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Buckling of Imperfect Sandwich Cones under Axial Compression

- Equivalent-Cylinder Approach. Part I

K. Y. Yeh, B. H. Sun, F. P. J. Rimrott

In order to simplifv the problem, the equivalent-cylinder assumption has been adopted. The simplified

governing equations ofsandwich cones we obtain is differentfiom the ones used in previouspapers. They can

be reduced into the equations of a corresponding sandwich cylinder if the buckle length parameter

approaches zero. An analytical study has been carried out to determine the eflect of axisymmetric shape

imperfections on the compressive buckling strength ofsandwich cones having isotropic facings and isotropic

shear deformable cores. Buckling solutions are presented as a function ofimperfection amplitude, wavelength,

core shear flexibility coefficients and the small curvature ratio. The well known Koiter formula and circle

have been obtained for thefirst timefor sandwich cones.

1 Introduction

Circular conical shell structures are widely used in aerospace vehicles, such as in rockets and satellite
components. Although these structures are commonly fabricated from metals, advanced composites are also

gaining widespread usage because of their higher strength/weight and stiffness/weight ratios. Prior to the

advent of composites, however, the development of sandwich constructions emerged because of the significant
stiffness/weight improvements offered (Plantema, 1966). The buckling problem of such structures has to be
considered in engineering. Most published results deal with sandwich cylinders and there is a little about

sandwich cones (Sullins etc, 1969). The ,,equivalent-cylinder“ concept of Seide (1956) has been adopted

generally as a practical expediency. The core is regarded as shear-deformable and the cones are treated as

geometrically perfect in shape.

Up to this time, no Koiter-type imperfection analysis has been carried out on circular conical sandwich shells

under axial compression, to assess the extent to which these structures are sensitive to geometric shape

imperfections. In the present paper , the equivalent-cylinder assumption has again been adopted. The simplified
governing equations for sandwich cones we get are different from the ones of former papers. They can be

reduced into the equations of a corresponding sandwich cylinder if the small wave length parameter ö

approaches zero. An analytical study has been carried out to determine the effect of axisyrnmetric shape

imperfections on the compressive buckling strength of sandwich cones having isotropic facings and isotropic

shear deformable cores. Buckling solutions are presented as a function of imperfection amplitude, wavelength,

the core shear flexibility coefficients and a small material geometry parameter xv. The well known Koiter

formula and circle have been obtained for the first time for sandwich cones in this paper.

The aim of present paper is to get some experience and usefiil information on the buckling of sandwich cones .

It is only a first step on the road of studying the buckling of sandwich shells.

2 Formulation of Problem

Shell configgation

The axisymmetric imperfect sandwich cone geometry and coordinate system are shown in Figure 1. The cone

geometry is characterized by its slant length, radius ofthe median surface RC at the middle of slant, inner face

thickness t1, outer face thickness t2 , core thickness c and imperfection amplitude p. (see Figure 2). Let the

reference surfaces be the median surface of the geometrically perfect cone, as defined by

ht

1 = ————2 (1)t1+t2
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This definition has an advantage which can remove the coupling term in the constitutive relations. Thus the

separation between the mid-surface ofthe inner and outer facings is

h=c+fi%’2— <2)

The coordinate systems x, y, z or s, 9 , z are measured with respect to the reference surface in the axial,

circumferential and radial directions, respectively. The components of displacement u, v and w ofa point on the

perfect shell are displacements in the x, y, z or s, e and 2 directions.

Restrictions and assumptions

The following restrictions apply to the analytical model (Tennyson and Chan, 1990):

(1) Both facings and the core are made of the same isotropic material

(2) The core and facings have uniform elastic properties

(3) Facings and core are of constant thickness throughout the shell wall, the two facings have different

thicknesses

(4) There is no initial wrinkling in the facings, i.e. the separation between the facings is constant

(5) There is no failure ofbonding between facings and core

(6) Facings are sufiiciently thin (compared to the core) to be treated as membranes, i.e. the facings have

in-plane stiffness but no flexural stiffness about their mid-surfaces

(7) The shell thickness is small compared with the radius of curvature R in the middle of slant

(8) The cone is long enough to ignore end boundary conditions

(9) There is no intercell buckling

The following assumptions are made in the analysis:

(1) Displacements u, v and w are small compared with the shell thickness

(2) Strains ex, ey and exy are small compared to unity (small strain theory)

(3) The core carries no in-plane stress

(4) Normal stifiness ofthe core is infinite so that instability associated with wrinkling offacings and other

normal strain effects is not included. In practice, sandwich cones with honeycomb core will not fail by

wrinkling of facings when there is no failure ofbonding between facings and core (Plantema, 1966; Allen,

1967)

(5) The transverse normal stress is negligible, i.e. o, = 0

The above assumptions mean that the shell equations are of the Donnell-Mushtari-Vlassov (DMV) type. The

DMV type equations are used here rather than more exact stability equations for the following reasons:

(a) A stress function F can be introduced, which leads to a reduction in the number of dependent variables in

the analysis. In the DMV type analysis the four dependent variables are F, w, [3,, and By ; in a more exact

analysis the five dependent variables are u, v, w, [3,, and [3, .

(b) The DMV type analysis yields sufficiently accurate results for almost all engineering applications. It is not

accurate when applied to shells which buckle in an almost inextensional mode, such as shells with weak

support at the edges. However, in most engineering applications, inextensional buckling modes may be

eliminated by proper design of the structure which supports the shell.
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Figure 1. Circular cone with axisymmetric shape imperfections

      

Figure 2. Geometn'cal definition of sandwich cone wall
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3 The Sandwich—Oriented Theory of Cone

Strain-displacement relations

Using the nonlinear DMV strain-displacement relations, the relations between the displacement components u,

v and w ofthe deformed median surface and the displacement components 14,, v2 and W2 of a point in the shell

are

uz(s,9,z) = u(s,9) +zß5(s,6) vz(s,9,z) = v (s‚6) +zße(s‚6) wz (s,9,z) = w(s,9) (3)

where ß; and ße can be interpreted physically as the components of change of slope of the normal to the

undeformed median surface. (3) may be called a 5—variable mathematical model of sandwich cones.

When the thickness of the facings is sufficiently small compared with the core, and when the transverse core

shear strain is small, the strains for the mid-surfaces of the facings can be approximated by the strains at the

facings and the core interface. By this assumption, the facings are in effect considered to be membranes.

In this way, we can get the strain-displacement relations as follows:

Es=8J+ZK5 Ee=89+ZK9 E59=Sse+ZKse ESZ=SSZ+BS Eez=802+fio

where the median surface strains and changing ratios ofcurvature are given by

     

e=u+l(w)2 s — v +1+1tan +————1—(w)2
S ’3 2 ’5 9 scoscp ’0 s s (P 2s2 cosch ‚e

1

859 = V’s — X + “,6 + Wu w:e

s scosq) scoscp

1 ß Be 1
K = ‚ K = , + ——‘ x = , — — + —— , 6s ßss 9 scoscp ßee S 59 ßes S scoscp ßse ( )

l

852 = Wu- 56; : Wye

scoscp

(z) =99 <-) Ä) <8)’S as "9 as

We assume that the median surface displacements u and v do not vary in z direction. The intial stress-free

lateral deviation term wo of the median surface is assumed to be small, but finite values are also permissible

provided that

|w0| s RC |w0„| 51 (9)

Shallow shell theory requires that the radius of curvature of the shape imperfection cannot be excessively small

RcleWI S 0 (1)
(10)

The modified strain-displacement relations for the median surface including the initial imperfections are
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86 = 1 v‚e + E + + _1—2(W,e)2 + "‘—2W,e wo,e

scos<p s s 2s2 cos (p 52 cos (p

8 " V v + 1 u + l W W + W W + 1 W W

59 ’5 s scoscp ’6 scoscp ’5 ’9 scoscp ’5 0’9 scoscp O" ’e

1

es: = w,S eel z we (12)
scoscp

1 ß Be 1
K: , K: ,+—‘ K=,-—+ ß, (13)s [is s e SCOSq) ße e S 58 ße .r S scoscp s 6

Constitutive relations

(a) Core relations Assuming the core only resistant to transverse shear and not to carry any in—plane

stresses, the stress-strain relations for the core are

Tsz = G852 Te; = Gee; GS = 65 = 1:39 (14)

The transverse shear stresses can then be expressed in terms ofthe median surface strains.

  

r“ = G(e„ +133) Tel = G(ge, +139) (15)

(b) Facing relations The in-plane stress—strain relations for the isotropic facings in a plane stress state are

E E Ei f' f‘o z s +V-8 G = ’ e +v-e “c =——'—8 16s 1_vi2(s 16) e 1_Vi2(e IS) 59 2(l+vi) se ( )

Shell forces and moments

An equivalent system of force and moment resultants is considered to be acting at the median surface of an

element of the shell as defined by the following relations:

(a) Stress resultants

h2+t2/2
T T

N N N = J d 17[ s 8 39] Ia—tl/z [Gs 06 T59] Z ( )

(b) Transverse shearing stress resultants

T h2+tz/2 T

[Q5 = J‘hrtl/z [Tsz T62] dz

(c) Moment resultants

T h2+t2/2 T

[MS Me M56] = I’M/2 [0, ca wie] zdz (19)

where the integration is taken across the whole shell wall and h1 and h2 are the distances of the middle

surfaces ofthe inner and outer facings, respectively, from the median surface of the total shell wall.

After performing the above integration, we have
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[N] = [A] [8] + [B] [K] [M] = [BUS] + [D] [K]

 

(20)

Q: = Gc (es: +ßs) z Gh (as: + ßs) Qe = Ga (892 +68) z Gh (eez +ße) z Gh(ee‚ +136)

where

[N]=[NS Ne NS9]T [M]=[MS Me M59]T

(21)

e=[ss 89 sse]T [K]=[Ks Ke K59]T

2 2

[A]=t1[Q1]+’2[Q2] [B] =h2t2[Q2]—h1t1[Q1] [D] z [1712 Q1]"'[’722 Q2] (22)

v, O

[Q] = i 0 (23)

I o 0 l—V"

2

In the process of above integration, the assumption of linear variation of transverse shear stresses across the

facings has been used, since the transverse shear stresses in the facings are equal to the transverse shear stresses

in the core at the facings, and vanish on the free surface.

The above represention of forces and moment resultants can be rewritten in detail.

 

MS = ILECZ [(17th —hltl)(ex +v ee)+l"(K‚ + VK9)]

Ef

     

E

Me = 1_fV2 [(11222 —hlt1)(89 + v55) + F(Ke + VKS)] M59 = 1_v2 [W2 — hltl)gxe + wie] (24)

E E
N5 = 1—1:; [(t, + t2)(ss + vee) + (hztz — h1t1)(1<s + vke)] Ne = 11/2 [(t1+t2)(se + ves)+(h212 _ hltl)(,<e + „(5)1

E
N59 = 1—12 [859 +(hzl‘2 —h1t1)Kse] Qy = Gh(ssz +ßx) Qe = Gh(gez +ße) (25)

r—th +i+ 2t +123— v —v -v (26)_ l l h2 2 l _ 2 _

With the definition (1) of the median surface, the coupling between in-plane strains and rotation of the normal

displacements, and stress and moment resultants simplify to

A
2(gewgs) Nse = zum) 959 (27)

N:
S  

  

2 (as + vee) N9 =

1-v l—v
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MS = D(KS + vke) Me = D(1ce + ms) M59 = D 2 K50 (28)

where the in-plane stifi'nessA and bending stiffness D are given by:

 

E hm [3+9] E 112::
f 12 1 2 f 12

A=E t+t =Et D: + z (29)

A1 2) f l—v2[t1+t2 12 (1_v2)z

Eguilibrium eguations

From Novozhilov’s theory (1953), we have the following equations for conical shells:

(a) Equilibrium of horizontal forces

     

1

(SNS)’S + _N5679 — N9 = 0 (SA/56),; + N676 + N56 = O

cos<p COS‘P

(b) Equilibrium ofvertical forces

1 (st):s+__1-—Q676 — Ns(xs+x3) - 2Nse(Xse+Xge) - Ne(xe+x3) — 51mm) - 61,. = 0 (31)
s cosq> s

where

1 1 1 ( 1 j
= —w, =-— —w, +——w = W, --W‚ 32X; :5 X9 [s s szcoszq) ’96) X59 scosq) :9 S e ( )

1 1 1 1

X2 = ‘Wou, X8 = ‘[‘Woas+‘§_2wo>ee] X39 = (woasfi__w0’9) (33)
s s cos (p scosq) s

(c) Equilibrium ofmoments

1 1 1 1

SQS = (SM3)95 + M5976 _ Me Qe = M9,9 + ‘(SM59),S + “-Mse

cos<p scoscp s s

An Airy stress function F is defined such that it will satisfy the equilibrium equations (30) in horizontal

direction identically, i.e.

 

1 l 1 1

N = —F‚ + —————-F, N = F, N = — (F, — 47,) 35
s s .s szcoszq) 96 G ss 56 scoscp 59 S e ( )

By equations (13), (28) and (34), the shear resultants can be expressed in terms of shear angles as

  

1 S l—v 1 1+ 1 3— 1
Q5 = D [ßxsss+"ßsas—'I:T+ "h—B:999]+D[ V ßease" V ße’e]

S (P2 szcos2 2 scos<p 2 szcoscp

(36)

  

2 scos<p 2 s2 cos s s2 cos2 (p

1+v 1 3—-v 1 1—v 1 1

Q9=D|: ßsue+ (pßs79:l+D[ 2 (ßeass+;ß9>s—E2g')+_ü—ß6986]

Since the shear forces are carried by the core, replacing the shear forces in equation (36) by constitutive

relations (20) of the core, we have
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l ß l—v 1 l+v l 3—v 1

G + =D , +— ,-——S+——-—— +D ‚ — ‚ 37C (Wm ßs) [[35 as S ß; s sz 2 Szcosz q) Bree] |: 2 scosq) Be 39 2 s2 cosq) ße 6] ( )

    

1 1+ l 3— 1 1— l l

Gc( w>9+ße) = D V ßsufi+ v ßne +1) V (ße’SS+—ß035— Be) + [58396

scoscp 2 s 522 scoscp 2 52 coscp s2 cos2 (p

Substituting equation (36) into equation (31), we have

D[Lp‚(ß5)+l‚ßo(ße)] — %F‚„ + L(F‚w+w0) + q" = o (38)

where

V2=——+l—+————— (39)

 

LB‘[;]=1(V2_£2+_1_)§[:1 [13°F]: 1 (V2_£_a_+£3+i]_:[él (40)

as scos<p

l 1 l l 1 1 1

LA,B = —A,s+—————A, B,„+A,„ —B,S+————B, —2—————(—A, —A,) (—13,; —B,l 41)
( ) (S szcosz(p 96] [S $2005ch 99] 2 2 59 e s e e} (

Compatibilig eguation

Since we do not use displacemental shell equations, compatibility has to be considered. After eliminating u and

v from the median surface straimdisplacement relations, an equation for the lateral deflection w in terms of the

median surface strains as, a6 and 859 is obtained.

1 l l

s ’99

 

2 1

8.56:9 = Xse ’ XsXe ‘

l

;(s 89,5)” + :(Se—SSL ‘
.— szcosq> scoscp

 

X;

(42)

——e

s2 cos2 (p

The final form ofthe compatibility equation in terms of the Airy stress function F and lateral deflection w is

im: = lL(w,w+2wo) + MW,” (43)
A 2 s

Equations (37) and (38) are equilibrium equations and equation (43) is a compatibility equation of the shell.

They represent the governing equations of the problem.

(a) Non-Shear deformable core (G —-> so) In this case, we have

1

ß; =—w„ Be rm” w‚e Lß‚(ßs)+Lp„( 9)=—V“w <44)

 

and the equilibrium equations (37) and (38) become

 

DV“ + tam? F,“ = q„ + L(F‚w+wo) (45)
S

Equation (45) and the compatibility equation (43) are exactly the same as those for homogeneous isotropic

shells except for the stilfness termsA and D. Thus we arrive at the following conclusion: all previous analytical
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results for isotropic cones can be immediately applied to sandwich cores with non-shear deformable cores when

the appropriate in-plane stiffnessA and bending stiffness D terms are used.

(b) Isotropic cylinder-n0 core (c=0) By setting c=0, in (29), we have in-plave stiffness A and bending

stiffness D as follows:

3

A = Et D = —E—‘——— (46)
12(1— v2)

In this case, the previous equilibrium and compatibility equations reduce to those of an isotropic cone.

(c) Sandwich circularplate (s —> r, scose —> r, (p) In this case, equations (37), (3 8) and (43) become

  

1 ß, l—v 1 1+vl 3—v 1

Gh (w?r+ßr)=D[ßr’n+;ßr’r—7+T;fi'ßr%]+p[ 2 ;ße„e‘ 2 759,9]

  

(47)
1 l+v 1 3——v 1 1——v 1 ß 1

Gh (7w’6+ß6) = D[T7Brnfl+ 2 r—zßne]+Dl: 2 (fl99n+7B9>r_r—gj +r—2ße‚ee:l

1 l

D [113, (MMe (ße)]+L(F‚w+wo)+qn = 0 ZV‘T = 5L(w‚w +W0) (48)

in which r is the radius ofa circular plate, and

62 1 a 1 82
V2 = —+———+—— 49

arz r ar r2 592 ( )

1 1 1 1 1 1 1

L(A‚B) = (;A„+r—2A‚ee)ß‚„ +A‚„(;B„+:2—B‚ee) ~ 2r—2(;A„9—A‚9)(;B„e—B,)

(d) Sandwich cylinder (s —-> x,scos<p —> R,r9 = y)

l—v l+v l+v l—v

Gh (W‚x+ßx) = D [ßx‚m+Tßx,W+-2—ßy,xy] (W,y+ßy) = D [Tßx‚xy+Tßy‚xx+ßy‚yy]

l

DV2(ßx‚x+ßy‚y) — ER,“ + F‚„(w+wo)‚„ + F‚„(w+w0)‚yy — 217,90”mey + q„ = o (50)

1 V4F _ 1 2 1 1
:4: —— Eww(w+ wo)‚xx + —2-w‚x„(w+2w0)‚yy — w,xy(w+2w0)w + Ewm

where

V2 = <92(:)/ax2+62(2)/6y2 (51)

The above equation are exactly the same as those of Tennyson and Chan (1990) except for the +/- of some

notations.

Compared with the governing equations of a sandwich circular plate, cylinder and cone, we can see that the

governing equations of plate and cone are non-linear partial difierential equations with variable coefficients,

the sandwich cylinder excepted.

- To be continued -
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