
TECHNISCHE MECHAN1K, Band 14, Hefi 2 (1994), 141-146

Manuslqipteingang: 7. Juni 1994

Global Dynamical Behavior of a Two-Body Satellite with Flexible

Connection in the Gravitational Field

Y. Z. Liu

The planar libration ofa two-body satellite with flexible connection on a circular orbit under application of

the gravitational torque is discussed in the presentpaper. All possible equilibrium states relative to the orbital

coordinate fi'ame are calculated, and Liapunov ’s direct method is used in the analysis of the stability ofeach

state. It is shown that a bifurcation of equilibrium states and their stability can occur when the stiffness of the

connection is small enough. The global dynamical behavior of the system is described qualitatively in the of

the parameter space.

Introduction

The attitude dynamics of a rigid body in the gravitational field is not only a subject of classical mechanics, but

serves as a theoretical basis for aerospace engineering. The libration of the moon was studied in the last century

by Lagrange (1870). The so-called Lagrange and DeBra-Delp regions in the stability diagram of the parameter

plane are regarded as an elegant description of the dynamical behavior of a rigid satellite in an orbital

coordinate frame. As the construction of modern spacecraft becomes more complicated, multibody models were

developed instead of the single rigid body. A linear formulation of a two-body satellite with flexible connection

was proposed is by Robe and Kane (1967), and some nonlinear problems of the same model were discussed by

Wittenburg (1974), Liu (1989) and Rimrott (1992). In the present paper the planar attitude motion of a two-

body satellite with flexible connection on a circular orbit under application of the gravitational torque is

discussed. All possible equilibrium states of the satellite relative to the orbital coordinate frame are determined,

and Liapunov’s direct method is used in the analysis of the stability of each state. It is shown that a bifurcation

of the equilibrium state and its stability can occur when the stifiness of the connection is small enough.

Dynamical Equations

Consider a system composed of two rigid bodies BI. (i = 1, 2) and a flexible axis, modelled as a sperical

joint with spring. The principal axes x1. of bodies intersect at the center O of the joint. We introduce an orbital

coordinate frame (0— XYZ) with the origin 0 and X- and Z—axes along the position vector of the satellite and

the normal of the orbital plane respectively. We assume that the principal axes x,, y, of the bodies are

restricted in the orbital plane (X, Y), and inclined by angles (1) 1. with respect to the X- and Y-axes (Figure 1). We

denote by m1. ‚ Aio ‚ Bio, Cm the mass and central principal moments of inertia of each body, by l1. the distance

between the body’s center ofmass 0, and the joint 0 and by K the stiflness coefficient of the spring. The center

of mass 00 ofthe system moves on a circular orbit with an angular velocity to c.

The Euler equations of each body about the point 0 are derived as follows

.. .. _ 2

C, ¢,+ pd)!- cos(¢,- ‘91-)+t(coc +45.) sm(¢, —¢j) +(3 /2)m:(ß2 —A2) sin2¢2+K(¢, —¢].) = o (1)

(i=1,2;j=2,1)
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Where

A. = A. B. :3 q : Cm + Hi (2)

pi = mlmzliz/ (m1 +m2) m =rm1m211 11/(m1 +m2)

  

Figure l. Two-body Satellite with Flexible Connection

Assuming that bodies Bi have the same mass and geometry, we delete the subscript i from the symbols

mi , Ai ‚ Ei, C. 1. pi and introduce dimensionsless parameters as follows:

v=H/C, o:(B-A)/C k=K/Cco§ 1:036: (3)

Then equation (1) can be rewritten as

$i+v<iijcos(¢i —¢j)+v[1+¢;j)2 sin(¢i _¢].)+(3/2)osin2¢i +k(q>‚. —¢J.) = 0 (4)

where the time variable t is replaced by I . The conservative system (1) permits the Jacobi integral

2 1-2 3 2 . . 1

H = Z[;¢i+;68in ¢ij+v(¢1¢2-1]COS(¢1-¢2)+3k(¢1-¢2)2 = const (5)

i=1

Relative Equilibrium States

In order to determine the relative equilibrium position 4)‚.0, we let of , of equation (4) be zero and obtain

2vsin(¢,.o —¢j0) + 3csin2¢i0 +2k(¢m —¢j0) = o (6)
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Two trivial solutions corresponding to equilibrium states 81 and S; can be found from equation (6) directly.

S1: 4’10 = ¢2o = 0 (7a)

52: 4’10 Z 4’20 Z ”/2 (7b)

The following condition should be satisfied for the nontrivial solutions when (1)10 :2 <|>20:

2

Zsin2¢io = 0 (8)

i:1

from which four constraint conditions corresponding to the remaining equilibrium states are derived as

33; (1)20 z —¢10 (9a)

S4: (1)20 = n — 4:10 (9b)

55; (1)20 = 4m) + ¢10 (9c)

36: 4,20 z (‚z/2) + (1)10 (9d)

The equilibrium positions 431.0 can bc obtained from equations (6) and (9) only when the following conditions

are satisfied:

S3: c<—2(v+k)/3 (10a)

S4: o>2(v+k)/3 (10b)

S5: c5<——(2v+k7r)/3 (10c)

S6: 6>(2V+k7r)/3
(10d)

The relationships between (bio and parameter o with k = 0.1 and v = 0.2 are shown in Figure 2.

Stability Analysis

The stability of each equilibrium state can be analysed by means of the Liapunov direct method with the

Hamiltonian H as the Liapunov function. Since v < l, the function H is positive definite with respect to 4),. in

the neighborhood of 4),. = 0. The condition of positive definitness of H with respect to (’pi at d)
: (bin can

be determined by use ofthe Hessian Matrix K ofH for each state.

i
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where

  

62H
at); = 3ccosZ¢i+VCOS(¢1—¢2)+k

;

(12)
62H c05(4) 4)) k

= --V — _

WW 1 2
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Figure 2. Equilibrium States and their Stability

The Hessian K is the same as the stiffness matrix of equation (4) after linearization, hence the equilibrium state

is stable if and only if the principal minor determinants of K are positive, a stipulation from which the

sufiicient and necessary conditions of stability of each state are obtained (Figure 2).

Global Dynamical Behavior

The global dynamical behavior of a two-body system with flexible connection can be described qualitatively by

means of a 3-dimensional space (4)10, (1)20, c5) , as shown in Figure 3. The following conclusions are arrived at:

1. When the stiffness of connection increases indefinitely, k —> oo, the system becomes single rigid body.

There exist only two equilibrium states S1 and S2, the stability ofwhich undergoes a change at

c = 0 ‚ and the well-known stability criterion for a rigid body is obtained.

B > A stable(S1), unstable (5)

(13)

B < A stable (3), unstable(S1)
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2. When the stiffness of connection is small enough and satisfies k + v < 3/2, two nontrivial states S3 and S4

can be bifurcated from S1 and S2 at I c I = 2(k +v) / 3. The stability ofSa and S4 undergoes a change at

¢10 = 7t/4

«>10 > E stable (s3), unstable (S4)

(14)

¢10 < 3— stable (S4), unstable ($3)

3. Another two nontrivial states S5 and S6 are bifurcated from S3 and S4, and undergo a change of stability at

(1)10 = 7r / 4

stable ($5), unstable (56)v

I

¢10

(15)

4’10 < g stable (S6), unstable (S5)

4. When the stifiness of connection decreases to zero, k = 0, all above mentioned bifurcation phenomena

vanish. The system is decomposed into two free rigid bodies, each ofwhich follows the same stability cri-

terion as (13) separately.
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Figure 3. Global Dynamical Behavior
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