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The Rotating Elastic-Plastic Solid Shaft with Free Ends

Werner Mack

Subject ofthe paperis the distribution of stress, strain and displacementin a rotating solid cylinder ofelastic-perfectly plastic material with

free ends. The treatment is basedon Tresca's yield condition and its associated flow rule.

Der rotierende elastisch-plastische Vollzylinder mitfreien Enden

Unter Zugrundelegung der Trescaschen Fließbedingung und der zugeordneten Fließregel wird die Verteilung von Spannungen, Dehnung

und Verschiebung in einem rotierenden elastisch—idealplastischen Vollzylinder mit freien Endenuntersucht.

1. Introduction

The stress distribution in a rotating plastic cylinder was first

studied by Nadai [1]. Since then, interest in this topic has

never ceased. Due to the different aims of the authors, they

investigated different aspects of the problem. While Davis

and Connelly [2] and Lenard and Haddow [3] studied fully

plasticized cylinders, Hodge and Balaban [4] considered

the elastic-plastic case. However, the solution of Hodge

and Balaban fails to meet the necessary continuity require-

ment of the displacement field. This was shown by Garner

and Sayir [5], who analyzed a rotating elastic-plastic solid

shaft with fixed ends.

Subject of the present paper is a rotating elastic-perfectly

plastic solid shaft of radius b with free ends. Basis of the in-

vestigation is Tresca's yield condition and the associated

flow rule. It is assumed that the shaft retains its circular

symmetry throughout the loading process and is suffi-

ciently long for the stress and strain not to vary along the

shaft. Then, the principal directions of stress and strain are

the radial, circumferential and axial direction.

it is well-known that plastic flow starts in the center of the

shaft [1]. There, the radial stress equals the circumferential

stress, and, at an angular speed on = (1),, two different pla-

stic regions emerge simultaneously and spread outwards.

The stress state in the core corresponds to an ,,edge re-

gime“ of Tresca's prism with the yield condition

0, — oz = 00 and 09— a2 = 00. in the outer plastic region, the

yield condition reads 09 — a2 = eo. Next, at u) = (1)2, the ela-

stic region adjacent to the shaft’s edge

disappears and a totally plastic state is attained. However,

the plastic collapse state is not reached before the radial

stress becomes equal to the circumferential stress

throughout the shaft for u) = we. ‘

2. Basic equations

2.1. Elastic region

The equation of motion

do, + 0,-09

dr r

 

= -gw2r‚ (2.1.1)

and the geometric relations

du __u_

3l’ = 1 £6 _— 2.1.2

dr r ( )

hold in the entire shaft irrespective of the material beha—

viour.

In the elastic case stresses and strains are related by

Hooke’s law,

   

= 26 + e,0/ (5r 1_2v )

09 = 2609+ " 6), (2.1.3)
1—2v

a — 26(e + V e)
Z _ z 1_2v I

where

e = £,+ 59+ 5, (2.1.4)

means the dilatation.

Considering the condition of generalized plane strain, .9, =

const, one obtains the displacement

C1 1 '— 2V

u =—+Cr-—— wzra. 2.1.5

r 2 16(1—v)G 9 ( )

The C, indicate constants of integration. Therefrom the

stresses

     

C 2G 1+2 2 G

a, z 2G —1+ Cg“ V gruz’r2 v 5„

r2 1—2v 8(1—v) 1—‚2v

(2.1.6)

C 2G 3-2 2

09 = 2G —1 + Cg- v gw2r2+——VG— 5„

r2 1—2v 8(1—v) 1—2v

(2.1.7)

a, = v(a,+09) + 2(1+v)Gez (2.1.8)

are arrived at.
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2.2. Plastic region I, a, = 09 > 0,

Since

a, = 09, (2.2.1)

Tresca’s yield condition reads

a, — o, = on, 09 — a, = on (2.2.2)

where 0° denotes the uniaxial yield stress. Integration of

the equation of motion (2.1 .1) together with the yield condi-

tion leads to

a, = 09 = — % gw2r2+ 03, (2.2.3)

o, = — 0° — é gw2r2 + 0;. (2.2.4)

Because of plastic incompressibility, the dilatation is gover-

ned by Hooke’s law,

_ 1 — 2v

2(1 + v)G

Thus, considering the geometric relations (2.1 .2), an equa-

tion in u can be derived,

(a, + 09 + 0,). (2.2.5)

du u 1—2v 3 22

—- — =———-—— -— —— +3C - ,

dr r 2(1+v)G ( 0° 29“” a) '5’

(2.2.6)

with the solution

1—2v 3 23 C4 1

u=———— r—- +3Cr+——-— r.
4(1+v)G(°° 49"” a) r 28’

(2.2.7)

The plastic parts of the strains are found as the difference

of the total strains and their elastic parts, which are calcula-

ted with the help of Hooke's law,

Pl = m[—oo+(1-2v)(—-:— 9w2r2+Cg)]— Sig—~21- 5,,

(2.2.8)

p, _ 1 _ _ 1 2 C4 _ 1
g — mI oo+(1 219(2- gw r2+Ca)]+; 5 8„

(2.2.9) '

sg' = —7——— [a,+(1—2v)(1 pwzrz-C3)]+£z.
2(1 +v)G 2

(2.2.10)

2.3. Plastic region II, 09 > a, > 0,

Here, the yield condition adopts the form

(79 — a, = 0°. (2.3.1)

As a consequence of the flow rule

55’ = - 2‘1”, 8‘,” = 0. (2.3.2)

Hence

a, = e‘,” (2.3.3)

and

89 = e3’+ 55' = 53+ 62'— 5,. (2.3.4)
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Next, these strains are inserted into the compatibility condi-

tion

d

8‚=-—— (Egr).dr (2.3.5)

Their elastic parts can be expressed in terms of the stres-

ses via Hooke’s law, so that

o,—v(2ag—ao) = (1 —v)[2Fd- (oar) —0„]

: d ’ (2.3.6)

— 2117;;(o,r)-2(1+1I)Gsz

In the derivation, use has been made of the yield condition

(2.3.1) and the condition of generalized plane strain,

62 = const. With the help of the equation of motion (2.1.1)

one obtains

  

dza do

r2 6 +3r —9 +(1—R2)09

dr2 dr

(2.3.7)

1_ 2

= [ca—(1+6v)gw2r2+2(1+v)Gsz]

1-2v

where

1

Ft2 =—-—. (2.3.8)

2(1—v)

The solution of (2.3.7) is

1

09 = Csr‘("“’+05r‘”+"’+ —— 0.,

1—2v

(2.3.9)

1+6 2 1+v G

- —-—-v—gw2r2+—(———-)— 6,.

17— 18v 1 -2v

From (2.1.1) there follows

a, = C5 “"")— CG PUT”) + 0.,

R 1—2v

(2.3.10)

2 3—21: 2 1+ G

- ——-() w2r2+ ——-(v) a,

17- 181: 1—2v

and from the yield condition (2.3.1)

2v

0, = C5r“""’+csr'"+"’ + — 0°

1— 2v

(2.3.11)

21+ G_ 1+6v 2 + ( V) er

17-18v 1 —2v

Now, (2.3.4) and (2.3.9) - (2.3.1 1) yield the displacement

 

[(1—v—%)C5rn+(1—v+%)Csr‘fi]
ä (1 +v)G

(2.3.12)

1 1 — 2v

+ —— aor— —————— 9w2r°+£zn

2G (17—18v)G

Finally, since aß’ = —s’‚" = 53’ — sz, Hooke's law gives

the plastic strains



1

8’" — —s”’ = ———-—— 1—v—Z C r“"“’8 z 2(1+v)G R) 5

(2.3.13)

1+ 1—2
+(1-v+’—:)Csr‘"+m— LlK—l) w2r2].

17— 18v

3. Stress distributions

3.1. In the elastic range a) s w,

For the determination of the three unknowns C1, Cz and e,

in the equations for the stresses and the displacement,

three conditions have to be found. Two of them read:

r = 0: u = O, (3.1)

r = b: a, = O. (3.2)

The third one follows from the presupposition of free ends,

which implies that the total axial force on any section is

equal to zero,

211 of" azrdr = 0. (3.3)

in the Appendix, these integrals are listed for the diffe-

      

yielding starts in the center of the shaft and the plastic re-

gions I and II emerge. Subsequently, the shaft is composed

of the plasticregion I for 0 s r < r1, the plastic region II for

r1 < r < r2 and the elastic region for r; < r s b. Besides

the border radii r, and r, there are seven more unknowns:

C1, Cg, Ca, C4, C5, C, and 5,. Of course, the conditions

(3.1 ) — (3.3) are needed here again and also in the following

stages of plastic flow. They are completed by

r = r1: 0!” = aß”), (3.8)

u") = u””, (3.9)

aß”) — 0;”) = 0°, (3.10)

r = r2: 0)”) = 09’”, (3.11)

u’”’ = UM, (3.12)

05"” — of” = 0.,. (3.13)

In these equations the superscript denotes the region.

From the above conditions, beginning with those for the

elastic outer shell, the constants of integration can be ex-

pressed in terms of the radii r1, r; and the axial strain ex:

          

. . .
,2 2 1—2rent elastic and plastic regions. 1 = 21:2 2 00+ V Qw2[,§_(3_2,,)b2]

With the help of the above conditions, one obtains £0-27) 2+b JG 8(1 _v) (3 14)

C1 = 0: (3-4) + 2(1+v)Ge,},

1 — 2 3 — 2
=WQ“)? b2 _ „z, (35) 1_2v

16(1 - v)G
2 = ________2 (vor; + gw2[(1-2v)f3

where 2[(1—-2v)r§+b JG 8(1-—-v)

v 2 2
(3.15)

s = — —-——— a) b. 3.6

z 4(1+v)G Q ( ) + (a—2v)b‘}+2(rä—1 v b2)Ge,},

Note, that a, = 09 > a, for r = 0 and 09 > a, > 02

for 0 < r s b!

C3 = 93 ‚7(1—n)_ 93 r;(1+n)+ ‘70

3.2. In the elastic-plastic range w, s w s w; R 1 -2v

At the angular speed —2v)) w2r2+ 2(11 +2106 81’ (318)

—18v - V
8 1- 3.19

a) = a), = —-—————(woo , (3.7) C‘ = 0' ( )
(3—4v)9b2

1—v+Z

_ H 1—H 1 1 2C5-— ——-— Rr { a —(3—2v)[ — w2r2—
2(1—v) 2 2v ° 8(1—v) 17—18ng 2

Ce
— Ge —2G( — +

1—2v ' 1—21» )}

1+v 1 1-2v 1

+ ———-—r""{—-—a —————[————-—— wzrz—Ge +
2(1—v) 2 2 ° 2 8(1—v) 17—15ng 2 ’

C

+ G( 2' + 02)),
‚2

(3.16)

Ca = Rr§+"( Ei r5"’”’+ o°+(3-2v)[ — jgw2r§+
R 1—2» 8(1—v) 17—181:

C C

+ e,+2G(—' -— 2 )}‚
— v r5 1—21: (3.17)
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In the derivation of these relations, no use has been made

of the conditions (3.3), (3.9) and (3.10). Theyforrn asystem

of three equations in the three unknowns n, r; and 51.

Although a lengthy expression for e‚(r„ r2) could be found,

it is more convenient to solve the whole system numeri—

cally.

3.3. In the totally plastic range wg s w s (03

At (0 = (02, the elastic region disappears and the entire

shaft behaves plastically. The angularspeed (02 is determi-

ned by the condition

r2(w2) = b- (3.20)

However, this is not the plastic collapse speed. A further in-

crease of the angularspeed causes the borderr, to migrate

to the edge, and the collapse state is reached when the pla-

stic region II has vanished. During this flow phase, the con-

ditions (3.1)—(3.3) and (3.8)-(3.10) are still valid. They

suffice to determine the six unknowns Ca, C4, C5, Cs, r, and

sz. While Ca and C4 remain unchanged. one obtains

First, Fig. 1 shows the evolution of the border radii with in-

creasing angular speed.

The stress distribution for four different angular speeds is

depicted in Fig. 2. it is interesting to watch the development

of the plastic regions and the growth of the plastic strains

presented in Fig. 3 simultaneously. Note, that at the col-

lapse speed 93 the radial and the circumferential stresses

are equal throughout the shaft, but not the corresponding

plastic strains! Figure 4 exhibits the evolution of the displa—

Cement. In contrast to a rotating tube with free ends (Mack

[6]), the displacements remain small even beyond 92, that

is, when the shaft has reached the totally plastic state.

Finally, Fig. 5 shows the stresses remaining after the

stand-still for three different maximum angular speeds. As

soon as the angular speed decreases, the whole shaft be-

haves elastically again and the stresses after stand-still are

found by subtraction of the stresses occurring in an unli-

mited elastic shaft from those in the actual one at the same

maximum angular speed. However, this holds true only be-

cause the residual stresses reach nowhere the yield

limit, that is, secondary plastic flow does not occur.

    

   

 

   

  

     

   

_(1+R)b,+nr7mm[ 1 or 2(3—2v) w2b2+ 2(1 +v)G £2 _ 5(1-2v) 2r?

C 1——2v 17—18v 1—2v 17—18v

5 =

1 1
1- _ ,—(1-n) + 1+ _ b2R‚h(1+n)

( R) 1 ( R) 1

(3.21)

C 1 9

c6 = Rb”"[—5 b‘"‘"’+ a,
R 1—-2v 40i _ Ä _ V _ b _ _ ä i __‚“3:4'

2(3 2 2 1 G (3'22) V t— v +

_ __)_ wzbz + u. 81]. g

17—181: 1—2v b plastic

>_ region !

The equations (3.3) and (3.9 )are used to calculate r, and 3‘6 :

2,. Here, s, can be expressed in terms of r,- in principle. _ „mm

At > region II

3.6 1
w = (03 = g 00 ' (3.23) 92:3.5498

b Q
_

the border r, coincides with the outer boundary b, that is, H _

the plastic region I occupies the whole shaft (compare [3]).

Then, the stresses take the forms H

1 _

o, = 09 = 5 (b2 - r2)? wg. (3-24) 3.2 5

1
C elastic

a, = —o., + E (b2 — f2)Q wg. (3.25) “film region

it is not possible, for a shaft of perfectly plastic material, to „j;

exceed (1)3. I. 1 1 r l 1 1 l r r . x

n 5 1.0

4. Numerical results

Figure 1
For the numerical treatment of the problem, the following

non-dimensional quantities are introduced:

Iiü uE/(boo)‚ x =r/b,

(4.1)

Q = g wzbzloaE] SIE/0°, Ö] = 01/09,

In the following, Poisson's number, v, equals 0.3.
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Evolution of the plastic regions with increasing angular speed
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Appendix

The integrals

I(s, t) = 51' azrdr, (A1)

where s and t denote two arbitrary radii, take the follo-

wing forms:

a) in the elastic region

I(s, t) = — gw2(t‘- s‘)

8(1-v)

+ [2sz+(1-1')£z](t2-sz) (A2)

 

1- v

b) in the plastic regionl

l(s‚ t) = — ä g w2(t‘— s‘) + ä (Cs — 0°)(t2 — 32) (A3)

c) in the plastic region ll

Cs

 

Cs
Is’t = t1+fi_s1+fi + t1—R_ST-H

( ) 1—+R( ) 1*": ( )

1+6 7

+ v 0°(t2-—sz)——-———--—v—— 9w2{t"-—s“)
1—2v 4(17—18v)

1+ G

+ %€z(t2“82) (A4)
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