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Methods of Computer Algebra in the Theory of Shells

A. L. Smimov, F. P. J. Rimrott

Asymptotic methods involving expansions in powers of certain parameters play a key role in the theory of

plates and shells. Relevant equations can be obtained by a computer algebra approach in a form convenient

for later asymptotic analysis.

Introduction

Engineering and applied mechanics problems are often solved by analytical or numerical methods. Since in the

applications, known exact analytical solutions are rather rare, we search in most cases for approximate

solutions. Among approximate analytical solutions, asymptotic methods based on expansions in powers of

small or large parameters occupy a central place. When constructing an asymptotic solution in dynamic and

buckling shell problems the complexity of the formulae increases drastically with the approximation number.

That is why as a rule, one has to limit oneself to the first or the first two terms. At the same time the precision

of the initial system allows one to obtain some more exact terms of the asymptotic series. The paper includes

the first results of the application of computer algebra methods to derivation and asymptotic analysis of shell

equations. The equations of the theory of plates and shells may be found in great detail, for example, in the

monographs by Donnell (1976), Goldenveizer (1961, 1976), Grigolyuk and Kabanov (1978), Love (1944) and

Novozhilov (1970). Studies of the equations of the theory of shells and plates, based on the asymptotic

integration ofthe three-dimensional equations of elasticity theory, are developed by Goldenveizer (1976, 1979,

1982) and his pupils. A detailed review of this area may be found in Vaillancount and Smirnov (1993).

In this report we discuss the algorithm for transformation of the shell equations (see Grinkevich and Smirnov,

1994), which have been realized with Mathematica software (Wolfram, 1988). The aim of all these

transformations is to represent the initial equations in a form convenient for later asymptotic analysis.

As a benchmark problem we consider linear equations describing the vibrations of a shell of revolution and use

the following notation:

7;, S21, Sn, T2 tangential forces

N1, N2 transverse forces

M1, M2, H21, H12 bending and twisting moments

31, (1), 82 components ofthe tangential strain

K1, 1:, K components ofthe bending strain

71, 72 tangential shear strains

u, v tangential components ofdisplacement

w deflection

The following fimctions are considered given:

R1, R2 curvature radii

B distance to the axis of rotation
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We use also the following constants: h - relative thickness, 9» - frequency parameter, m - wave number, E -

Young’s modulus, v - Poisson’s ratio, R - characteristic radius.

After the substitution ofthe non-dimensional variables (dimensional variables are identified by an asterisk.)

(u,v,w,Ri,B,s) z %(u',v*,w*,Ri*,s*) (Shaun) = (81-10)in

h =fik‘ (K,T) = R(K*,’C*)

1— 2 1— 2

(mi, N) = (—Ezvi—Nzisz; N?) (may) = (RE—2.1(M‘JIS)

we get the well-known system which consists of the following:

Formulae for shear strains versus displacements:

dwu mwu

8 _ 1L1 _ fl fl-l

‘ ds R1 2 B B R2

m=31[1]_fl

ds B B

K — ~—1 K — E _Z’l

1 ds 2- B71 B72

mdw mB' mu Bd(v)

+ w + —

Bds '52— BRl R—stB

Shell equilibrium equations:

dT B' m N

—'+— T—T +—S ——1+7„ = 0
ds B(l 2) B12 R1"

arS21 B' m N

+——S —S +—T ————2 +9» = 0
B( 12 21) B 2 R2 V

ds

T T '

——‘—+—2+d—N‘—+äNl +flN2+Xw = 0

R1 R2 ds B B

dM B' m

EL+E(Ml—M2)+EHU+N1 = 0

dH21 B' m
——+——H +H ———M +N = 0
ds B( 12 21) B 2 2
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Elasticity relations:

 

T;=82+vs1 T2=el+ve2

l—v 2 “c l—v 2 T

$21: co+2h — Snz— 03+2h ~—

2 R2 2 R1

M1=h2(K1+VK2) M2 =h2(K2 +VK1)

Boundary conditions:

u1= u? or T,- = 71°

0

u2=uäJ or Sl+..I.{_:SIO+Ä{._

R2 R2

Ö
wzwo or Q1_._1_6_H :

A2 60‘2 A2 a0"2

Y1=Y(r) 01' M1 = M10

Thus we obtain a system of 20 equations with the following variables:

u, v, w, 7;, S21, 75, N1, N2, M1, M2, H21, 81, on, 82, K1, "c, K2, 7], 72. Several specific cases may be analyzed

- axisymmetric vibrations of a circular cylinder (m = B'= O, Rl = eo)

- nonaxisymmetric vibrations of a circular cylinder (B'= 0, R1 = oo)

- axisymmetn'c vibration of a shell ofrevolution (m = O, B'= 0)

— general case (m i O, B': 0)

2 Transformation to Standard Form

As a result the linear theory of shells leads to the algebro-difi‘erential system

AX = BX
(1)

where dim (A) = = [n x n], dim(X) = [n x l] , with linear boundary conditions

(r1X+r2X)(s,.) = 0 for i = 1 or 2 (2)

where F1 and f2 are square matrices.
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We denote as din(A) the size of a matrix A = [av] ‚ for example, dirn(A) = [n >< n]. All coefficients and

variables are functions in s, s e[s1, s2] by default. We denote by a dot the derivative with respect to s , for

example A = [615]. We write A = 0, if V i, j,s ail-(s) E O and IA(s)| = 0, if this equality is valid for

each s.

The analytical solution of system (1) may be found only in special cases. In the general case one can apply the

methods of numerical or asymptotic integration. For this purpose it is better to represent equation (1) in the

standard form

X = CX
(3)

with the homogeneous boundary conditions

xi(sj) = o i=1‚---‚n j=1 or 2 (4)

We propose the algorithm of such transformation in the following form:

Let rank (A) = k, where k s n. If k = n then |A| i 0 and the substitution C = A‘lB solves the

problem. If k < n we denote m = n — k and transform (1) into the following form:

[3“ 11133 = [Z Elli]

dim(Al) = = [k X k] dim(Az) = dim(I32) = [k X m]

djm(B3) = [m x k] dim(B4) = [m x m]

dim(Xl) = [k x 1] dim(X2) = [m x 1]

We note that the last m equations do not contain derivatives.

where

If |B4[ at 0 one can express X2 in terms of X1 from the matrix equation B3X1 + 84X2 = 0 and obtain

X2 = —13;‘B3X1 = DX1
(5)

If |B4| = 0, we try to make the transposition of the variables x: = x]~ with i, j = 1,---,n, such that

|B4l ab 0. If for any transposition |B4| = 0 then the initial system is non-definite. Finally we substitute

equation (5) into the first k equations and get a system of differential equations of the order k for X1

A‘X] = B"X1

A” = A1 + A2D
(6)

B" = B, + BzD-AZD

and equations for the variables (5).
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Alb

becomes non-zero. Ifthere exist k variables xi] with l = l,---,k, such that

If Av.

  

= 0 , one can repeat the procedure, taking system (6) as the initial one, until after some step

  

cij = O for i #1}, j ii,

then equation (3) splits into two independent systems of the orders k and n - k.

We may formulate this condition in terms of the graph theory. We consider matrix C as a vertex incidence

matrix for some graph and introduce a Boolean matrix Ü as

'J

N lifcijatO

= _

Olfcü = 0

After that we transform matrix Ö to block form, where each block corresponds to some connected component.

To effect this we may simply use the algorithm proposed by Warshall (1962) for the transitive closure of binary

relations. This algorithm is of the order of 0(n3) . If matrix Ü consists of 1 blocks it means that the system

splits into 1 systems. Returning to the shell equations we show that in all cases considered, the initial system is

transformed to an 8-th order system in u, v, w, 7}, 821, N1, M1, 71. Moreover in axisymmetric cases the system

splits into two: one in u, w, 7}, N1, M1, 71 and the other in v and S21. For example, in the case of

axisyrnmetn‘c vibrations ofa circular cylinder (m = 0) the transformation to the standard form gives us

 

XX 2 CX]

where

T
X1 : (u, v: w, T7 N1? Ml’ Yl’ S21)

and

2
Cl3=_v c14=__1 CZS=W %7—‘1 C41’7x.

— Ä 2 _

2h2+1c53 -— +V —1 C54 — V €65 :1 C76 = [1—2
682 = 4h2+1

This system agrees, for example, with that of Goldenveizer et a1. (1979).
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3 Transformation to Zero Boundary Conditions

At the same time we transform the boundary conditions. Since the boundary conditions have the same form for

each edge we consider only one equation (2), say

nX+QX=0

Rewriting it in the form

I‘lle + PBX2 + rlel +r22x2 = 0

we obtain due to equation (5)

EX] + szl = 0

where

n

n I“; + r30

.
5
1

u I“; + r220 + r121)

We assume that the initial system is reduced to

X = CX

where ab O, and

EX + sz = 0

To apply numerical or asymptotic methods to the analysis of such a system, it is often convenient to use

variables for which the boundary conditions are homogeneous, i. e. have the form (4). For this purpose we try to

construct the nonsingular linear substituion in the form Y = FX . By virtue ofthe system

EX + EX = (fic+f2)X = rX

we rewrite the boundary conditions on the left and the right edge correspondingly in the form

3:3} — 0 dim(FL) = [I x n]

5:52 = 0 dim(FR) = [r x n]

We assume that rank (FL) = l and rank (FR) = r. Otherwise we have to exclude linear dependent rows.

FLX

 

FRX

 

L

Let us construct the matrix F = and calculate is rank k.

We do not consider the case k > n where only the trivial solution of the initial system is possible. The other

two cases are:

1. k:n and

2. k<n
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In the first case F

  

7t 0 and the substitution Y = FX solves the problem. In the second case we construct the

matrix F in the following form: The first I lines are the rows of the matrix FL , the next k —1 lines are the

rows of the matrix FR (linearly independent of the rows of the matrix FL) and the last n —k lines are the

rows of the identity matrix (linearly independent of previous rows), As a result (after transposition of the

variables, if necessary) the matrix F has a form

FIL Fig—l Iii-k

F = F1R1 I‘If—ll F531:

0 0 E _kn

The matrix F is nonsingular and we can express old variablesX through new ones

X z F‘lY
(7)

Substituting equation (7) into the initial system

F‘lY + F‘IY = CF‘IY

we obtain

Y = F(CF‘1 —F“)Y = C’Y

For the first case considered the boundary conditions for Y are always homogeneous. In general, for the second

case, n —k conditions are typically not homogeneous, but sometimes, for example, if the omitting row of the

matrix FR coincides with a row ofthe matrix FL the corresponding condition is also homogeneous.

4 Transformation to Higher Order Equations

For asymptotic analysis it is useful to reduce the number of variables and equations in system (3). Definitely,

the orders of the derivatives come up. Let us use k of n variables. We denote as on, with i = 1,---,k, the

maximal orders of derivatives of the variables, and 0U = max (xi. Obviously Ziloci = n. For example, let

us take the first k variables. Evaluating the derivatives in equation (3) with respect to s we get

X = C'X + CX = (C‘+C2)X

Ifwe denote

Cm = C d2} = C + C2

then

= (CW +C{2}-C)X = C{3}X

Repeating the diflerentiation or" times we get

X0) = (C'{"‘}+C{"‘}C)X = CmX 1 6 [1,06]

199



As a result we obtain of systems, each of which consists of n equations. We select oc1 equations for the

derivatives of x1, (x2 equations for the derivatives of x2 ‚ etc. In other words we have a system of n equations

Z = GX

where

. 1 1 1

x1 011 c12"'c1n

-- 2 2 2

x1 011 C12"'C1n

_ (0‘1) ._ 0‘1 0‘1 oL1
Z - x1 G - C11 c12"'c1n

1 1 1

x2 021 G22“‘02n

(at) (on )
k 0-1: “I:

xk ckl Ck2"'ckn

and the coefficients c; are the elements of the matrix C{m} . We may exclude n — k variables, transforming G

into the form

G2 G3

where dim(G1) = [k x k], dim(G2) = [(n —k) >< k] and dim(G3) = [(n —k) x (n—k)]. Ifwe denote thc matrix of

the transformation as S, system (8) may be written as S2 = (SG)X . Now the k equations contain only the

variables x1‚---‚xk and thcir derivatives. For example, for a cylindrical shell the initial system of equations may

be transformed to one equations in w and its derivatives,

6 4 2

—h2 (%+x%)+b%+x(x—1)w = 0
S S S

where

b(s,>t) = l+v2 —1

which agrees with the corresponding equation in Goldenveizer et a1. (1979) and gives us some additional terms.

5 Analysis of Asymptotically Small Terms

The linear shell theory equatins contain as naturally small parameters the shell thickness h and sometimes the

wave number parameter m which may be equal to 0 (axisymmetric case) or large. Besides that the initial

equations may also contain some other small parameters. For example, if we consider a rotating sthell the

relative angular velocity Q is a small parameter. The parameter h is considered as the main one and the other

of small parameters are represented in the form If” , where p 2 0. Our aim is to propose an algorithm which

keeps only such terms in the shell equation coeflicients which are the main ones at least for some values of

parameters p and q. Let us start with the case when the equation coefficients depend only on the parameters

p and q and look like Ziaipaiqß', where a, ~ 1 and (xi, B, are real (not necessarily integer or positive).
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The proposed algorithm is the following:

1. We plot the set of points {och 13,-} on the plane (on, i) and transfer the coordinate origin in such a way that

all the points have nonnegative coordinates. This means that we eliminate the lower power in p and q. For

example, the polynomial

1qu2 + pq3 + p2 + p361“ + p4q + 104‘]2 + p5 + .v“q'2

is transformed to

pq‘2(q4 +q5 +qu +qu +p3q3 +p3q4 +p"q2 +195)

2. Then we construct the convex hull of the point set {onh Bi}

3. Finally we choose such points on the convex hull ofthe point set which are seen from the coordinate origin.

For the polynomial considered it would be

pq2 + p2 + 10361"1 + zvöq’2

It may be proved that we have kept all terms which are the main ones for any values of the parameters p and q.

The case of three and more parameters is much more difiicult. To our knowledge there is an algorithm of the

order of n - log n, which determines the convex hull for the point set in 3-D. In the plane case we use a simple

algorithm of the order of n2, As an example we write one of the coefficients of the shell equations (shell of

revolution, general case), which depends on two small parameters h and m“. Before simplification it is

—B'(832h4v2 — 832h4v2 — 8B2h4 + 6B2h2R2 + Bzv2R4 + 2h4m2(v — 1) vR2

—4h4m2(v — 1)R2 — 4h4m2v2R2 + 4h4m2R2 + h2m2(v— 1)vR4 — h2m2(v — 1)R4

—BZR4 — h2m2(v — 1)R4 — 2h2m2v2R4 + 2h2m2R4) /(833h4R +6133th3 +B3R5)

and after the simplification

—(B'(B2(v2 —1)+h2m2(l—- v)(4 + v))) /(B3R)

6 Conclusions

The ultimate goal of the proposed approach is to develop an algorithm for the asymptotic integration of the

shell equations considered in this paper. The problem is complicated by the numerous small and large

parameters (h, m, Q). Using computer algebra algorithmus we aim to obtain the highest terms for the

asymptotic expansions ofthe solutions.

201



Literature

1. Donnell, L. H.: Beams, Plates and Shells, McGraw-Hill, New York, (1976), 774 p.

2. Goldenveizer, A. L.: Theory ofElastic Thin Shells,Translated from Russian by G.Herrmann,

Pergamon Press, New York, (1961), 658 p.

3. Goldenveizer, A. L.: Theory ofThin Elastic Shells (in Russian), Nauka, Moscow, (1976), 512 p.

4. Goldenveizer, A. L.: Asymptotic Method in Theory of Shells, Adv. in Mech. (in Russian), 5, (1982),

no 1/2, 137 - 182.

5. Goldenveizer, A.L.; Lidsky, V. B.; Tovstik, P. E.: Free Vibrations ofThin Elastic Shells,

Nauka, Moscow, (1979), 384 p.

6. Grigolyuk, E. 1.; Kabanov, V. V.; Stability of Shells, (in Russian). Nauka, Moscow, (1978), 359 p.

7. Grinkevich, A. V.; Smirnov, AL: The Algorithm of the Transformations of a System ofLinear

Diferential Equations to the Standard Form, Mechanics Research Communications (1994). (to appear)

8. Love, A. E. H.: A Treatise on the Mathematical Theory of Elasticity, 4th ed., 643 p., Dover Pub-

lications, New York, (1944).

9. Novozhilov, V. V.; Theory ofThin Shells, Translated from the Russian by P. G. Lowe,

Wolters-Noordhofi‘, Groningen, (1970), 422 p.

10. Vaillancourt, R.; Smirnov, A.L. (eds): Asymptotic Methods in Mechanics, CRM Proceedings and

Lecture Notes, AMS, Providence, RI, (1993).

11. Warshall, S.: A Theorem on Boolean Matrices, Journal of ACM 9, (1962), 11-12.

12. Wolfram, S.: Mathematica - A System for Doing Mathematics by Computer, Addison-Wesley, (1988).

 

Addresses: Professor A. Smirnov, Department of Theoretical and Applied Mechanics, St. Petersburg State

University, St. Petersburg, Russia 198 904; Professor F.P.J. Rimrott, Department of Mechanical Engineering,

University ofToronto, Toronto, Ontario, Canada MSS 1A4.

202


