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Buckling of Imperfect Sandwich Cones under Axial Compression
- Equivalent-Cylinder Approach. Part I

K. Y. Yeh, B. H. Sun, F. P. J. Rimrott

In order to simplify the problem, the equivalent-cylinder assumption has been adopted. The simplified
governing equations of sandwich cones we obtain is different from the ones used in previous papers. They can
be reduced into the equations of a corresponding sandwich cylinder if the buckle length parameter
approaches zero. An analytical study has been carried out to determine the effect of axisymmetric shape
imperfections on the compressive buckling strength of sandwich cones having isotropic facings and isotropic
shear deformable cores. Buckling solutions are presented as a Junction of imperfection amplitude, wavelength,
core shear flexibility coefficients and the small curvature ratio. The well known Koiter Jormula and circle
have been obtained for the first time for sandwich cones.

1 Introduction

Circular conical shell structures are widely used in acrospace vehicles, such as in rockets and satellite
components. Although these structures are commonly fabricated from metals, advanced composites are also
gaining widespread usage because of their higher strength/weight and stiffness/weight ratios. Prior to the
advent of composites, however, the development of sandwich constructions emerged because of the significant
stiffness/weight improvements offered (Plantema, 1966). The buckling problem of such structures has to be
considered in engineering. Most published results deal with sandwich cylinders and there is a little about
sandwich cones (Sullins etc., 1969). The ~equivalent-cylinder” concept of Seide (1956) has been adopted

generally as a practical expediency. The core is regarded as shear-deformable and the cones are treated as
geometrically perfect in shape.

Up to this time, no Koiter-type imperfection analysis has been carried out on circular conical sandwich shells
under axial compression, to assess the extent to which these structures are sensitive to geometric shape
imperfections. In the present paper , the equivalent-cylinder assumption has again been adopted. The simplified
governing equations for sandwich cones we get are different from the ones of former papers. They can be
reduced into the equations of a corresponding sandwich cylinder if the small wave length parameter
approaches zero. An analytical study has been carried out to determine the effect of axisymmetric shape
imperfections on the compressive buckling strength of sandwich cones having isotropic facings and isotropic
shear deformable cores. Buckling solutions are presented as a function of imperfection amplitude, wavelength,
the core shear flexibility coefficients and a small material geometry parameter y_.. The well known Koiter

formula and circle have been obtained for the first time for sandwich cones in this paper.

The aim of present paper is to get some experience and useful information on the buckling of sandwich cones .
It is only a first step on the road of studying the buckling of sandwich shells.

2 Formulation of Problem

Shell configuration

The axisymmetric imperfect sandwich cone geometry and coordinate system are shown in Figure 1. The cone
geometry is characterized by its slant length, radius of the median surface R, at the middle of slant, inner face
thickness #;, outer face thickness ¢,, core thickness ¢ and imperfection amplitude p (see Figure 2). Let the
reference surfaces be the median surface of the geometrically perfect cone, as defined by
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This definition has an advantage which can remove the coupling term in the constitutive relations. Thus the
separation between the mid-surface of the inner and outer facings is

t+t
h=c+ 12

2

The coordinate systems x, y, z or s, 0, z are measured with respect to the reference surface in the axial,
circumferential and radial directions, respectively. The components of displacement », v and w of a point on the
perfect shell are displacements in the x, y, z or 5, © and z directions.

Restrictions and assumptions

The following restrictions apply to the analytical model (Tennyson and Chan, 1990):

(1) Both facings and the core are made of the same isotropic material
(2) The core and facings have uniform elastic properties

(3) Facings and core are of constant thickness throughout the shell wall, the two facings have diffcrent
thicknesses

(4) There is no initial wrinkling in the facings, i.e. the separation between the facings is constant
(5) There is no failure of bonding between facings and core

(6) Facings are sufficiently thin (compared to the core) to be treated as membranes, i.e. the facings have
in-plane stiffness but no flexural stiffness about their mid-surfaces

(7) The shell thickness is small compared with the radius of curvature R in the middle of slant

(8) The cone is long enough to ignore end boundary conditions

(9) There is no intercell buckling

The following assumptions are made in the analysis:

(1) Displacements », v and w are small compared with the shell thickness
(2) Strains ¢, €, and g,, are small compared to unity (small strain theory)

(3) The core carries no in-plane stress
(4) Normal stiffness of the core is infinite so that instability associated with wrinkling of facings and other
normal strain effects is not included. In practice, sandwich cones with honeycomb core will not fail by

wrinkling of facings when there is no failure of bonding between facings and core (Plantema, 1966; Allen,
1967)

(5) The transverse normal stress is negligible, i.e. o, = 0

The above assumptions mean that the shell equations are of the Donnell-Mushtari-Vlassov (DMV) type. The
DMV type equations are used here rather than more exact stability equations for the following reasons:

(@) A stress function F can be introduced, which leads to a reduction in the number of dependent variables in
the analysis. In the DMV type analysis the four dependent variables are F, w, B, and p y > in a more exact

analysis the five dependent variables are », v, w, B, and B -

(b) The DMV type analysis yields sufficiently accurate results for almost all engineering applications. It is not
accurate when applied to shells which buckle in an almost inextensional mode, such as shells with weak
support at the edges. However, in most engineering applications, inextensional buckling modes may be
climinated by proper design of the structure which supports the shell.
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Figure 1. Circular cone with axisymmetric shape imperfections

Figure 2. Geometrical definition of sandwich cone wall
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3 The Sandwich-Oriented Theory of Cone

Strain-displacement relations

Using the nonlinear DMV strain-displacement relations, the relations between the displacement components ,
v and w of the deformed median surface and the displacement components #,, v, and w, of a point in the shell
are

u,(5,0,2) = u(s,6) +2B,(s,0) v,(5,6,2) = v (5,0) +2B4(s,0) w,(5,0,2) = w(s,0) 3)

where B and By can be interpreted physically as the components of change of slope of the normal to the
undeformed median surface. (3) may be called a 5-variable mathematical model of sandwich cones.

When the thickness of the facings is sufficiently small compared with the core, and when the transverse core

shear strain is small, the strains for the mid-surfaces of the facings can be approximated by the strains at the
facings and the core interface. By this assumption, the facings are in effect considered to be membranes.

In this way, we can get the strain-displacement relations as follows:
Es=g,+2K Eg =g +2Kg Eg=t4+2Kg E; =€, +p; Eg, =€, + Py C))

where the median surface strains and changing ratios of curvature are given by

t;=u+l(w)2 gg = Ve + — + ~tan +————1—(w)2
a g ° 7 Soose Ty TSP oz cos '
1 1
€9 = Vos — i + Ug + ————W, Wy (5)
s SCOSP 5COSP
1 B Po 1
Ks = Ps Kg = 0 + =< K = Pgrs — — + . 6
5 ﬁs s 0 5COSQ BG 0 s 50 BG S s S5COSP Bs 0 ( )
1
€ =Wy €g; = Wi (7)
sCos¢p
0.=2 0a=22 ®
T os #8758

We assume that the median surface displacements u and v do not vary in z direction. The intial stress-free

lateral deviation term w, of the median surface is assumed to be small, but finite values are also permissible
provided that

[wo| < R, o, <1 )
Shallow shell theory requires that the radius of curvature of the shape imperfection cannot be excessively small
Rc|wo,“| <0 (l) (10)

The modified strain-displacement relations for the median surface including the initial imperfections are
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1 2
€, = U, + E(w”) + W, W,

N + 2L 4 Yiang + : (w)2+——1 W W, an
7 scosp T s s 25* costp R
€p =V LA ! Ug + W, W, + WosWos + —1-w w
07 s 7 scosg scosp * 0 scosp * °® 7 scosq P
1
€z = Wy €g, = Wy (12)
5COSQ
1 B Be 1
Ks = Ps, Kg = 8 Ko =Pgs — — + ; (13)
& ﬁs 5 6 SCOSQ ﬁe 0 S s6 ﬁe s . SCOSQP Bs ]
Constitutive relations
(@) Core relations Assuming the core only resistant to transverse shear and not to carry any in-plane
stresses, the stress-strain relations for the core are
T, = Geg Te. = Ge,, ¢ =08 =% 04
The transverse shear stresses can then be expressed in terms of the median surface strains.
Tsz = G(Ssz +Bx) To: = G(Sez + BG) (15)
(b) Facing relations The in-plane stress-strain relations for the isotropic facings in a plane stress state are
E E E
fi fi fi
o, = €.+ Vg Cg =—(gg+ V& T =—F—1—¢ 16
s 1_v12(5 i 9) <] I—V,-Z(e i s) 50 2(1+Vi) 56 (16)

Shell forces and moments

An equivalent system of force and moment resultants is considered to be acting at the median surface of an
element of the shell as defined by the following relations:

(a) Stress resultants

hy+t,/2

T T

N, Ny Nl = f d 17

[ s %] se] h—t,/2 [Gs Co Ts@] z ( )
(b) Transverse shearing stress resultants

T hz+tz/2 T

[Qs Qe] = Ihl—t,/Z [Tsz Tez] dz (18)

(c) Moment resultants
T hy+t,/2 T
[M, My Mg] = i [os o6 ty] 2dz 19)

where the integration is taken across the whole shell wall and 4, and 4, are the distances of the middle
surfaces of the inner and outer facings, respectively, from the median surface of the total shell wall.

After performing the above integration, we have
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[V] = [4][s] + [B] [x] [M] = [B][¢] + [D][x]

(20)

Q, =Ge (e, +B,) ~ Gh (es: +By) Qo = Ge (g5, +Bo) = Gh (6. +Bo) = Gh(sq, +Bo)
where
[N]=[N, No Nl [M]=[M, My Mo]
@D
=l 50 sl OO,
2 2
[4]=1[a]+4[0] [B]=ht| Q] -ty Q] [D]= (hlz +%}[ Ql]"'[hz2 +%J[ Q) 22)
P 1 v, 0
o] = v 1 0 23)
lo o v

In the process of above integration, the assumption of linear variation of transverse shear stresses across the
facings has been used, since the transverse shear stresses in the facings are equal to the transverse shear stresses
in the core at the facings, and vanish on the free surface.

The above represention of forces and moment resultants can be rewritten in detail.

M, = 1—?{/—2[(@5 —hltl)(es +v ee) +F(K5 + VKQ)]

£ E
My = 1—fv > [(11212 ~ht)(e + ve,)+ ko + vxs)] M, = 1—fv . [(i12t2 —ht)eq+ Fxse] 24)
E E
N, = 1—{/ 76+ ) (55 + veo) + (hty ~ e x, + vko)|  No= 1_{/ 7[5+ 12)(E0 + ve,) + (ot =ty (o + vi)|
E
Ng= 1_{,2 [Gse +(hzz‘2 —hltl)lcse] o, = Gh(ssz + ﬁs) Q= Gh(sez + [39) (25)
T =hk +i+ 24 +i V=V, =V (26)
! 12 h2 2 12 1= %2~

With the definition (1) of the median surface, the coupling between in-plane strains and rotation of the normal
displacements, and stress and moment resultants simplify to

A
5 (60 +ve,) Mg = 20+0) B 27

N, =

5

5 (ss + vee) Ny =

1-v 1-v
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| o
M, = D(x, + vko) Mp = D(xq +VK,) Mg=D—Yx g (28)
where the in-plane stiffness 4 and bending stiffness D are given by:
E; (Kt t3+t3) E h*nt
i 2  hTh S 12
A=E t,+t,)=Et D= + ~ (29)
plfrt o) =By l—vz[t1+t2 12 (1_v2)t
Equilibrium equations
From Novozhilov’s theory (1953), we have the following equations for conical shells:
(a) Equilibrium of horizontal forces
1 1
(sNy).,e + —— Ny — No = 0 (Ng)s + ——Ngsg + Ng = 0 (30)
cos¢p cos¢
(b) Equilibrium of vertical forces
2 (50— | - Nt +x2) = 2No{0 +2%) = No(e +13) = 2o tang - g, = 0 €y
s cosQ s
where
1 1 1 ( 1 )
=-w, == =W, +t——F—Ww = W0~ — W, 32
Ls 55 %o [S 5 szcoszq> ,ee) Xs0 SC0S 50~ W0 (32)
1 1 1 1
'X.g = —WO,n Xg = _(_WO’S.*-_E_ZWO’BQJ 'X,ge = (WO’JO__WO’E’) (33)
s s cos“ @ 5COSP s
(c) Equilibrium of moments
1 1 1 1
st = (SM.r),s + Mseye - Me Qe = Me,e + _(SMSQ)’S = _MSQ (34)
cosp SCOSQ s s

An Airy stress function F is defined such that it will satisfy the equilibrium equations (30) in horizontal
direction identically, i.c.

1 1 1 1
B, = By b sl Ny = F, Ng = — (F, . —F,) 35
s 5 S SZCOSZ(p 00 [¢] 5§ s0 $COSQP 56 s 0 ( )

By equations (13), (28) and (34), the shear resultants can be expressed in terms of shear angles as

1 s, 1=v 1 l+v 1 8- 1
Qs =D [Bs355+—‘[353s_%+ "‘——ﬁx,ee}+D [ = B9>s9'- > [36’9}
S P

2 s?cos? 2 s5COSQ 2 s?cosg
(36)

2 5COSQ 2 s%cos st/ s%cos?

I+v 1 3-v 1 1-v 1 1
Q9 = D|: Bs:.xe+ ﬁs:e:l'*'D[ (Be:ss—*‘_ﬁe’s_ggj +_~————_ﬁ999@}
® 2 3 @

Since the shear forces are carried by the core, replacing the shear forces in equation (36) by constitutive
relations (20) of the core, we have
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1 B, 1-v 1 I+v 1 3-v 1
G +B,) = D | Byrs+—Pypg— o+ — +D e ) 37
C(W,_g Bs) [Bs 55 sBss i 2 SZCOSZ({)BD%jI |: 2 scose Pesso 2§ cos® Po 6} (37)

1 1+ 1 3- 1 1- 1 1
Ge ( W,9+[39) =D - ﬁs:se'*' Y B.ne +D M (ﬁerss+_ﬁﬁas— Be) + ﬁe,ee
5COSP 2 s 5

2 scosg 2 stcosg s cos’ @

Substituting equation (36) into equation (31), we have
D[ 13.(B.) + I, (Bo)] - %Fm + L(F,w4wp) + g, = 0 38)

where

Lﬁ:[;]=_l.(v2_££+_1_)§ﬂ Lﬂe[::I: 1 (V2_3_6_+3£+i)_2%1 (40)

Os SCOSP

1 1 1 1 1 1 1
Hia = 2 et A NB 44 128 4 * 5 -2————(—,4, —A,) (—B,s _B,| @1)
(4,B) (s 7 o8 ¢ ee] (s p— ee) 73 040 | | T D07 500 | (

Compatibility cquation

Since we do not use displacemental shell equations, compatibility has to be considered. After eliminating « and
v from the median surface strain-displacement relations, an equation for the lateral deflection w in terms of the
median surface strains €, €4 and €4 is obtained.

1 1 1

5500

1
;(S Seas)u + ;(Se‘es)u -

_ 2
€00 = Aso — XsXe ~—

- As
s cosp 5COSP

———¢
s*cos® ¢
42)

The final form of the compatibility equation in terms of the Airy stress function ¥ and lateral deflection w is
1 1 tane
ZV4F = EL(W,W +2W0) i (43)
s

Equations (37) and (38) are equilibrium equations and equation (43) is a compatibility equation of the shell.
They represent the governing equations of the problem.

(a) Non-shear deformable core (G - oo) In this case, we have

1
5COSP

B, =-w, By = - W Ly (Bs) + Ly, (Bo) = -V*w (44)
and the equilibrium equations (37) and (38) become

DV + B = g L(Fw+w) 45)
S

Equation (45) and the compatibility equation (43) are exactly the same as those for homogeneous isotropic
shells except for the stiffness terms 4 and D. Thus we arrive at the following conclusion: all previous analytical
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results for isotropic cones can be immediately applied to sandwich cores with non-shear deformable cores when
the appropriate in-plane stiffness 4 and bending stiffness D terms are used.

(b) Isotropic cylinder-no core (c=0) By setting ¢=0, in (29), we have in-plave stiffness 4 and bending
stiffness D as follows:
3
A=Et P (46)
12(1-?)

In this case, the previous equilibrium and compatibility equations reduce to those of an isotropic cone.

(¢) Sandwich circular plate (s —>r, scosb—r, cp) In this case, equations (37), (38) and (43) become

1 _1-v 1 1+v1 3-v 1
Gh (w?r+ﬁr)=Dliﬁr’rr"";ﬁr’r_%*'_’—ﬁn%}'{'p{ 2 ;Bewe‘Tr_zﬁe,e}

CO)
1 I+v1 3-v 1 1-v 1 B 1
Gh (‘r'W,eJrﬁe) = D{ 5 7Brn‘9+_2—r_2ﬁr’9}+D [T(ﬁe,n+7ﬁe,r—r—g) +r—2[39,ee}
1 1
D15, (B)+ L, B + LF w4 w) +4,=0  —VHF =L ) (48)
in which r is the radius of a circular plate, and
& 10 18

Vs — e 49
o’ ror r*oe? 2

1 1 1 1 1(1 1
L(4,B) = (;A,,+r—2A,ee)B,,, +A,,,(7B,,+72—B,ee) - 272—(;A,,0—A,9j(78,,9—8,]

(d) Sandwich cylinder (s —> X,5C08¢ —> R,r0 = y)

1- 1 1 1-
Gh (w,,+B,) = D [ﬁx,m+—£l wa+% pm} Gh (,,+B,) =D [—*ziﬁmdr-zi 5y,m+ﬁm}
1

sz(ﬁx,x+[3y,y) = il Fr(WHWo)ee + Foe(Wtwg)y, = 2F, (W), + g, = 0 (50)
-—1—V4F = lw (w+2w) + -l-w (w+2w) - w (w+2w) + iw
A 2 3% % 0/>xx 2 2XX 0)syy xy 0/)sxy R XX
where

Vi = &)/ 0% +8%()/ 0y 6D

The above equation are exactly the same as those of Tennyson and Chan (1990) except for the +/- of some
notations.

Compared with the governing equations of a sandwich circular plate, cylinder and cone, we can see that the

governing equations of plate and cone are non-linear partial differential equations with variable coefficients,
the sandwich cylinder excepted.

- To be continued -
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