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The effects of suction or injection in boundary layer flow

and heat transfer on a continuous moving surface

H.Pop, W.Watanabe

An analysis has been made to determine the effects of uniform suction or injection in the steady laminar boundary layers over an isothermal

continuous moving surface. The non-similar partial differential equations are transformed into ordinary differential equations by means of the

difference-differentialmethod. The solutions ofthese equations are expressed in integral form, which are then calculated by iterative numerical

quadratures. The results of the velocity and temperature fields as well as for the skin friction and heat transfer coefficients at the surface are

presented and discussed for different values of the suction or injection parameter and for several values of the Prandtl number and exponent

ofsurface velocity.

1 introduction

Boundary layer flows on moving solid surfaces are fre-

quently encountered in transport processes occuring both

in nature and industry. To cite a few practical examples, in-

dustrial processes such. as the extursion of metalsand pla-

stics, cooling and drying of paper and textiles, and material

handling involve boundary layers on moving surfaces in an

ambient fluid. Due to entrainment of the ambient fluid, this

boundary layer is physically different from that of the classi-

cal Blasius flow over a stationary flat plate and that the two

problems cannot be mathematically transformed from one

to the other. After a pioneering work by Sakiadis [1], the

flow field past a continuous moving surface has drawn con-

siderable attention and a good amount of literature has

been generated on this problem. Tsou et al. [2]. Rhodes

and Kaminer [3], Crane [4], Chida and Kane [5], Vleggaar

[6], Banks [7], Banks and Zaturska [8], Abdelhaftez [9],

Jeng et al. [10], lngham and Pop [11]. and Takhar et al.

[12]. However, in all these papers the plate was assumed

to be impermeable and hence it was not possible to apply

suction or injection.

The significance of suction or injection for the boundary

layer control has been well recognised, see Hartnett [13]. It

is often necessary to prevent (or postpone) separation of

the boundary layer to reduce drag and attain high lift va-

lues. It is also well known that suction or injection of fluid

through the surface, as in mass transfer cooling can signifi-

cantly modify the flow field and affect the rate of heat trans-

fer in forced, free and mixed convection. Hence, Murty and

Sarma [14] have studied the effect of suction of injection on

boundary layer flow and heat transfer over a continuously

moving flat plate and similarity solutions were presented.

They found that this was possible when the transpiration

velocity varied asx‘1’2, wherex denotes the distance along

the plate. Though giving a good insight into the nature of

the problem, this situation has the disadvantage that the

boundary condition that is necessarily imposed on the

transpiration velocity is unrealistic.

The present paper is concerned with the effect of uniform

suction or injection on the flow and heat transfer characte-

ristics of laminar boundary layers over a flat plate moving

continuously in a quiescent ambient fluid. The analogous

problem of boundary layers flow and heat transfer over a

wedge with constant suction or injection has been treated

recently by Watanabe [15] and methods similar to those gi-

ven in [15] to [17] are used to solve the present problem.

Results were given for the velocity and temperature distri-

butions, the coefficient of skin friction and Nusselt number

for various values of the power lawvariation of the plate ve-

locity, suction or injection parameter and different Prandtl

numbers.

2 Analysis

The physical system under consideration is illustrated in

Fig. 1. An o-x-y Cartesian coordinate system is fixed in

space, and that at x = y = 0 (die slot), a thin solid perme-

able flat plate is extmded and moves in the positive diretion

of the x axis with a surface velocity Us (x) = Uo x’", where U0

and m are constants. The motion of the fluid in the region

y > 0 is assumed to be generated solely by the action of

viscosity at the moving surface at y = O. The plate is main-

tained at a constant temperature Tw, while the ambient fluid

is at a uniform temperature T... (with Tw > T3,). Assuming

steady state flow of an incompressible viscous fluid at a

large Reynolds number, the governing boundary layer

equations are
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Physical model and coordinate system
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with boundary conditions

y=O : u=Us= U‘,x’",v=v,,(const),T=Tw (4a)

y——>w:u=O‚T=T.‚. (4b)

Here u, v are the velocity components alongx and yaxes, T

is the temperature, v is the kinematic viscosity, Py is the

Prandtl numberand Va is the velocity of suction or injection,

when either vo < O or vo > 0, respectively.

To solve Eqs. (1) to (4) numerically, we follow Watanabe

[15] and introduce the new variables

     

w ( xU)-2Lf(x um ) T’T“ (Sa)= v r r ‚I = _—

m + 1 s '7 " 7,, — T,

and

m + 1 U l

n = y1 2 ° )2 (Sb)
VX

Here 1/: is the stream function defined by

a a

u = l , = — l (6)
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so that, using (5), the velocity components become

u — U 8’ 7— s a” (a)
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Substituting (7) into Eqs. (2) and (3), the dimensionless

stream function f and dimensionless temperature 0 satisfy

the following transformed momentum and energy equa-

tions
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The boundary conditions (4) are also transformed to
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where s isthe parameter of suction or injection, which is de—

fined by

m+1 x l
)2

2 st

  

s=kx“"")’2 = — vo ( (11)

We shall further transform Eqs. (8) and (9) by introducing

the following variable

x* = kx(“’")"". (12)
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Equations (8) and (9) then become
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and the boundary conditions (10) read
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Equations (13) and (14) subject to the boundary conditions

(15) are solved by employing the diefference-differential

method. We will approximate these equations by replacing

the partial derivatives with respect to x* by finite-differen-

ces, example, by using a four-point formula of Gregory-

Newton backward difference with a uniform step size h.

The solution of resulting differential equations at the i-th

station of x', = ih can be expressed in the form of integral

equations as
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where plus and minus signs in (1 7) denote the suction or in—

jection, respectively, and
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Our attention is now focused on the skin friction 1., and heat

flux qw at the plate given by

8T

qwz—1(—a—) (25)

y Y

au

Tw—M(a—y) =0

y = 0.

where u and A are the dynamic viscosity and thermal con-

ductivity, respectively. With the definition of the local kin

friction coefficient C, and the local Nusselt number as
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where Rex = x Us/v is the local Reynolds number.

3 Method of solution

The numerical integration of Eqs. (16) to (18) is performed

by iterative numerical quadratures using a Simpson ’3 rule.

Numerical calculations are carried out in positive or nega-

tive direction ofx‘ according to s > O ors < 0. respectively.

The numerical integration starts at x* = 0, where Eqs. (13)

and (14) reduce to

2m 2

f’” + ff" m— f' z 0 (28)

1 + m

B" + nye’ = 0 (29)

with the boundary conditions

f‘.(0)= 1,f(0)=0,0(0)=1 (30a)

f’(°°)=0‚9(°°)=0 (30b)

where primes denote differentiation with respect to 1,7. The

step size in Simpson’s rule used in the present numerical

quadrature at each station of x* is adjusted so that solu-

tions may be obtained at intervals of h = 0.01 in 7; and an

upper limit of infinity in integrals is replaced bya finite value

77 = 15. By using the present numerical integrations, a four-

point formula of backward differences is used except for

the first three stations following x* = 0, where two-point and

three-point formulas, respectively, should be used. in the

iteration, the criterion of convergence is put equal to 5 X

10-7f0r(32f13172)„=g and (a G/an) „=o in absolute ma-

gnitudes.

4 Results and discussion

Equations (16) to (18) were evaluated to determine the ve-

locity and temperature fields as well as the skin friction and

surface flows into the fluid. Further, Tables 3 and 4 show

that for an impermeable surface the heat transfer coeffi-

cient increases monotonically with the increase of the

Prandtl number and is more intense for larger values of Py.

In addition, the values of - 0’(0) are greater for

m = — 0.35484 than those form = 1,22222.

Representative velocity profiles and temperature distribu-

tions versus the similarity variable 17 are illustrated in Figs. 2

to 9, exhibiting the effects of the parameters m, s and Py.

Specifically, Figs. 2 to 5 show that the suction or injection

has a profound effect on the boundary layerthicknesses. in

general, injection prompts s-shaped velocity profiles and

     

Figure 2

Velocity profiles form = — 0.35484

ands = — 0.5, — 0.3, O, 0.3. 0.5

     

Figure 3

Velocity profiles for m = 1 .22222

ands = - 0.5, — 0.3, 0, 0.3, 0.5
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Figure 4 Figure 6

Velocity profiles for m=-0.35484, Velocity profiles lors = 0
P7: 0.73 and s= -0.5‚—0.3‚O‚0.3‚0.5

andm = - 0.35484, 0, 1.22222
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Figure 5
Figure 7

Temperature profiles for
Temperature profiles for

m = 1.22222, Py = 0.73 and
s = 0. Py = 0.73 andm = — 0.35484.

= - 0.5, — 0.3, 0, 0.3, 0.5
O, 1.22222

Table 1 Table 2

Values of f'(s, O) and 0’(a, 0) Values of f”(s, 0) and 0’(s, 0)

(Py = 0.73.m = —— 0.35484) (Py = 0.73,m = — 1.22222)

s f’ '(s, 0) — 0'(s, 0) s f"(s, 0) — 9'(s, 0)

0.5 — 0.45884 0.79869 0.5 — 1.30795 0.71373

0.4 — 0.34621 0.75134 0.4 — 1.24788 0.66061

0.3 — 0.23377 0.70692 0.3 — 1.19012 0.60901

0.2 — 0.12169 0.66545 0.2 - 1.13473 0.55905

0.1 — 0.01017 0.62692 0.1 — 1.08175 0.51082

0 — 0.10053 0.59124 0 — 1.03119 0.46446

— 0.1 0.21019 0.55828 — 0.1 —- 0.98307 0.42007

— 0.2 0.31851 0.52788 — 0.2 — 0.93736 0.37775

-— 0.3 0.42523 0.49985 — 0.3 - 0.89404 0.33762

— 0.4 — 0.53006 0.47398 - 0.4 — 0.85306 0.29977

— 0.5 — 0.63272 0.45009 — 0.5 — 0.81435 0.26430
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Figure 8

Temperature profiles for s = 0

m = — 0.35484 and Py = 0.3, 0.73, 3, 15

     

Figure 9

Temperature profiles tors = 0,

rn = 1.22222 and Py = 0.3, 0.73, 3. 15

                  

Table 3 Table 4

Values of 0’(0) Values of 0’(0)

(m = — 0.35484) (m = 1.22222)

Py — 970) Py — 070)

0.3 0.31852 0.3 0.23829

0.5 0.45987 0.5 0.35194

0.73 0.59124 0.73 0.46446

1 0.71960 1 0.57829

2 1.07543 2 0.90688

3 1.34167 3 1.16038

5 1 .7571 1 5 1 .56280

7 2.09126 7 1.88994

10 2.50995 10 2.30235

15 3.08325 15 2.86971

may exhibit overshoots in the velocity near the thin slot It is seen from Table 1 that form = —— 0.35484 the suction

(x = 0) (cf. Fig. 2). However, the net effect of suction is to

reduce the overshooting tendency and slow down the flow.

Complementary to the previous four figures, Figs. 6 to 9 de-

pict the variation of the velocityand temperature profiles for

an impermeable surface (s = 0) with parameters m and

Py. Figures 6 and 7 show clearly that the magnitude of the

velocity profiles decreases as m increases (confirming the

results of Banks [7] while the temperature distributions in-

crease as m is increased. The thermal boundary layer

thickness is strongly affected by the heat transfer at the

surface. Results were computed for values of the surface

velocity exponent m = — 0.35484, 0 and 1.22222, the suc-

tion or injection parameters ranging from — 0.5 to 0.5 and

the Prandtl number Py wasvaried from 0.3 to 15. Tables 1

to 4 contain selected results for f” (s, 0) and — 0’(s, O),

which are representative of the skin friction coefficient and

the Nusselt number, respectively. The accuracy of the pre-

dictive results of the present method has been established

for the special case of an impermeable surface (s = O) by

comparisons with known data from literature. Thus, Banks

[7] have obtained f”(0) = 0.10053 form = — 0.35484 and

f"(0) = — 1.03119 form = 1.22222, which are in excellent

agreementwith our results shown in Table 1 and2 (of. s = 0).

(s > 0) leads to negative values of the skin friction coeffi-

cient compared to those for an impermeable surface. Injec-

tion (3 < 0) of fluid has the opposite effect. However, this

coefficient is negative for both porous and non—porous

surface when m = 1.22222 (cf. Table 2). On the other

hand, Tables 1 and 2 indicate that the heat transfer para-

meter — 0 ’(s, 0) remains positive for all values of s consi-

dered; hence the heat flux at the Prandtl number also re-

mains positive (cf. Figs. 8 and 9). As expected, this thick-

ness decreases with increasing Py and as a result, heat

transfer is enhanced. It is also important to note that there

are lower temperature at m = — 0.35484 than those for

m = 1.22222.

5 Conclusion

The aim of the present paperwas to study the steadyboun-

dary layers over a permeable and isothermal surface that

moves continuously in its plane. Solutions of the governing

partial differential equations are sought by employing the

difference-differential method in combination with succes-

sive numerical quadratures. Fluid mechanics and heat

transfer coefficients are evaluated for a wide range of the
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suction or injection parameter, Prandtl numberand the sur-

face velocity exponent. it was shown that the effect of suc-

tion or injection on both velocity profile and temperature di-

stribution is significant as depicted in terms of f”(s, 0) and

— 0'(s, O). Also the thermal boundary Iayer thickness is

substantially affected by changes in Py.

Finally, it should be emphasized» that the principal aim of

the paper was to investigate the effects of a wall mass

transfer parameter on boundary layers occuring on a conti-

nuous moving surface by using a wellknown calculation

technique. The agreement of the present results with those

of an inpenneable surface (similarity solutions) reported by

Banks [7] is very good. The lack of experimental data for

comparisons does therefore not weaken the conclusions

arrived at.
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