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Bifurcation Phenomena in a BVP with a Regular Singularity
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Die Arbeit verfolgt das Ziel, den Einsatz modernerund ausgewiesenernumerischer Algorithmen beim quantitativen Studium des Beu/ver-

haltens von Kugelschalen zu demonstrieren, die durch einen gleichmäßigen Außendruck belastetsind. Die zugehörigen Modellgleichun-

gen stellen ein parameterabha‘nglges nichtllneares Zweipunkt-Randwertproblem dar, das sowohl verschiedene Bifurkationsphänomene

als auch eine sogenannte reguläre Singularität aufweist.

Ein Ausschnitt dernumerisch erzeugten Lösungsmannigfaltigkeit wirdin Form von Bifurkationsdiagrammen angegeben.

The aim of this paper is to demonstrate the use of modern andsophisticated numericalalgorithms in the quantitative study ofthe buckling

problem ofa spherical shell under a uniform external pressure. The corresponding governing equations are a parametrizednonlinear two-

point boundaryvalue problem which exhibits several bifurcationphenomena as wellas aregular singularity. A section ofthe numericallyge-

nerated solution manifold of this boundary value problem is represented in form of bifurcation diagrams.

1. Introduction

A number of authors have studied the buckling and post-

buckling behavior of elastic shells (see. e.g. [1], [4], [7], [8],

[12]— [15], [19], [21], [22]). The corresponding governing

equations are parametrized nonlinear ordinary differential

equations (ODEs) exhibiting several bifurcation pheno-

mena. The first quantitative results for the mathematical

model of an axisymmetric spherical shell are given in the

paper of Bauer et al. (1970) [1], whereas most of the other

publications offer only a qualitative insight. The date of pu-

blication of this remarkable paper is characterized by a first

culminating point in the bifurcation theory. This is confir-

med by a series of monographs published later [2], [5], [6],

[11], [25], [30]. in contrast to the theory respective numeri-

cal approaches have been developed in recent years only

[161—[18], [20], [25], [27], [31]. Thus it is not surprising that

the numerical techniques used by Bauer et al. (1970) [1]

are quite simple and heuristic.

The aim of this paper is to demonstrate the use of modern

and sophisticated numerical algorithms for boundary value

problems (BVPs) (see the monographs of Wallisch and

Hermann (1987, 1985) [31], [32]) in the quantitative study

of shell equations. By a quantitative study we understand

the computational generation of a section of the solution

manifold of the parametrized ODEs.

2. Shell equations

We study the buckling problem of a spherical shell under a

uniform external static pressure. The investigations are re-

stricted to the case of a linearly elastic, homogeneous and

isotropic material. Further only axisymmetric deformations

of the shell are allowed. This latter assumption is not as

academic as it might appear at the first moment, because

the production process of spherical shells frequently fa-

vours axisymmetric imperfections which create a prefe-

rence for axisymmetric buckling patterns. Moreover, we

want to give an application of some theoretical and numeri-

cal concepts for handling bifurcation problems. Shell equa-

tions fulfilling these requirements are given by Bauer et al.

(1970) [1]. The governing equations can be reduced to a

BVP for the following system of 4 first order ODEs:

W!) = Nat/:1),

Here y(t) is a four-dimensional vector with components

y,(t), i= 1(7)4, and f(t,y;/l) is a four-dimensional vector

with components f}, i = 1(1)4, defined by

0 S t S 71(7r/2). (1)

f, -=' (v—1)y‚cot(t)+y2+{kcot2(t)—Ä}y4+y2y4cot(t)‚

f2 E .Va:
(2)

fa E Y2{C°t2(t)-v}—YJ°°t(t)"Y4—0-5(Y4)200‘(U.

f4 E (1—v2)/k y1—vy4cot(t).

v is Poisson's ratio (we have used v = 0.32 [steel]) and k is

proportional to the thickness of the shell (we have used

k = 0.001 ). We refer to l as the load.

The components of y are defined in terms of physical quan-

tities by y, = m(t), ya = q(t), ya = s(t), where m, q, s are

proportional, respectively, to the radial bending moment,

the transversal shear, and the circumferential membrane

stress. y4 is proportional to the angle of rotation of a tangent

to a meridian.

Finally we consider the hemisphere only. The corresponi

ding boundary conditions are

y2 = y4 = 0, t = 0,.7r/2 (Hemisphere). (3)

3. The bifurcation problem

The equations (1)—-(3) represent a bifurcation problem

which can be written in the form of an operator equation

T(y,/l) = 0,

where T(Y, Ä) Ey'—f(-,y;}.) and X, Y are appropriate

Banach spaces [31].

T:ZEXxR—>Y‚ (4)

it can be easily seen that the trivial solution y(t) E O is a

solution for all values of the parameter A, i. e.

T(0‚Ä) = 0 VA 6 R. (5)
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The aim of our contribution is to present a section of the so-

lution field of (4). To do this we have to handle the following

numerical problems:

(i) determination of the primary bifurcation points,

(ii) determination of nontrivial solutions in the neighbour-

hood of these singular points,

(iii) after some solutions have been determined on a non-

trivial branch, tracing this curve (and detecting other

singular points: turning points or secondary bifurcation

points).

Our approach to problems (i)— (iii) consists in the use of

the sophisticated multiple shooting code RWPM (see the

appendix in the book of Wallisch and Hermann (1985)

[32]). Singularities are removed by embedding the original

equations in extended systems or by the application of indi-

rect methods.

Apart from the bifurcation phenomena, problem (4) exhi-

bits one further difficulty: the right-hand side (2) has a sin-

gularity at t = 0. Thus, in the shooting method the initial

value problem- (IVP-) codes fail.

De Hoog and Weiss (1985) [10] study lVPs of the form

z’ = (1/t)Mz+g(t,z) -=— G(f,z), O s t s 1,

z e C’((0, 1],R”), 2(0) = n. (6)

where z and g are n-vectors and M is a constant nxn ma-

trix. The authors prove the following result.

Theorem 1: Assume that

(i) M has no eigenvalues which are purely imaginary or

have a positive real part,

(ii) the initial vector satisfies 77 e N(M), and

(iii) g(t,z) is continuous w.r.t. t and uniformly Lipschitz

continuous w.r.t.zfor0 s t s 1 and all 2.

Then (6) has a unique continuously differentiable solu-

tion z(t). Furthermore, if g is p times continuously dif—

ferentiable, then 2 e CP*‘([O‚ 1],R"). I

Let

Yr = Z1: Y2 = tZz. ya = 23, y; = tz4. (7)

Then (1), (2) can be written in form (6) with „

cot(t) = 1/t—cöt(t) [cöt(0) = 0], z E (2„ 22, 23, 24)T,

11—1 0 0 k

(7—1’2)
o o—1+k (v)

9, = (1—v)z1c6t(t)+tzz+[k(tvcét2(t)—206t(t))—U.]z4

+ (t—t2c6t(t))zzz4,

gg = 0‚

ga = 22(t-cot2(f)—2c6t(t)—vf)+zacot(t) (8)

— 124— 0.5(t—t206t(t))(z4)2,

94 = vz‘ c6t(t).

178

Obviously the eigenvalues of M are {—2, 0, 0, —2}, and

the assumptions of Theorem 1 are fulfilled. When the

shooting method is used, the relevant initial conditions are

22(0)—23(0) = 0, kz.(0)+(v—1)z1(0) = 0 H 2(0) e N(M)

(9)

Sincez(0) e N(M), we havez'= (1/t)M{z(t) —z(0) } +g(t‚z).

Then the relation

(Eng z’(t) = rin3:M(z(t)—z(0))/t+tli>rr5 g(t,z(t)) implies

z’(0) = (I- M)"g(0,z(0)),i.e.G(0,z(0)) = (o, 0, 0,0) T.

(10)

Thus, before applying the multiple shooting code to

(1)—-(3), we have transformed these equations into the

form (6) using the change of variables (7). The resulting

BVP

{G(t,z(t)), t at 0

z’(t) = (11)

(0,0,0,0)T, t = 0

k24(0)+(v-1)Z1(0) = Z2(0)-Za(0) = 0,

22(7r/2) = 24(n/2) = 0

is well-defined at t= 0. Ourexperience is that the Bulirsch/

Stoer/Gragg extrapolation method (1980) [29] works very

reliably in combination with our multiple shooting code

RWPM applied to (11). Moreover, in comparison with other

numerical techniques for BVPs with a regular singularity

(e.g. Taylor expansion methods [23, 29]) our approach re-

quires much less amount of computational work and/or

cumbersome analytical evaluations to achieve a prescri-

bed accuracy. But the main advantage is that standard co-

des (multiple shooting, extrapolation) can be used imme-

diately.

4. Numerical determination of the pri-

mary simple bifurcation points

In order to compute the bifurcation points

20 E (0, 10) e Xx R with standard codes, we used the follo-

wing determining system

1(2) = o (12)~

where

ZERXX —> YxR

T: Ty(0,fi.)¢

2501,41) *‘>

(bzw—7

and

(poeX: Ty(o,/to)¢,,= o, Ilzpoll = 1; rise X':¢3¢a =1.

There is a one-to-one correspondence between the bifur-

cation points of problem (4) and the isolated solutions of

(12) (see e.g. [31]).



If we use the functional

n/2

¢av a of ¢o(t)’v(t)dr

and express the conditions mm = 1 and 1. = const. in

form of ODEs

E'Ü) = <Po(f)T<Po(f)‚ 5(0) = 0, 501/2) = 1; Ä'Ü) = 0.

then the determining system for (1) - (3) is a BVP of order 6

(= n + 2). This BVP exhibits the same regular singularity as

the original problem (1) — (3). The singularity can be elimi-

nated with the transformation (7), i. e.

4’1 = V1. $2 = W2. 4’3 = Ya. ¢4 = W4; E: Vs, Ä: Y6‚

which results in a well-posed BVP

y'=(7/t) [’3 g] y+g(l‚y)‚ yE(yi.Y2..-..y6)’ (13)

Y2(0)-ya(0) = kY4(o)+(V—1)Y1(0)= 0, y5(n/2) = 1.

y5(0) = y2(7r/2) = „(n/2) = 0; see formula (8) for the

definition of M e n‘“.

g satisfies g(0,y(0)) = [0.0,0,O‚y1(0)2+y3(0)2,0]T. We

used a homotopy strategy for evaluating as much as possi-

ble bifurcation points from (13). For this purpose we com-

puted a solution of (13) with the code RWPM (starting from

a small value of the load parameter ys = A). Then we in-

creased the load successively and used the result of the

preceding step as a starting trajectory for the actual call of

RWPM. Approximations of the first 7 bifurcation points

z, E (0,1,) are given in Table I.

  

Table l

Bifurcation Points of Problem (1 ) — (3)

i Bifurcation Point Bilurcation Point 52

Computedwith RWPM Approximated with

(Formula (13)) a Linear Buckling

Theory [1]

1 7.061 597 232 D-2 7.061 60 E-2 8.5 0-2

2 7.505 725 485 D—2 7.505 73 E-2 ——1 .6 D-1

3 9.360 460190 D-2 9.360 46 E-2 5.3 D-2

4 1.309 927 688 D-1 1.309 93 E-1 3.6 D-2

5 1.795 041 756 D~1 1.75904 E-1 2.7 D—2

6 2.1960213000-1 2.19602 E~1 -—4.4 0—1

7 2.379 916695 D-1 2.379 92 E-1 2.1 D-2

      

The intrinsic quality of the bifurcation points (6. g. symme-

tric or nonsymmetric points) is reflected by the second

bifurcation coefficient [9]

a2 E IPST‘JmoZ

where was Y‘:N(T3*) = spanwa). ll w3|l = 7-

(T‘; E „(0,10) etc.) (14)

In order to compute and to check a2, we have combined the

BVP (12) for 4)., and the corresponding adjoint BVP for wo.

lf we define

n/2

W'ovE GI wo(t)Tv(f)dtand transform a2 = —w;f3y¢oz

into DE form .57!) = —wo(f) Tf$y¢o(t)2, 6(0) = 0, thenthe

second bifurcation coefficient is 501/2) = a2. Therefore

we have added this scalar DE to the determining system for

q) and w resulting in a BVP of order 13 (= 2n + 5):

Q, = ”(901%)?

1' = o. E; = W wo) = Mo) = 0. yum/2) = wahr/2) =1

¢2(0) = 454(0) = 0. (bzw/2) = <P4(7t/2) = 6

w' = —fy(t,0:;t)Ti/2 51(0) = 62(0) = 53(0) = 0

fl' = 0. 55 = W711) i’m/2) = 5207/2) =7

55 = -wrfyy(f.0;l)¢2- (15)

Since (15) also contains the adjoint equations, the elimina-

tion technique. for the regular singularity (in these equa-

tions) has to be modified. In fact, the following change of

variables transforms (15) into a BVP of the form (6):

¢1= Y1. (P2 = 1Y2. (P: = Ya, (P4 = (Y4, 51: Y5. Ä = Y6

(see (13)),

'1’1 =‘2Y7. W2=tYai ¢a=tzygi ¢4=W1oi §2=Y1n

fl=Y1zi 53=Y13- (16)

The resulting well-posed problem is (y E (y,,y2,...,y,3) T):

M 0 o

1 0 0 _

y'=t— 00 M 0 y+9(t.y)

0 0

MO) -st0) = 0. yam/2) = Nit/2) = 0.

kY4(0)'(7—V)Yi(0) = 0, Y5(0) = 0‚ stfl/Z) = 1.

Ys(0)+Y9(0) = 0i ‚WM/2) = WWI/2) : 0.

ky7(0)+(1 -v)ym(0) = 0. 1711(0) = 0

Yum/2) = 1, y‚3(0) = 0; where

 

7--v2

—(1+v) 0 O

__ k

M E o -1 —1 o (17)

0 —1 —1 O

—k o o —(1—v)

and 9 satisfies g(0,y(0)) = [0,...,0, y,(0)2+y3(0)2,0,...,01T.

The second bifurcation coefficients given in Table l have

been obtained by applying the code RWPM to the transfor-

med problem (17).

5. Numerical determination of solutions

in the neighbourhood of the bifurca-

tion points

Assume that the (primary simple) bifurcation points

20 E (0.1.0) and the corresponding vector functions (1)0

have been computed. Hermann (1986) [9] proposed a

transformation technique which enables to determine non-

trivial solutions of (4) — (5) in dependence on the problem

parameter A. We adapted this technique for the model

equations (1) — (3). As can be seen in Table I all bifurcation

points are non-symmetric ones. i.e. a2 ¢ 0. The suitable

ansatz for nontrivial branching solutions is

YW = "2(a1/az)(A—Ao)¢o+(l—Aoflu‘i'(p+Q)¢'o]

+(/1—,10)3v, ll—Aol s5; (13)
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where a, E Wänden (first bifurcation coefficient), p, q e R

and u, v e N (T3). The unknown vector functions u, v and

constants p, q are the solutions of the following BVP:

u' = rau + wo), a; = ¢Z(u+p¢o).

v' = rsv + Fru, v. p. q. c»... 1—10). es = «päv,

p'=0, q'=0‚ (19)

u2(0) = u4(0) = u2(n/2) = u4(n/2) = 0,

mm = V4(0) = V2(7r/2) = Mir/2) = 0.

51(0) = 5101/2) = 0: 52(0) = 5201/2) = 0-

d) and F are vector functions which are defined by fand its

derivatives w. r.t. y up to the 3rd order at y a 0, ‚1. = Ä,

In orderto make use of IVP-codes with automatic step-size

control, we constructed an enlarged BVP. It consists of the

determining system for 1.0, (pa and (19). Unfortunately. this

BVP has a regular singularity, too. However, the change of

variables

¢I=¢h “1:05. VI=\7I‚ 1:7‚3; ¢l=t¢p

u,=t0,, V1=t\7/‚i=2‚4‚

leads to a well-posed BVP in the transformed variables.

We solved this BVP with the standard shooting code

RWPM and a continuation strategy for increasing values of

i Ä — Äo I -

6. Path following, detection and compu-

tation of singular points

After determining some solutions of problem (1 ) — (3) in the

neighbourhood of a bifurcation point (using the methods

explained in Section 5), we applied path following techni-

ques in order to compute further points on the correspon-

ding solution branch. The basic tool was our curve tracing

code RWPKV [31] which will be described in the following.

It is an implementation of Seydel’s algorithm (1982) {28]

and is based on the multiple shooting code RWPM. Thus

all BVPs have to be formulated in standard form, i.e. as a

system of m (nonlinear) ODEs subjected to m (nonlinear)

boundary conditions:

2' = H(t,z), Ft(z(a),z(b)) = o. (26)

The adequate (augmented) representation of the BVP

(1) — (3) suitable for path following is:

y'—r(y.’.-x)

O — Ä, _

T W) = r(y(a).y(b)) ‘ 0' ‘2‘)

rn+15yk(a)-n[0rEl-ni

where r = 0 is the operator form of the boundary conditions

(3) and 27 is a fixed boundary value. k is referred to as ho-

motopy index. It has to be updated at each Homotopy

step. it can be easily seen that (21) is a BVP tractable by

FtWPM. Namely, if we set

wir}, j=1(1)n; Zn+1E/1; HE(f,0)’..

RE(r,rn+,)Tanden+1,

then (21) takes on the standard form (20).
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The following choice of the homotopy index k is crucial for

path following along simple solution branches (i.e. cur-

ves consisting of regular points and simple turning points

only):

k = [maxi Alm. max‚| (z,"(a) —zi‘2(a))/z,"(a) |‚

1 s l s n+1‚

where i denotes the actual number of the homotopy step.

With choice (22), it can be proved that the Frechet-deriva-

tive of the operator T° [see formula (21 )] is regular at points

on a simple solution branch. In order to detect simple tur-

ning points z“ E (y"‚ Ä"), the step size in l-direction has

only to be examined at each homotopy step. A change in

the sign of

d a (z’—/t"’)-(A"’—A"2)

indicates that a simple turning point has been run over. in

that case an approximation Ä" of the critical parameter

value Ä" is determined by the interpolation of the last three

points on the branch (which have been computed during

the homotopy process) using the quadratic polynomial

Ä = 01(Zk(a)'_ 02)2+ Cs- (23)

In formula (23), k is the actual homotopy index. If z’,

j = i—2, i—1,i, are the corresponding points in the neigh-

bourhood of z”, (22) guaranties k at n + 1. Thus we obtain

Ä" = C; and fl = c2, (24)

where ma) is an approximation of yHa) which

corresponds with Ä“. in RWPKV the rough approximation

9%(a) is used as a starting point (see Step 2 in Algo-

rithm l) for the computation of the simple turning point by

the following indirect method.

Algorithm l

 

Step 1 :

Set 2‘”: = 2”, 2‘”: = z"’, z“): : z’, z“): = 2‘”;

choose am. > 0, itmax > 0, j: = 0,-

Step 2:

j::/'+1‚' 27:=2t(a) {898(24)}:

Compute z’°’ as the solution of (21 );

Step 3: _

IF I Zk(°)(a) "210(3) I I l 215073) I < sie!

THEN z": = 2“” and Stop.

H: |Ä(o)__Ä(4) l ‚I AMI < am

THEN z”:=z‘°’ and Stop.

lF j > itmax

THEN Stop.

Step4:

IF (Zk”’(a)-Zk‘2’(a))-(Zx‘°’(a) ~Zi2’(a)) > 0



THEN

H: (1(1)_Ä(2)).(‚1(0)_Ä(2)) > 0

THEN 2‘": = 2“”

ELSE 2(3): = 2‘2); 2‘”: = 2“”

ENDIF,

ELSE

IF (1(a)_1(2)).(1(o)_,(r2)) > 0

THEN 2‘”: = 2“”

ELSE z"); = 2(2); 1(2): = z‘°’

ENDIF

END IF

2(4); = Z(2),.

Step 5:

With 2‘”, 2(2) and 2“” interpolate according to (23), (24)

and go to Step 2.

 

Our code RWPKV is also designed to detect bifurcation

points during the path following process. Here we will give

a short description of the fundamentals of the underlying

strategy.

Definition:

Let z" be a simple bifurcation point of the original problem

(1) - (3)-

Then r(z) is called a testfunction for (21) <—>

(a) 1(2) is a continuous function, and

(b) z" is a zero of 1(2) with multiplicity one.

There are many possibilities to define special testfunctions

[3], [13], [27]. In our algorithm the test function is related to

the system of nonlinear algebraic equations F(s) = 0

which has to be solved in the multiple shooting method.

The reason for using the associated shooting equationsis

that the following implications are valid:

(T°)'(z) is singular e data-"(5” z 0,

where sE(s’‚..„s“)’‚ s’a(s#,...‚s‚’„‚)r, s,’-Ez,~(t,),

j= 1(1)n+ 1, I = 1(1)M, M — total number of shoo-

ting points.

For a solution 2’ of (21) we define the value

M+UM

t’ E (-7)” H u”. (25)
i=1

where F ' = LU is the LU-factorization of the Jacobian F’

and w counts the row interchanges during the Gaussian

elimination.

if we have computed the three values r’, r"’ and t”2 in the

last three homotopy steps and it holds

r"2-r"1 > 0 and 1"1'1" < O, (26)

then the passing of a bifurcation point z” E (yb, It”) is indi-

cated. A first approximation of the critical parameter value

A” is computed by interpolation. Inserting the last three ho-

motopy points z’, j = i-2, i— 1, i, as well as the associated

values of the test function 1 into the ansatz

r = f‚zk(a}2 + f2 zk(a) + f3, (27)

we determine the unknown coefficients Ii, i= 1,2,3. Then

an approximation z‘k(a) of the critical value 2H3) is deter-

mined as that zero of the equation 1: = 0 which satisfies

z,’,'2(a) < (> ) z‘k(a) < (> ) z,’,(a). Finally, an approxima-

tion 1" of 1" is computed interpolating with the formula

Ä = d1 zk(a)2 + d22k(a) ‘1' d3.

And so it follows

i“ = d,2,‘:(a)2 + d22‘k(a) + d3. (29)

Remark 1:

r(y) defined in (25) clearly depends on the actual homo-

topy index and the number of shooting points used in the

last step. Thus, in order to accomplish a correct interpola-

tion, we have to compute the values I”, r"’‚ r’ at the

same index k with the same number and localization of the

shooting points.

A repeated application of the interpolation formulas (27)

and (28) results in an indirect method for the determination

of bifurcation points; see Algorithm ll.

Algorithm ll

 

Step 1:

Set z”): = 2”, 2(2): 2 z"’, 2‘”: = z’, z“): = 2(2);

t”): = rl‘z, rm: = 1””, H”: = r’, intval: = 2, j: = 0;

Choose am > 0, am. > 0, itmax > 0.

Step2:

i: =i+1; 17: = 22(8);

Compute 2"” as the solution of (21); Compute 1(0) accor-

ding to (25).

Step3:

IF l2k‘°’(a)—2k“’(a)l/IZt‘°’(a)| < Ere:

THEN z":=z‘°’ and Stop;

IF Hro)_‚1(4)|/|Ä(o)| < em

THEN z”: = z(°) and Stop;

lF | 1“”) < am

THEN z": = 2"” and Stop;

lF j > itmax

THEN Stop.

Step 4:

lF intva/ = 1

THEN
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IF ‚(0).‚0; < 0

THEN 1‘”: = rm", 2‘”: = z“)

ELSE 1‘": = r“), z”): = z‘°’

END IF

ELSE

IF 1(0) - 1(3) < 0

THEN 1‘”: = H"), 2‘”: = 2‘”)

ELSE 1(3):: 1(0), 2(3).- = 2“)

END IF

END IF;

z“): = z“).

Step 5:

IF I") 1(2) < 0

THEN intval: = 1

ELSE intval: = 2

END IF;

Accomplish the interpolations (27) and (28) with 2"), 2‘2)

and 2‘” for 2W with zI” < (>) zI‘” < ( > ) zIa’ and go to

Step 2.

 

Remark 2:

The disadvantage of Algorithm II is that the Jacobian of

(21) is singular at a bifurcation point. Therefore, bifurcation

points can only be computed with a restricted accuracy.

In RWPKV the user has the following options to compute

singular points:

(i) the approximation of the singular point with a restricted

accuracy using an indirect method (Algorithml or

Algorithm II),

(ii) the computation of the singular’point with an extended

system (see e. g. Section 4)

(iii) the combination of the above two strategies, i.e. the

improvement of the result obtained with the indirect

method by the subsequent solution of an extended sy-

stem.

We have studied the equations (1)—(3) on the basis of

strategy (ii). Further, in order to eliminate the regular singu-

larity of the equations (2), the change of variables (7) has to

be performed before the code RWPKV is run.

7. Numerical results

The bifurcation diagrams shown in the Figures 1 u- 3 have

been generated with the numerical techniques explained

above. The simple turning points which have been compu-

ted with Algorithm I are tabulated in Table ll.

All computations were executed on an EC 1056 computer

in double precision arithmetic carrying a mantissa of 16

significant digits.
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Figure 1

Bifurcation diagram of problem (1) — (3). y, (O) as a function of the

load P = ‚I.
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Figure2

Bifurcation diagram of problem (1) — (3). y3(0) as a function of the

load P = A.



 

Figure 3

Bifurcation diagram of problem (1) — (3). y,(0) and y3(0)as func-

tions of the load P = I. (SD-plot).

        

Table ll

Simple Turning Poinls of Problem (1) — (3)

i Simple Turning Point i Simple Turning Point

Computed with Computed with

Algorithm I Algorithm I

1,- ‚1.,-

1 1.044 966606 D-2 8 1.092 588 536 D-1

2 6.783193 893 D-2 9 6.565 326 428 D-2

3 7.126 531 645 0-2 10 1.366385 960 D-1

4 8.557434714D-2 11 7.359 173 869 D-2

5 4.822184831D-2 12 1.795044 640 D-1

6 6.629468 586 D-2 13 1.053 265 914 D-1

7 4.5401666800-2 14 3.062 204 680 D-1
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