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Flow and Heat Transfer on a Continuous Porous Surface Moving
in Parallel with or Reversely to a Free Stream

I. Pop, T. Watanabe

The forced flow and heat transfer problem over an isothermal porous flat plate in which the plate and the
ambient fluid are both in motion is investigated. A very efficient numerical method has been used to solve non-
similar boundary layer equations. The effects of the relative velocity parameter, Prandtl number and the
suction or injection parameter on the flow field, temperature field, skin friction coefficient and local Nusselt
number are shown and discussed for a plate moving in parallel with or reversely to the firee stream.

1 Introduction

The problem concerning the flow field created by a moving wall in a quiescent fluid has copious applications in
many engineering processes. For example, acrodynamic extrusion of plastic sheets, the boundary layer along
material-handling conveyers, the cooling of an infinite metallic plate in a bath, or the glass blowing process
possess the characteristics of a moving continuous surface. In all these cases, a study of the flow field and the
heat transfer can be of significant importance since the quality of the final product depends to a large extent on
the skin friction coefficient and the surface heat transfer rate. In view of these applications Sakiadis (1961)
initiated the study of boundary layer flow over a continuous solid surface moving at a constant speed through an
otherwise quiescent fluid environment. Subsequently, several investigators (Tsou et al., 1967; Vleggaar, 1977;
Banks, 1983; Jeng et al., 1986; Vajravelu, 1986; Char et al., 1990; Biihler et al., 1990; Takhar et al., 1991; Pop
etal.,, 1992 a,b; Andersson, 1992; Lin et al., 1993) have considered various aspects of this problem, such as the
effect of mass transfer, wall temperature, variable fluid properties, and magnetic field.

In many manufacturing processes, the flow and thermal ficlds are strongly affected by the external flow, the
movement of the solid surface, and mass transfer. Thus, the present analysis aims to study flow and heat
transfer over an isothermal porous flat plate, which moves in parallel with or reversely to a free stream. We
analyse the problem by introducing an appropriate relative velocity parameter ¢ and other transformation
variables. Numerical results showing the velocity and temperature fields, skin friction coefficient, and the local
Nusselt number as a function of the Prandtl number, the relative velocity, and the suction or injection
parameter are presented.

2 Basic Equations

Consider the boundary layer flow over a horizontal porous flat plate, which moves continuously from a slot at a
constant velocity U, in a viscous fluid, which is at rest. The plate moves either in parallel (Us > 0) or

reversely (US < 0) to a free stream of uniform velocity U, (> 0). The plate is maintained at a constant
temperature 7, and the ambient fluid has the uniform temperature Tw(< Tw). Figure 1 shows a diagram of this
system, where the axes x, y are fixed in space.

The governing boundary layer equations are
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where u and v are the velocity components along the x and y axes, T is the temperature, Pr is the Prandtl
number and v is the kinematic viscosity. The appropriate boundary conditions are

y=0: u="U, v o=y, T=T,
y.__)w: u=U°° T=Too (4)

where v, is the velocity of suction or injection, depending on whether v, < 0 or v, > 0. We look for a
solution of these equations of the form
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Here  is the stream function defined by
u = % v = _%\xy— ©)
so that, using equation (5), the velocity components become
o
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Substituting equation (7) into equations (2) and (3), the dimensionless stream function / and dimensionless
temperature O satisfy the following transformed momentum and energy equations
o o
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The boundary conditions (4) transform into
n=20: %:c f+2x%=2s 0=1
o
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where ¢ and s are the parameters of relative motion and of suction (s > O) or injection (s < 0), which are
defined by

172
X
= == s = Il = -—vo[z = v) (11

)

98



We shall further transform equations (8) and (9) by introducing the following variable:

*

x = kx'? (12)

By using the variable (12), the transformed equations (8) and (9) can be written as
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Equations (13) and (14) are solved employing the difference-differential method described by Katagiri (1969).
The partial derivatives with respect to x" are approximated by finite differences using a backward difference
four point formula of Gregory-Newton w1th a uniform step size 4. The solution of the resulting ordinary
differential equations at the ith station of x = ih can be expressed in the form of integral equations as
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where plus or minus signs in equation (17) denote suction or injection respectively, and
t i
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The physical quantities of interest include the skin friction t,, and the heat flux q,, at the plate, which are

given by
Ou or
T, = W — q, = —k(—) 25)
(@Vlo ay »y=0

where u and X are the dynamic viscosity and thermal conductivity respectively. With the definition of the
local skin friction coefficient C '+ and the local Nusselt number Nu as

C = ;# Nu = ——dw__ 26)

we obtain
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where Re, = xU, /v is the local Reynolds number. Using equations (17) and (18), we have

ty
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3 Results and Discussion

The method chosen for the numerical solution of equations (16) to (18) is essentially that used in our previous
papers (Pop et al., 1992 b,c; Watanabe et al., 1993). The numerical integration starts at x = 0, where
equations (13) and (14) reduce to ordinary differential equations. The results were obtained for the suction or
injection  parameter s ranging from -05 to 05, for relative velocity  parameters
c = =03, -0.2, 0.0, 05, 1, L5, 2 and for the Prandl numbers Pr = 0.3, 0.5, 0.73, 1, 2, 3, 6.7, 10, 15.
Tables 1 and 2 list results for the skin friction coefficient and the local Nusselt number, respectively. To verify
the proper treatment of the present problem, the results have been compared with those of the static non-porous
plate case by setting 6 = 0.0 and s = 0.0, which is the well-known Blasius problem (see Schlichting,
1960). For this case, one finds from Schlichting (1960) that Cr - Rexl/ ? = 0.332. Our result is

Cy = Re,”? = 0.33206 for c = 0.0 and s = 0.0, see Table 1. Thus, these values are in very good
agreement.
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Figure 1. Physical model and coordinate system
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Figure 3. Temperature profiles for s = 0.0,
Pr = 0.7 and different values of ©
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Figure 5. Temperature profiles for Pr = (.73,

¢ = —0.1 and different values of s
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Figure 2. Velocity profiles for s = 0.0
and different values of ©
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Figure 4. Velocity profiles for a = —0.1
and different values of s
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Figure 6. Velocity profiles for ¢ = 0.0
and different values of s
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Figure 7. Temperature profiles for Pr = 0.7 , Figure 8. Velocity profiles for 6 = 0.5
6 = 0.0 and different values of s and different values of s
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Figure 9. Temperature profiles for Pr = 0.73, Figure 10. Velocity profiles for 6 = 2.0
6 = 0.5 and different values of s and different values of s
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Figure 11. Temperature profiles for Pr = 0.7 ,

Figure 12. Temperature profiles for = 0.5,

¢ = 2.0 and different values of s s = 0.0 and different values of Pr
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Figures 2 to 12 show the variation of the dimensionless velocity profile f’ and temperature 6 for different
values of the parameters Pr, o and s. It is seen that u /U, increases gradually to 1 for ¢ < 1 (Figures 2, 4,

6, 8) and decreases gradually to 1 for ¢ > 1 (Figures 2, 10). However, 6 decreases monotonically with the
increase of c and Pr (Figures 3, 12). Further, we notice, as expected, that the effect of the suction or injection
parameter s is to increase the velocity profiles for o < 1 and decrease these profiles for ¢ > 1. But, the
temperature profiles decrease with s for all values of & .

Finally, it is worth mentioning that the results of the present paper are basically in good agreement with our
previous results (Pop et al., 1992 b). However, the present analysis is more general than any previous
investigation.

Values of
s 0.0 0.5 1.0 1.5 2.0
-0.5 0.02785 0.08889 0.0 -0.18030 -0.43168
0.4 0.5761 0.11092 0.0 -0.20299 -0.48146
0.3 0.10888 0.13722 0.0 -0.23056 -0.53521
-0.2 0.17485 0.16471 0.0 -0.25937 -0.59305
-0.1 0.24951 0.19698 0.0 -0.29045 0.65490
0.0 0.33206 0.23246 0.0 -0.32370 -0.72058
0.1 0.42241 0.27139 0.0 -0.35937 -0.79062
0.2 0.51972 0.31381 0.0 -0.39780 -0.86566
04 0.73218 0.40865 0.0 -0.48259 -1.03000
0.5 0.84582 0.46057 0.0 -0.52883 -1.11927

Table 1. Values of skin friction coefficient C *Re 2 for different values of ¢ and s

Values of ©
Pr 0.3 0.0 0.5 1.0 1.5 2.0
0.3 -0.15480 -0.21479 -0.26923 -0.30902 -0.34209 -0.37107
0.5 -0.17326 -0.25929 -0.33953 -0.39849 -0.44862 -0.49231
0.73 -0.18552 -0.29709 -0.40306 -0.48204 -0.54823 -0.60648
1.0 -0.19399 -0.33206 -0.46491 -0.56419 -0.64740 -0.72058
2.0 -0.20309 -0.42231 -0.63758 -0.79788 -0.93154 -1.04857
3.0 -0.19894 -0.48505 -0.76812 -0.97721 -1.15052 -1.30168
6.7 -0.15882 -0.63647 -1.11588 -1.46037 -1.74179 -1.98516
10.0 -0.12099 -0.72814 -1.34726 -1.78412 -2.13828 -2.44337
15.0 -0.07558 -0.83411 -1.63292 -2.18510 -2.62943 -3.01084
Table 2. Values of local Nusselt number Nu - Re;/2 fors = 0.0 and different values of Pr and ¢
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