + 1—2(1+g) (82: ~2§)1

(26)

After reducing, we obtain equation (26) in the following form:

1 l

x : —(6§2+ 12§+ 6) = —(1+§)2 (27)
24 22

From equation (27) we have

a = —1 + N; (28)

The displacement u can be written similar to equation (25).

5

u = ZNiui (29)

i=1

By substitution we obtain the following expression:

1 8 12

u = E141(1—§)(—8§3+21;) + 5141—6) (46—223) + Eu3(l—ä2) (14€)

8 1 (30)

+ 5114(1—232) (46mg) + Eu5(1+§) (sä-zg)

Rearranging of equation (30) gives

1 1 2

u = u3 + g(uI —2u2 +2u4 —u5)<“a + E(—u1 +16142 —30u3 +16u4 —u5)§ +

(31)
2 3 2 4

+ §(—u1 +2u2 —-2u4 +u5)&‘D + 3(u1 —4u2 +6u3 —4u4 +u5)§

According to equation (2), we can write

2 3 4

u = b0 + b1§+ b2: + b3§ + b4§ (32)
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where

[)0 : u}

1

b1 : E(u1 _2u2 +2144 —u5)

1

2

b3 = §(_u1 +2“2 ‘2u4 +u5)

b4 = 3(u1 —4u2 +6u3 —4u4 +u5)

Using equation (28), we obtain equation (32) in another form.

u = b0 + 121(25—1) + 122(2‘5—1)2 + b3(2J§—1)3+ 124(2‘5—1)4 (33)

The strain (17) is then

du 1
ex = E = 3(1)l —2b2 +31;3 —4b4) + 4(1)2 —3b3 +6b4) + 125(113 —4b4) + 32xb4 (34)

In equation (34) ,the strain 8x has a singularity of order th, when x tends to zero. The two other types of

singularity can be written similarly in the case ofthis element.

3 Higher-Order Isoparametric Transition Elements

3.1. General Forming of Transition Elements

The general forming of transition elements is similar to the forming of a singular element. But the transition

element possesses a singularity of order r(l_"')/"' outside the element. To develop a transition element, consider

a one-dimensional element which may also form a side of a 2D or 3D nth-order isoparametric element. Figure

3 shows such an element.

1
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Figure 3. Element Coordinate Mapping
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The nodes of the element, designated by 1,2, ..., n + 1 are mapped to ä = :tl on theg scale. The

transformation is realised by means of the usual isoparametric shape functions, or in general by the following

polynomial interpolation:

x=a0+a1§+a2§2+m+am§m n2m22 (35)

Substitution of x and g nodal values into equation (35) gives a set of simultaneous equations.

0=a0—a1+a2—~~iam

2 22 2m

a0+ —1 +— a1+ -—1+— a2+m+ —1+— am

n n l1

2 22 2’”
akl=a0+—1+k—a1+—l+k— a2+---+—1+k~ am

11 n n

l=a0+al+a2+m +am

To obtain a singular strain at x = —q1, outside the element, the reduced Jacobian, dx/dä, must vanish. We

obtain further equations in a similar way. The derivatives of x must vanish, too. The value of variable ä is

unknown at the singular point. We denote it by So we have

H(x11

(36)

      

dx dzx d3x d('”“)x O 37_ _ __ = _ = = = ( )
dä €=E dä :=a [1&3 :=5 dg‘m‘” H

From condition (37) we obtain the following set ofequations:

— ‘2 —(m—1)

a1 + 2a22’; + 3a3§ + + mamé = O

- -( —2)
2a2 + 6a3§ + + m(m—l)am§ m = 0 (38)

(m—l)!am_1 + mlamE = 0

The last of equation (38) gives

_ a „1

ä = -m':1
(39)

This value of ä means the point of singularity outside the element. From equations (38), we obtain the

coefiicients in general form.

   

m {am_1\("H)
ai = I amL J

i z 1,2, (40)
z mam

Substitution ofequation (40) into the last of equations (36) gives the expression

m am-l \m {am—l Y"

1: a0 — am J + amL +1J (41)
0 mam mam
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From equation (41) it is clear that

    

("A (am‘l Y" {anH Y"

a0 =1+L JamL J — amL +1) (42)
0 mam mam

By means of equations (40) and (42) we obtain equation (35) in the form

(am_1 Y" Kam_1 Y"

x : l— amL +1J + amL— +§J (43)
mam mam

" am~1 N .

The point of singularity is located outside the element, at x = —ql Lg = — J, as shown in Figure 3.

mam

Substitution of these values into equation (43) gives the following expression:

—ql = 1_ amLh „Y (44)
mam

Substitution of equation (44) into equation (43) results in

‘Yn

+ J
(45)

 

a
—1

x = —q1 + am m

mam

From equation (44) we can obtain the following:

a = mll/ma(m_1)/m(l+q)1/m - mam
(46)m4 m

By means of equation (46) we find

"1

x = -—ql + am[a‚;"'"1“'"(1+q)"'"— 1 + g] (47)

From equation (47) the coeH‘ieient am can be obtained by setting x : 0 and g = ~ 1.

Fl 1/m_ I/M‘Im

am =
(48)

Substitution of equations (40) and (42) into equation (36) gives the coefficients in general form.

{am—1 2 m

01k] = amkma ~l +k; — ql (49)
m 

By means of equations (46) and (48) the desired strain singularity occurs when

l—(n—k)q1/m+ k(1+q)1/m Tn
„k z[MnJ _ q k = 1,2, -~-,n—1 (50)
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If we take into consideration the values of k = 0 andk = n, they will be the equivalent of

a0 = 0 and on" = l. The exponent m determines the order of the strain singularity and n is the order of the

element. Between m and n the same relation is valid, as it was in the case of the singular elements.

m s n (51)

Equation (50) relates the location of the element side nodes akl to the singular point ql outside the element

(l—m)/m

domain, at which the r singularity is found.

3.2 Special Cases of the General Mapping

It can be seen easily that we obtain the singular and non-singular elements as special cases of this general

mapping.

3.2.1 Non-singular Isoparametric Elements

In order to obtain the non-singular elements, in equation (50) we have to choose m = l and q = 0. Then

k

“k = _' (52)
n

So we have from equations (46) and (48)

l

anbl = a0 : —

2 (53)
I

am = al = —

2

From equation (35) or (47) it is clear that

l

x = —(1+§) (54)

2

Figure 4 shows the behaviour ofthe transformation of equation (54) on a g — x plane.

  

J
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!

 

-l +1

Figure 4. Behaviour ofLinear Mapping
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3.2.2 Singular Isoparametric Elements

Choosing q = 0 and m 2 2 in equation (50), we have

k m

at = Ü (55)
n

This expression is the same as equation (14). From equation (48) we can write

1

am = —

2m

Equation (56) is the same as equation (1 1). By means of equation (47) we obtain

l

x:—m (1+g)” (57)

2

Equation (57) is the same as equation (16). The character of the transformation of equation (57) is presented on

a ä — x plane in Figure 5.

   

Figure 5. Character of General Mapping for Singular Elements

3.2.3 Transition Elements

Choosing q 9t 0 andm 2 2, equation (50) shows the location ock of the element side nodes. Substitution of

equation (48) into equation (47) gives the following relation:

x = ——q1 + 5%{(l+q)l/m+ qV'"+ g [(1+q)l/m~ ql/mnm (58)

Figure 6 represents the character of the transformation of equation (58) on a g — x plane.
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Figure 6. Character of General Mapping for Transition Elements

It becomes apparent that such a transition element can be easily constructed by simply shifting the side nodes to

some properly calculated points. Equation (52) is the upper and equation (55) is the lower limit of equation (50)

for the same values of m and n. Using this general mapping, it can be shown easily that we obtain the form in

the case ofthe quadratic elements, which was demonstrated by Lynn and Ingraffea, (1978).

4 Some Numerical Examples

The isoparametric singular and transition elements are demonstrated by application oftwo simple examples.

4.1 Example l

The example considered is that of a plate under tension that contains a crack of length 2a perpendicular to the

direction of loading. The thickness is assumed to be unity.

                  

‚_Tn
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p = 100 MPa X_ a
h, 0F=100MPa [3 AA B

E = 200000 MP2:

v =

plane stress problem

Figure 7. Centrally Cracked Plate Figure 8. Mesh for Centrally Cracked Plate
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Figure 9. Types of Material Employed

The centrally cracked plate is shown in Figure 7. Figure 8 shows the finite element mesh employed in the

solution. The mesh consists of 20 isoparametric elements. In the first calculations all elements are assumed to

be non-singular 4th-order (quartic) isoparametric elements. In the second calculations the elements A at the

crack tip were singular isoparametric elements. In the third calculations the elements A were singular and the

elements B were transition elements. The material properties assumed for analysis are included in Figure 9.

The J-integral values, obtained from the present numerical studies, are listed in Table l in the case of

p = 100 MPa. Table 2 contains the J-integral values for p = 130 MPa.

 

J-integral [N/ mm]

     

m No special elements Singular elements Singular + transition elements

2 1.6259 1.6310 1.6461

3 1.8038 1.8321 1.8339

4 2.0158 2.1103 2.1174

     

Table l. J-integral Values in the case of p = 100 MPa

 

J—intcgral [N/ mm]

    

m No special elements Singular elements Singular + transition elements

3 4.1395 4.2131 4.2174

4 5.3953 5.6027 5.6122

     

Table 2. J-integral Values for p = 130 MPa
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4.2 Example 2

The problem considered is that of a plate under tension that contains an inclined edge crack, as shown in

Figure 10. The finite element mesh is presented in Figure 11. The employed mesh consists of 18 cubic

isoparametric elements. The type of material is linear elastic.
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p = lMPa

E = 200000 MPa

v = 0.3

plane stress problem

Figure 10. An Inclined Edge Crack Figure 11. Mesh for the Inclined Edge Crack

In the first calculations the elements A were cubic, singular isoparametric elements. In the second calculations

the elements A were singular and elements B transition elements. The K1 and K„ stress intensity factors

calculated from J—integral are listed in Table 3 for different types of Gauss integration. Table 4 shows the same

factors calculated from the displacement field for different types of Gauss integration. Table 5 contains the

values obtained by Pu, Hussain and Lorensen and Bowie (1978). Pu, Hussain and Lorensen used another finite

element mesh, and calculated the stress intensity factors from the displacement field. Bowie obtained his results

by a conformal mapping technique.

      

- - —3/2 —3/2Gauss integration K1[N mm J K” [N mm 1

Singular elements 3 x 3 1.667 1.126

Singular + transition

elements 3x 3 1.723 1.016

Singular elements 4 x 4 1.658 1.051

Singular + transition

elements 4 x 4 1.752 0.873

     

Table 3. Stress Intensity Factors from J—integral
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. - ‚3/2 —3/2Gauss 1ntegratlon KI [Nm 1 K11 [N mm ]

Singular elements 3 X 3 1.719 0.946

Singular + transition

elements 3 x 3 1.88 0.981

Singular elements 4 X 4 1.786 0.952

Singular + transition

elements 4 x 4 1.952 1.002

 

Table 4. Stress Intensity Factors from Displacement Field

      

Gauss integration KI [N mm-S/Z] K” [N mm—s/z]

Pu, Hussain,

Lorensen 3 x 3 1.89 0.95

4 x 4 1.83 0.92

Bowie - 1.86 0.88

    

Table 5. Stress Intensity Factors

5 Conclusion

Through an extension of general mapping of element coordinates a simple scheme of forming of higher order

singular and transition elements is presented. It has been demonstrated that the elements possess a strain

l—m)/m

singularity of order r( . The transition elements contain the non-singular and the singular elements as

extreme cases, too. The fomling of elements is simple and the formulas are easily programmable. It was

demonstrated that an nth-order element has (n — 1) difierent types of singularity. These elements should have

wide applications to the analysis of2D or 3D problems where fracture is investigated.
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