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A Torquefree Deformable Model Gyro

F.P.J. Rimrott, G.Semenov, A.Kessaris

Es ist schwierig, allgemeineAussagen überdas Verhalten von sich verformenden Kreise/n zu machen und eslohnt sich deshalb, den Einfluß

bestimmter Verformungen einzeln zubetrachten. Dies istmöglich, wennman Model/kreisel definie'rt, die - mit Ausnahme eines einzigen Verfor-

mungsmechanismus - als starr angenommen werden können. Die vorliegende Abhandlung befaßt sich mit dem Verhalten eines axisymmetri-

schen drehmomentfreienMode/lkreisels, derso ausgelegt ist, dal3ernurpermanente Verformungen vonbeliebiger Größeentlangseiner Symme-

trieachse zuläßt, andererseitsjedoch starr ist. Damit können die Ausdrücke für Trägheitsmomente, Drallund kinetische Energie exakt angege—

ben werden. Auch verschiebt sich der Massenmittelpunkt dann nicht innerhalb des Kreisels. Gleichungen bleiben verhältnismäßig einfach und

das Verhalten des Kreisels bleibt übersichtlich. Der Modellkreisel bestehtaus zwei starren masselosen Stangen, die ihrerseits starr mit dem

starren Hauptkörper verbunden sind. Entlangjeder Stange gleitetje eine Punktmasse, deren Bewegung linear gedämpft ist.

This investigation is concerned with the behaviour ofan am'symmetric torque-free model gyro. The model has been devised such that it repre—

sents accuratelyarbitrarily large deformations. The expressions for inertia moments, angular momentum, and the kinetic energy are all exact,

i. e. there are no approximations. Also, themass center ofthe mode/gyro does notshift within the gyro. Equationsremain tractable and thepractti-

cing engineer can readily get a feel for the phenomena uncovered. The model is composed of rigid massiess rods connected rigidly to a rigid

massive bus. Along each central rod, a point mass (bead) moves, constrained by a linear damper.

1 Introduction 2 Kinetic Energy and Angular

The description of the behaviour of torquefree gyros which Momentum

are subject to deformation is very difficult to present in ge-

neral form (Magnus 1971 ; Hughes, 1985; Kessaris, 1992).

On the other hand, it is quite feasible to obtain the beha-

viour of model gyros with strictly defined deformations.

The gyro's angular momentum H is constant, because the

gyro is torquefree. Using floating Cuvz coordinates (Rim-

rott, 1988), the angular momentum is

One such gyro is investigated in the present paper. HU o
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The principal idea underlying the present work is to des- I u V Z] Hy [ u V Z] Hoosv

cribe exactly the behaviour of a specially devised dissipa- z

five model gym The floating Cuvz coordinate system has been chosen

such that Hu = 0 (Figure 2).

The angular velocity of the gyro is
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q —
(Dy

(2)

0’2

Angular velocity components (2) and angular momentum
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m such that the magnitude of the angular velocity becomes
Figure 1

Model gyro
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_ _ _ The angular velocityof the Cuvz coordinate system can be

The model gyro consrsts of an axusymmetnc bus body B, shown to be (Rimrou 1988)

and two massiess rods R along the axis of symmetry. '

Along each rod, a bead m can slide, constrained by a linear Q = [euevez] O

damper c. The point masses on each rod are further con- 0)., (5)

strained such that their distances s from the gyro mass

centre are always equal. This ensures that the gyro mass

centre does not move within the bus body (Figure 1). The

total mass of the gyro is mB + 2m.
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Figure 2

Gyro during motion

The magnitude of Q is

M 2
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The gyro's inertia tensor is

[l] = A o o

o A o (7)
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with

A = AB+ 2ms2 (8a)

B = A (8b)

C = CB (8c)

Thus the inertia moments A and B are equal, and chan-

ging. The inertia moment C is constant. Equations (7) and

(8) are valid for a gyro-fixed nyz coordinate system, as

well as the floating Cuvz coordinate system.

The gyro’s kinetic energy is
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with A a function (8a) of the bead position 3.

When the beads m move along the rods, then the kinetic

energy changes according to

d'r = .81; dv + i ds+2mädä (10)
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Division by dt, and carrying out the differentiation, leads to

T: C;AH2sinvcosv iI—[zl—angsinzv s+2ms§
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3 Energy Dissipation

Extension force F and extension speed s for a linear dam-

per are related by

F = cs (12)

The dissipation work D done by the two forces F acting on

the gyro, is

D = 2 i Fds (13)

the dissipation power

Q = 2F E (14)
dt dt

or, using equations (12) and (14), and taking into conside-

ration that the gyro is equipped with two dampers,

b = 2c s2 (15)

The quantity b is selected to be positive definite.
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Figure 3

Inertial force acting on bead

An inspection of Figure 3 shows that the force F acting on

the damper is the 2 component of the centrifugal force mi-

nus the linear acceleration force

2 ' 2

F = ms —-—-—H8'“ v —-mä (16)
A2

According to equation (12)

ms stinzv _ n_1

c A2 c

S' (17)

The energy dissipation rate (15) can consequently be

written

1') = 213 stinzv—st s (13)
A2

Equation (17) represents a nonlinear differential equation

of second order.
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When the damping coefficient0 is very large, the accelera-

tion term becomes so insignificant, that the term mä can be

neglected. Then

2 - 2

é = mH sm v s (20)
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4 Power Balance

The present system has only two energies, one is the kine-

tic energy (9), the other the dissipation energy (13). The

time derivatives of the two are related by

'T = - b (21)

Using equation (1 1) forT and equation (18) for Ö, we obtain

[qusinvcosv 13— 218stinzv ä+2m'sä
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which leads to the conclusion that

it = 0 (23)

or that the attitude

v = constant (24)

throughout the energy dissipation process.

Figure 4 shows an attitude diagram. it is seen that the final

kinetic energy is, with s = 00.
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Figure 4

Attitude diagram

while the initial kinetic energy is

1 stinzv Hzcoszv

2 AB + 2718(2) CE

The kinetic energy lost is equal to the energy dissipated,

from equation (21)

To = +mé~2 (26)

1 stin2v

2 AB+ 2m320

Da, = +més (27)

5 Bead Position and Time

Equation (17), with s = 0, can be rearranged into

t c s A +2ms2 2

I dt = I ( B ) ds
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(28)

and integrated to give the time (as function of the bead

position 8.

CA2 s m m2
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6 Attitude Diagram

In Figure 4 an attitude diagram is shown for an initially

oblate gyro (Co > A0); The original angular velocity is (00.

In the course of time, the angular velocity assumes smaller

and smaller values, until (1),,° is reaches when t = eo and

s = w. The initial angular velocity has a magnitude of

stinzv

A3

Hzcoszv
30Cg ( )

with

A0 = AB+2ms5 (31)

The final angular velocity, with A, = eo, has a magnitude

of

Hc05v

(32)

CB

we, =

The relationship between kinetic energy (9) and bead posi-

tion s for the same gyro is plotted in Figure 5. Figures 4

and 5 are for en example with v = 60°, AB = 60 m2 kg.

CB =102m2 kg, m = 3 kg, so = 0,5 m, H =150Wsz,and

c = 12 MNs/m.
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Flgure 5

Kinetic energy versus bead position



 

7 Euler Angles as Generalized Coordi-

nates

If the kinetic energy expression, in terms of generalized

coordinates, is known, i. e. for the present gyro,

1 1 1 1 1
T=— 2+— 5+ —+— 2
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25invtanv W ° 4m

then the generalized velocities are obtained by partial

differentiation, i. e. a, = resulting in

I
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Asinzv W Asinvtanv ( )
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ö=— + p + l + 1 (34c)

Asinvtanv w C Atanzv pa
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The constant angular momentum H has the covariant com-

ponents

pw = H (35a)

pv = 0 (35b)

pa = Hc05v (35c)

Consequently we have for the Euler rates

- H
W = —A (36a)

it = O (36b)

%C— H005v (360)

In order to obtain a relationship for the velocity 5, we need

the kinetic coenergy

T' = ä [Ant/2 sinzv + {12)4- C(a'I/cosv + (7)2 + 2mé2]

(37)

The Lagrange equation for s requires that

d aT* aT'

— —_- — — = o. (38)
dt as as

Recalling equation (8a) for the changing inertia moment A,

and writing 0; = - 20s, and using equations (36) we obtain

2 ' 2

ms — m—Hsm v s = - c's (39)
A2

which is the same as equation (19).

8 Conclusions

The torquefree model gyro used in the present paper has

been devised such that it dissipates energy while defor-

ming. The deformation is chosen such that only two princi-

pal inertia moments are affected, and that the gyro remains

axisymmetric during deformation. The model gyro adopted

is consequently of a type which ensures that all equations

are exact. it is then shown that the attitude angle remains

constant during energy dissipation, and that the latter con-

tinues until the time becomes infinite and the beads reach

an infinite displacement.

Nomenclature

A, A, C Principal inertia moments, m2 kg

Busbody

Masscentre

Damping energy, J

Force, N

Angularmomentum, Ws2

Inertia moment, m2 kg

Massless rod

Kinetic energy, J

Y, Z Space-fixed coordinates, m

Damping coefficient, Ns/m

Bead mass, kg

B Busmass, kg

Bead position, m

Time, s ‘

u, v, z Floating principal coordinates, m

x, y, z Gyro—fixed coordinates, m

Angular velocity, rad/s, offloating Cuvz

Nutation angle (,,Attitude“)

Spin, rad/s

Precession, rad/s

Angular velocity, rad/s, of gyro

~
m
3
3
0
_
>
<
~
1
:
o
‘
:
m
b
o
u
:

e
«
a
s
-
2

n

References

[1] Hughes. P. C.: Spacecraft Attitude Dynamics. John Wiley and

Sons, New York, 1985, 576 p.

[2) Kessaris, A.: Attitude Drift of an Axisymmetric

Gyrostat. Ph. D. Thesis. University of Toronto, 1992, 178 p.

[3] Magnus, K.: Kreisel. Springer-Verlag, Berlin, 1971, 353 p.

[4] Ftimrott, F. P. J.: introductory Attitude Dynamics. Springer-

Verlag, New York, 1988, 383 p.

Address of the authors:

Dr. F. P. J. Rimrott

Professor of Mechanical Engineering

University of Toronto

Toronto, Ontario

M58, 1A4

Dr. G. Semenov

University of Toronto

Dr. A. Kessaris

Lakehead University


