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New Asymptotic Method for the Natural, Free and Forced

Oscillations of Rectangular Plates with Mixed Boundary

Conditions

I. V. Andrianov, V. Z. Gristchak, A. O. Ivankov

We are concerned in this paper with the oscillation problem for rectangular plates with mixed boundary

conditions by means ofthe new asymptotic method. The basic idea ofthe method presented may be described

asfollows. A parameter 8 is introduced into the boundary conditions in such a way that e = 0 corresponds to

the simple boundary problem and case s = 1 corresponds to the problem under consideration. Then the s —

expansion ofthe solution is obtained. As a rule, just atpoint a = 1 the expansion ofthe solution is divergent.

Padé approximants may be used to remove this divergence.

1 Introduction

Natural, free and forced vibrations of thin, homogeneous plates have been one of the most fundamental subjects

in the study of the dynamics of structural members. Notable literature surveys of this subject were made by

Young (1962), Leissa (1969, 1973), Timoshenko et al. (1974) and Gorman (1982). Many approaches, such as

variational (Timoshenko et al., 1974), asymptotic (Kobayashi and Sonoda, 1986, 1991), numerical (Hughes et

a1.‚ 1986) etc. are successfully used for solving this problem in the case of homogeneous boundary conditions.

Sometimes an asymptotic approach presupposing the use of the WKB (Wentzel-Kramers-Brillouin) method

may be very useful for the study of the vibration of plates and shells (Gristchak, 1990).

But above mentioned procedures, as a rule, work badly in the case of mixed boundary conditions. On the other

hand, dynamic analysis of plates under mixed boundary conditions is of significant practical value: a lot of

problems, arising in machine design, civil engineering etc. are of this type. The problems mentioned are

usually solved using numerical methods, such as finite element procedures. Nevertheless, a numerical approach

does not adequately fit the requirements of optimal structural design or any other kind of optimal structural

design ideology. Then approximate analytical expressions, provided they are accurate enough, will be of great

practical usefulness.

It seems that Bolotin’s method may be advantageous for the above mentioned problematic. Bolotin (1961)

proposed an effective asymptotic method for the investigation of linear continuous elastic system oscillations

with complicated boundary conditions. Bolotin’s method is also called the method of dynamic edge effects. The

main idea of his approach is the separation ofthe continuous elastic system into two parts. In one of them - in

the so-called interior zone — the solution may be expressed by trigonometric functions with unknown constants.

In the other - in the dynamic edge effects zone - Bolotin used exponential functions. Then a matching

procedure (along the edges of the unknown interior lines) allows one to obtain the unknown constants, and the

complete solution of the problem may be written in relatively simple form. This approximate solution is very

good for high frequency oscillations, but even for low frequency oscillations the error is not excessive (see

Elishakoff, 1976; Andrianov and Krizhevsky, 1993, and references quoted therein). Unfortunately, for mixed

boundary conditions Bolotin’s method leads to a system of transcendental equations of higher order, and a

solution of such a system is not an easy task.

Asymptotic procedures linked with Padé approximants (the so-called boundary conditions perturbation

approach) was proposed by Andrianov (1991) and by Andrianov and Ivankov (1992, 1993), and successfully

used for various static and dynamic plate problems. In the present paper we deal with natural and forced

oscillations. The reader must have repeatedly wondered whether the asymptotic methods are of any practical

use at all when computers are available? Is it not simple task to program the problem and solve it using, for

example, a finite element procedure? The answer may be like this. Firstly the asymptotic methods are very

useful in the preliminary stage of solving a problem even in cases where the principal aim is to obtain

numerical results. An asymptotic analysis makes it possible to choose the best numerical method and gain an

understanding of a vast body of numerical material, though not necessarily properly arranged. Secondly the

asymptotic methods are especially effective in those regions of parameter values where machine computations
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are faced with serious difi‘rculties. Moreover, the possibility exists of developing algorithms wherein smooth

portions of solutions are obtained numerically, and the asymptotic approaches are applied to those parameter

value regions where these solutions change drastically, say, within boundary layers (Steele, 1989). Therefore, it

is quite proper to consider asymptotic and numerical methods not as competing, but as mutually

complementary.

2 Natural Oscillation

Let us consider the application of the present approach to the natural oscillation, i.e. oscillation in one of the

eigenmodes, of a rectangular plate ( - 0.5 a < x < 0.5 a; - 0.5 b < y < 0.5 b). The plate is simply supported

along x = i a/2 and subjected to mixed boundary conditions ("clamped - hinged”), symmetrical with respect to

y.

The governing differential equation may be written as follows:

V4W — kW = o (1)

2 4 —1 Eh3
where Ä = m phb D , co -natural frequency, D = ——

12(1—v2)

v2 = az/ax2 + ÖZ/Öyz; W: W/b; N = fi/b; x = f/b; y = in); k = a/b;

W, IV, 52', f—initial values ofvariables.

The boundary conditions may be formalized as

W = 0 and Wu = 0 when x = j: 0.5k (2)

W = 0 and (1—f—I(x))W», i 17(x)Wy = o when y = i 05 (3)

where 17(x) = H(x— pk) +H(—x— pk) , with H(x) as Heaviside function. Introducing now the parameter s

into the boundary condition according to the aforementioned procedure one obtains

W = 0 and WW = —81T1(x)(WWiWy) when y = j: 05 (4)

The case s = 0 brings us the plate, simply supported along the boundary; the case a = 1 corresponds to the

problem under consideration (1) — (3). The intermediate values of e are related to mixed conditions of the

"simple support - elastic clamping“ kind'with elastic support coefficient u = s/(l—s). Eigenvalue 7t and

eigenfunction Ware presented by 8 -based expansions:

8

i = Ens" W = I'Zsi (5)
i=0 i 0

Substituting series (5) into the governing boundary problem (1), (2), (4) and splitting it with respect to powers

of e , one obtains the recurrent sequence ofboundary problems

For so: V“Wo — xOWO = 0

W0=0andW0xx=0 while x=:t0.5k

W0=0andWoW=O while y=i0.5

._ 4 1'

For a]. V — 10W]. = 2n.qu

' l
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Wj=0 and an=0- while x=i0.5k

W]. = 0 and WM = 1 H(x)2(—Wiy) while y = + 0.5

.=0

j = 1, 2, 3,...

Eliminating the nonuniformity of asymptotic expansions (we used for this purpose a routine asymptotic

procedure (Nayfeh, 1973)), we obtain the expression for the eigenvalue in form of a truncated perturbation

expansion.

1 2
_ 3

Ä = 714012 +4n2n2yme + {47121127 mm[1_ cotl 1V n—Bl + 1.1.. __D

TC 0!.

  

2 2 0cm 2

—1 i (pli 6
n2 00 2 (_Uj (XII. ) —2— 2 i2 > m2 + nZ/kz ( )

—2— Zyim oclicot ——+ e

an _ 2 _ i ß . v2 2 2/k2

,=135... (1)_l_z_ 1 <m +n

Lara} new 2
iatm

m, n =1,2,3,...

2 2 2 2 2 1/2 2 2 “2Here on = n + (m /k) 131 = (2(m/k) +n) ß, = ((m/k) +211)

1/2 1/2 1/2

011,- = 711((i2 +m2)/k2 +n2) [3h- = Tt((i2 +m2)/k2 +n2> (ph- = 71((1'2 —m2)/k2 —n2)

2(05—u)—(_1)msin2num wheni = m
' nm

7“ 4 1 i . . m . . .
E—mzfla m srrmtu cosnpm— i smnpmcosnw when: :t m

Then the eigenfunction W may be obtained. Its expression is very lengthy and is therefore not presented here.

We shall use our method for the first eigenvalue of governing eigenvalue problem, because it is most strongly

depended on boundary conditions. A truncated series (6) does not give a good result in comparison with exact

solutions, which may be obtained for particular cases, therefore we shall use as method of improvement of the

power series the method of Padé approximants (PA).

Let us introduce the PA definition (Baker and Graves-Morris, 1981). For an expansion given by

F@)= Egg (n
i=0

the fractional-rational function F(a) [m / n] becomes

F(e) [m/n] = [iaisi] (ibieij— (8)

and represents the PA of expansion (7), if a McLaurin expansion of F(e) shows the coincidents of its

coeflicience with corresponding ones of expansion (8) up to terms of (m +n +1)th order. The features of the PA

are: it possesses uniqueness while m and n are chosen; it performs meromorphic continuation offunction; for
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its definition from the source expansion (7) the linear algebraic problem arises (Baker and Graves-Morris,

1981). For the case it = 0.0 the exact eigenvalue is known (Timoshenko et. al., 1974). For k = m = n = 1

we have 7» = (1.70501t)4 , PA yields (for e = l) Ä = (1.70817z)4 , showing less then 0.2 % discrepancy.

The results of numerical calculations for the mixed boundary conditions are displayed in Figures 1 and 2. Data

obtained by our method are shown as continuous line. The dashed line displays the data obtained by the integral

equations method (Keer and Stahl, 1972), the dot-and-dash line represents numerical results by Hamada and

Ota (1963) and the dotted line describes the experimental results by the same authors.

3 Forced Oscillations

Let us consider the application of the present approach to the forced oscillation problem of the rectangular plate

dealt with previously. We will use a new asymptotic technique (in comparison with above written procedure) in

this section. The governing diflerential equation may be written as follows:

V4W — MW = qcos Ekflcosnny m, n = 1, 3, 5, (9)

Here q = qO b3 / D with qO as amplitude offorcing pressure, kf = wiphb4D'1, 0) f — forcing frequency.

The boundary condition may be formalized as in equations (2) and (3). Introducing the parameter 9 into the

boundary condition according to the aforementioned procedure one obtains equation (4). Let us represent the

bending moments, distributed along the sides y = i 0.5

M», = zAm cosEm—x for y = i 05 (10)
m=1‚3‚5 k

Statisfying the boundary conditions (4), one obtains the following infinite linear algebraic system with the

coefficients Am as the unknowns:

°° 1 m (pimtanT

A. = e Z vim/1m 1—MT 0cm jam/2+ ß. + syimQ i=1, 3, 5,... (11)

m = 1,3,5,--- ßim —;”—

Here Q = (q1r(—1)("—l)/2)/ (15403—91)

l

2 0.5— —— - =[ it 270"] wheni 1

'Y. =

"n 4 1 . '

——fi [ismnui cosnum — msmnwn cosmu'] wheni at 1

“(m -')

Let us apply the perturbation technique to the system (11), representingAi as an 8 -expansion.

A1 = 204mg" (12)1:

Substituting equation (12) into system (11) and splitting it according to powers of a, one obtains the

recurrence formulas for A.
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Figure 1. Plate Parameter versus Width
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Figure 2. Plate Parameter versus Boundary Conditions
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Cplm

°° 1 am 91mm?

Amp) =8 Z'YlmAm(p_1) 1——2Ä1/2 0.1,”th + ß

„‚=L3_5‚... ßlm _1_”‘.

2

The truncated perturbation expansion (kepping three initial non-zero terms) may be PA transformed.

‚4,.[1/1] (e) = s (a0 +als)(bo +Ials)‘l (14)

where a0 = Aim, b0 = 1, a1 = 4(2) + blAiO), bl = —A‚.(3)/A‚.(2). An analysis was carried out for the square

plate, with m = n = 1 and 7» = 0225714. The expansion (13) for the A,- was truncated after ten (initial)

terms for e = 1. The deflection and bending moments in the center of the plate were calculated on the basis of

expression (l4) (see Figures 3 and 4). As the problem of free oscillations, with prescribed initial conditions,

may be reduced to the forced one, it is not necessary to study free oscillations at this point.

4 Concluding Remarks

Various problems of statics, dynamics and stability of plates and shells, subjected to mixed boundary

conditions, with prescribed initial conditions, may be solved effectively on the basis ofthe approach presented.
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