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Study of dynamic plastic buckling of cylindrical shell impacted

by sudden constant load

Shiqiao Gao, Huimin Tan

Basedon Literature 3, in thispaper, the characteristic ofdynamicplastic buckling was studied of cylindricalshell impacted bysudden con-

stantload. Furthermore, critical buckling load and mode of buckling load andmode of buckling were also analysed.

1. introduction

Cylindrical shell is a typical part in engineering. It is neces-

sary to study response and buckling characteristic of it im-

pacted by shocking load. There was a few papers about the

study of dynamic plastic buckling of cylindrical shell impac-

ted by shocking load. In 1968, Florence [1] presented a ap-

proximating theory by which somethith about buckling

mode was discussed. In 1970, Henry [2] studied the buck-

ling mode of short cylindrical shell forced by explosive load

by means of experiment. in 1983, Wang [4] studied the cri-

tical shocking velocity of cylindrical shell impacted by bui-

let. in 1988, Wang Guotai and Tan Huimin [5] made some

experiment research of cylindrical shell by means of Hop-

kinson column principle. They gave some experimental re-

sults about critical time and critical load. It is known that, re-

search about critical time and critical load is limited in expe-

rimental area; In theoretical area only buckling mode is in-

vestigated. Therefore, Tan Huimin and Gao Shiqiao [3] stu-

died the critical time of cylindrical shell impacted by con-

stant velocity shocking load by both theoretical and experi-

mental methods. In this paper, based on literiture [3], the

critical load of cylindrical shell impacted by sudden con-

stant load was analysed and discussed.

in this paper, assumptions are as follows.

1° Cylindrical shell is long but thin shell;

2° Effection of stress wave is neglected;

3° Effection of boundary is neglected;

4° The material of sheil is strength material.

2. Govering equations

2.1. Equilibrium equations

in terms of bending theory of cylindrical shell, the dynamic

equation of cylindrical shell can be written by
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When the load is sudden constant load, fort :2 0, there is

N, = — N, so that equation (1) is changed to
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where w is normal displacement of middle surface of shell;

R is radius of middle surface; h is thickness of shell; 1‘ is

mass density; x is axial coordinate; y is circumterential

coordinate; M, and Ny are axial moment and circumfer-

ential internal force respectively; t is time (shown in Fig. 1)
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Figure 1

Structure and coordinates of cylindrical shell

The equation of moment MX and internal force Ny can be

written by

h/2

M, = — f 0, ~ Z - dz
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where o,t and 0y are axial stress and circumferential stress

respectively, 2 is normal coordinate.

2.2. Deformation equations

When the effection of stress wave and the effection of

boundary are neglected, relations between strain ratio and

velocity can be written by

[5,:5,+z-w"

[ éy= — (1-z/R)-i (4)
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Because z/R << 1, equation (4) can be written by

éx=éx+z~w

51:"? . (5)

where s'x and s", are strain ratio along axial and circumfer-

entiat directions respectively/:2} is strain ratio along axial di-

rection in middle surface; indicates derivative fortime t;

u n

‚ indicates derivate for coordinate x.

2.3. Physical equations

in terms of Reference [6], the dynamic physical relation of

cylindrical sheli forced by load in one direction can be writ-

ten by
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where E is Young’s modulus; u is poisson ratio; 0 = E / E„

and [5,, is tangient modulus.

Substituting equation (5) into equation (6) and integrating

them in direction of thickness, leads to

E
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For sudden constant load in axial direction, when t > 0, It],

= 0, Ieads to
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2.4. Vibrations equations

Substituting equation (5) into the first equation of equation

(6) and integrating them for time t (initial conditions are con-

sidered), then substituting it into equation (3), the M, can

be obtained. Integrating the second equation of equation

(8) for time t (considering the initial conditions), the Ny can

be obtained. Substituting M, and Ny into equation (2), leads

to

Aw“)+Nw(2’+Bw+CW=O (9)

where

(9+3)-E-h3

z 12[(5—4;¢)0—(1-29)2] ;

4~E-h

z (6+3)-R2

C=F-h

3. Critical Ioad of buckling

Equation (9) is a linear uniform partial equation. To solve

this equation, we assume w = X(x) T(t). Substituting it into

equation (9), leads to

(A.X‘"+N-X‘2’+B-X)-T+C-X-T=

that is

A-X“’+N-X‘2’+B-X _ C-‘I‘

X — T =ö (10)

 

where ö is a constant which is independent of x and t.

Equation (10) can be written by

A‚X(4)+N.X(2)+(B—ö)-X=0
(11)

C-T+6'T=0
(12)
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From equation (12), it is known that, when ö > 0, the vibra-

tion of cylindrical shell system is stable; when ö S 0, the vi-

bration is unstable. It is considered that, when the vibration

is divergent, the cylindrical shell bigin to plastiv buckling.

According to this principle, ö = O is a critical state.

From equation (11), the eigen-equation and eigenvalue

can be written by

tA~er‘+N'arz+(B--(5)=O

(13)

a = i \/ —N/2A :tv N2/4A2—(B—6)IA

From further discussion, it is known that, the condition

which make the cylindrical shell have non-zero solution in

uniform boundary condition is as follows

   

N2

B—Ö< 4 A (14)

and

"'7!

a= L (15)

where L is length of cylindrical shell, n is number of harmo-

nic wave.

By means of equation (15) and equation (13) and using the

critical state principle mentioned above, for critical state,

there is

2 2 2 2

7r n N = N _ E (16)
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Solving equation (16), leads to

B - L2 A - n 2 n2

N: +

n2er L2

 

From extrem value theory, we obtain that, when

4

‚FLVE (18)
n A

N has minimum value which is

Nmin=2 VA-B (19)

Using equation (9), leads to

2 Ehz 1

Nmin=

R \[3[(5-4u)9-(1-2u)2]

 

where Nmm is minimum buckling intemal force, n is first

buckling mode correspondingly. Furthermore, the mini-

mum critical buckling load can be obtained as

4.7tEh2

'(21)

V3[(5-4#)9-(1-2/4)2]

 

Pm: 2.7!R'Nm'n=

4. Discussion about critical buckling

load

From equation (20), critical buckling stress can be written

by

2E

V3[(5-4/4)9-(1-2!4)2]

h

0mm = NmIn/h z — (22)
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Assuming that yield stress of cylindrical shell material is os

and that strength limit is ab, when am.n < 0,, the first buck—

ling is elastic buckling; when as < am.“ < ab, the first buck—

ling is plastic buckling; when am >0b‚ there is no buck-

ling before damage due to strength limit. From equation

(22), it is known that. it depends on the relative thick-

ness h/ R which damage will emerge. When h/R < 0,5

V 3[(5—4;4)9—(1 —2;z)2] - as/E, the structure will firstly

be subjected to damage due to elastic buckling. When

3[(5-4u)9-—(1—2M)2]-as/25<h/R<

V3[(5-4‚u)(9-(1-2/4)2]-0b/2E, the cylindrical shell

will firstly be subjected to plastic yield and then be

subjected to damage due to plastic buckling. When h/R >

V 3[(5—4‚u)9—(1—2‚u)2] -a„/2E‚ there is no buckling

before damage due to strength limit.

5. Example and analysis of results

By means of the method mentioned above, in this paper,

the critical buckling load are calculated and analysed of cy-

lindrical shell impacted by axial sudden constant load (in

Fig. 2). in Fig. 2 R = 2.98 mm; L = 7.87 mm;h = 0.252 mm.

The material of cylindrical shell is copper whose Young’s

modulus E= ZOGPA, Poissson ration = 0.5, 9 = 15, yield

stress as = 140MPA. strength limit ab = 320MPA.

Stubstiuting the parameters above into equation (21), we

obtain that, the critical load Pm", = 737.3 Kg, the number of

buckling mode correspondingly n = 4.65 z 5. The change

curves of critical load Pmm, yield load P,s and limit load Pb

with thickness h for Fl = 2.98 mm are given in Fig. 3. lt is

shown from Fig. 3 that, ifh < 0.12 mm, the structure will be

subjected to damage due to elastic buckling before plastic

deformation; if 0.12 mm < h < 0.28 mm, the structure will

h
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Figure 2

Structure of cylindrical shell

Pm... PS, rob/kg

 

Figure 3

Curves of load

firstly be subjected to plastic deformation and then will be

subjected to damage due to plastic buckling; if h > 0.28

mm, it is impossible that buckling emerge before damage.
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