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A Torquefree Deformable Model Gyro

F.P.J. Rimrott, G.Semenov, A Kessaris

Es ist schwierig, allgemeine Aussagen Uber das Verhalten von sich verformenden Kreiseiln zu machen und es lohnt sich deshalb, den Einflu8
bestimmter Verformungen einzeln zu betrachten. Dies ist méglich, wenn man Modellkreisel definiért, die - mit Ausnahme eines einzigen Verfor-
mungsmechanismus - als starr angenommen werden kénnen. Die vorliegende Abhandlung befaBt sich mit dem Verhalten eines axisymmetri-
schen drehmomentfreien Modellkreisels, der so ausgelegtist, daB er nur permanente Verformungen von beliebiger GréBe entlang seiner Symme-
trieachse zuldBt, andererseits jedoch starr ist. Damit kénnen die Ausdricke fiir Trdgheitsmomente, Drall und kinetische Energie exakt angege-
ben werden. Auch verschiebt sich der Massenmittelpunkt dann nicht innerhalb des Kreisels. Gleichungen bleiben verhaltnismaBig einfach und
das Verhalten des Kreisels bleibt ubersichtlich. Der Modellkreisel besteht aus zwei starren masselosen Stangen, die ihrerseits starr mit dem
starren Hauptkorper verbunden sind. Entlang jeder Stange gleitet je eine Punktmasse, deren Bewegung linear gedampft ist.

This investigation is concerned with the behaviour of an axisymmetric torque-free model gyro. The model has been devised such that it repre-
sents accurately arbitrarily large deformations. The expressions for inertia moments, angular momentum, and the kinetic energy are all exact,
i.e. there are no approximations. Also, the mass center of the model gyro does not shift within the gyro. Equations remain tractable and the practti-
cing engineer can readily get a feel for the phenomena uncovered. The model is composed of rigid massless rods connected rigidly to a rigid
massive bus. Along each central rod, a point mass (bead) moves, constrained by a linear damper.

1 Introduction 2 Kinetic Energy and Angular

The description of the behaviour of torquefree gyros which Momentum
are subject to deformation is very difficult to present in ge-
neral form (Magnus 1971; Hughes, 1985; Kessaris, 1992).
On the other hand, it is quite feasible to obtain the beha-
viour of model gyros with strictly defined deformations.

The gyro’s angular momentum H is constant, because the
gyro is torquefree. Using floating Cuvz coordinates (Rim-
rott, 1988), the angular momentum is
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The principal idea underlying the present work is to des- [e.e/0;] HV I9a850:] Hcosv

cribe exactly the behaviour of a specially devised dissipa- :

tive model gyro. The floating Cuvz coordinate system has been chosen

such that H, = 0 (Figure 2).

The angular velocity of the gyro is

" o = [e,e,e;] 0
¢ Y Wy (2
W,
i 8
Angular velocity components (2) and angular momentum
e . y components (1) are related by
s o
Mos Ags g Cp wy = Iy sinv (3a)
- "
w; = = COSV 3b
] := 2 (3b)
¢— Y
" such that the magnitude of the angular velocity becomes
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Model gyro
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) . ] The angular velocity of the Cuvz coordinate system can be
The model gyro consists of an axisymmetric bus body B, shown to be (Rimrott, 1988)
and two massless rods R along the axis of symmetry. '
Along each rod, abead m can slide, constrained by a linear 2 =[e,e,e,;] 0
damper c. The point masses on each rod are further con- oy (5)

strained such that their distances s from the gyro mass
centre are always equal. This ensures that the gyro mass
centre does not move within the bus body (Figure 1). The
total mass of the gyro is mg + 2m.
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Figure 2
Gyro during motion

The magnitude of 22 is
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The gyro’s inertia tensor is
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with
A = Ag+2ms? (8a)
B=A (8b)
C =¢Cs (8c)

Thus the inertia moments A and B are equal, and chan-
ging. The inertia moment C is constant. Equations (7) and
(8) are valid for a gyro-fixed Cxyz coordinate system, as
well as the floating Cuvz coordinate system.

The gyro’s kinetic energy is
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with A a function (8a) of the bead position s.

When the beads m move along the rods, then the kinetic
energy changes according to

a7 = ST dv + T ds +2msds (10)
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Division by dt, and carrying out the differentiation, leads to
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3 Energy Dissipation

Extension force F and extension speed $ for a linear dam-
per are related by

F =c¢$ (12)
The dissipation work D done by the two forces F acting on
the gyro, is

D = 2|Fds (13)
the dissipation power
90 _ord (14)
dt dt

or, using equations (12) and (14), and taking into conside-
ration that the gyro is equipped with two dampers,
b = 2c35? (15)

The quantity D is selected to be positive definite.
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Figure 3
Inertial force acting on bead

An inspection of Figure 3 shows that the force F acting on
the damper is the z component of the centrifugal force mi-
nus the linear acceleration force
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According to equation (12)
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The energy dissipation rate (15) can consequently be
written
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Equation (17) represents a nonlinear differential equation
of second order.
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When the damping coefficient ¢ is very large, the accelera-
tion term becomes so insignificant, that the term m$ can be
neglected. Then
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4 Power Balance

The present system has only two energies, one is the kine-
tic energy (9), the other the dissipation energy (13). The

time derivatives of the two are related by
T=-D (21)

Using equation (11) for T and equation (18) for D, we obtain
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which leads to the conclusion that
vy =0 (23)
or that the attitude
v = constant (24)

throughout the energy dissipation process.

Figure 4 shows an attitude diagram. It is seen that the final
kinetic energy is, with s = .
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Figure 4
Attitude diagram

while the initial kinetic energy is
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The kinetic energy lost is equal to the energy dissipated,
from equation (21)
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5 Bead Position and Time

Equation (17), with § = 0, can be rearranged into
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and integrated to give the time t as function of the bead
position s.
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6 Attitude Diagram

In Figure 4 an attitude diagram is shown for an initially
oblate gyro (Co > Ay). The original angular velocity is @o.
In the course of time, the angular velocity assumes smaller
and smaller values, until @.. is reaches when t = « and
s = », The initial angular velocity has a magnitude of

2 &ii2 2 2

g = H<sin“y H<cos*vy (30)
A3 C3

with

Ao = As + 2ms} (31)

The final angular velocity, with A, = «, has a magnitude
of
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The relationship between kinetic energy (9) and bead posi-
tion s for the same gyro is plotted in Figure 5. Figures 4
and 5 are for en example with v = 60°, Ag = 60 m? kg,
Cs = 102m?kg, m = 3kg, o = 0,5m, H = 150 Ws?, and
¢ =12 MNs/m.
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Kinetic energy versus bead position



7 Euler Angles as Generalized Coordi-
nates

If the kinetic energy expression, in terms of generalized
coordinates, is known, i. e. for the present gyro,
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then the generalized velocities are obtained by partial

differentiation, i.e. q, = aa—T resulting in
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The constant angular momentum H has the covariant com-
ponents

py = H (35a)
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Consequently we have for the Euler rates
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In order to obtain a relationship for the velocity s, we need
the kinetic coenergy
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The Lagrange equation for s requires that
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Recalling equation (8a) for the changing inertia moment A,

and writing Qs = — 2¢§, and using equations (36) we obtain
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which is the same as equation (19).

8 Conclusions

The torquefree model gyro used in the present paper has
been devised such that it dissipates energy while defor-
ming. The deformation is chosen such that only two princi-
pal inertia moments are affected, and that the gyro remains
axisymmetric during deformation. The model gyro adopted
is consequently of a type which ensures that all equations
are exact. It is then shown that the attitude angle remains
constant during energy dissipation, and that the latter con-
tinues until the time becomes infinite and the beads reach
an infinite displacement.

Nomenclature

AAC Principal inertia moments, m?kg
Bus body
Mass centre
Damping energy, J
Force,N
Angular momentum, Ws?
Inertia moment, m?kg
Massless rod
Kinetic energy, J
Y,Z Space-fixed coordinates, m
Damping coefficient, Ns/m
Bead mass, kg
B Bus mass, kg
Bead position,m
Time, s -
uv,z Floating principal coordinates, m
XYy Z Gyro-fixed coordinates, m
Angular velocity, rad/s, of floating Cuvz
Nutation angle (,,Attitude”)
Spin, rad/s
Precession, rad/s
Angular velocity, rad/s, of gyro
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