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Elementary investigations of the equation for a free surface

Jargen Socolowksy

Es wird ein freies Randwertproblem fir die Navier-Stokes-Gleichungen betrachtet, das einen VorhangbeschichtungsprozeB beschreibt.
Mit Hilfe elementarer analytischer Methoden werden eine Startidsung fir die Lage der unteren freien Oberfliche bestimmt und deren

Eigenschaften diskutiert.

A free boundary value problem for the Navier-Stokes equations describing a curtain coating process is considered. Using elementary ana-
lytical methods a starting approach for the position of the lower free surface is determined and its properties are discussed.

1. Introduction

In the present paper we consider the following flow domain
describing a curtain coating process in Chemical Enginee-
ring (cf. Fig. 1). The infinite flow domain G is bounded by
the rigid walls Z, I, Z3, and by the a priori unknown free
surfaces I'y and I,.
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Flgure 1
Flow domain of a curtain coating process

The problem is investigated in the plane JR? with a fixed
Cartesian coordinate system x = (xy, x,). The complete
mathematical description of the flow domain and the free
boundary value problem for the underlying Navier-Stokes
equations are given in [1], [2]. :

In this paper we are especially interested in determining a
starting approach for the position of the lower free surface
I'y. In[1]the solvability of the complete problem was proved
using the results given here. First of all in [2] a similar pro-
blem was soived the geometry of which was much simpler
than in the case considered here.

Figure 2 shows that part of the flow domain which consists
of the lower free surface I'y and its two endpoints Q ( %,
0), Q2(0, hy).

Now we can formulate the equation and the boundary con-
ditions describing the starting approach for the position of
Ty In order to do that we assume thatv=0andp = p, =
const. are starling solutions for the velocity and pressure,
respectively. Furthermore, we suppose that the free sur-
face I'y separates from the rigid wall £, at the static contact
point Q, and ends at the (a priori unknown) dynamic con-
tact point Q; on the moving rigid wall £,. The dynamic con-

Xy

Figure 2

The lower free surface in various positions

tact angle 9, i. e. the angle between the x, — axis and the
tangent to I'; at X, is given. Finally we suppose that I'; can
be described as the graph of a function ¥; with respect to
Xz € [0, hy]. These assumptions make physically sense.
We receive the following two-point boundary value pro-
blem (= BVP) for an ordinary differential equation of se-
cond order
d ¥ (x2)

dxo [1+ (¥(x2))?]"? ¥

=W(pec+Po—Bu) (x2€]0,h[) (1)
W, (h,)=0,%,(0)=—A:=cotO,. 2.1). (2.2)

From physical point of view the restrictionz/2 < @, = non
©, makes sense. Thus we have 0 < A = + «. The con-
stants 8, W are positive and they depend only on the Weber
number (i. e. surface tension) and on the acceleration of
gravity. The symbols g,, 8, dencte the positive (constant)
athmospheric pressures outside I'y and I, respectively.

Bxz

2. The solvability of BVP (1), (2)

Wedefinec,:=W(p.+ p,— P,) /8. FromEq. (1) wethen
receive

d ¥y (x2)
dxa [1+ (¥'4(x))*]"?
==—f(x2~¢C1) (x2€]0,h[) (3)
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Integrating Eq. (3) with respect to x, we obtain

¥ (x2) B 2
= == [Xp=Ci)" + g
[1+(¥(x2))%]"? 2
and after taking into account condition (2.2)
, A ¥y (x2)
Ca= — CT—
2 Y1+ A2 [1+(%,),]"?
B, ]
==(zx-Boix2+A), (4)

where A: = A (1 + A2)""2 was set. Obviously, 0 < A= 1
holds. Eq. (4) yields the following necessary conditions on
the solution

—1<F(X2).'=§X%—ﬂC1X2+A,
F(x2)=1.(x2€]0,h{[) (5.1), (5.2

In the sequel we have to distinguish some cases for the pa-
rameterc,.

a) Thecasec; =0

The expression on the left-hand side of Eq. (3) is equivalent
to the curvature of I'y at x,. Thus for ¢4 = 0 the function ¥,
is concave on the whole interval J; : = ] 0, h, [. From the
definition of F it follows that F ( x, ) > 0 holds on J; and
hence the function ¥, is a strongly decreasing one (cf. Eq.
(4)). To fulfill the inequality (5.2) it is sufficient to require

B _
Eh%—ﬂc,h,+A§1.

This condition is equivalent to the inequality

o h 1-A .
c I — - — .

= 3 Ty (6)

Inequality (6) can be fulfilled only, if the right-hand side of

1/ 2(1-A
(6) is negative, i. e. for h, = (—ﬂ)— ;

b) ThecaseO0<c;<h,

From Eq. (3) it follows that the function ¥ is convex on the
interval x, € [0, ¢, [ and concave on the interval x, € | c1 ,
hi].Dueto F'(x,)=B(x2— c)wehave

mnF(x,)=F(c,)=A—-—-c?.
X2 €J4 2

fF(cy)>—1,ie.if

c1<v ;-(A+1) (7)

holds, then the inequality (5. 1) is fulfilled. Furthermore,
note that

max F(xz)=max[F(0) F(h,)]
X2 €EJy ﬂ

=max[A,§h3—ﬂc1h,+A].

Since A = 1 we obtain the necessary condition

B2

5 h1'—ﬂC1h1+A§1
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in order to satisfy inequality (5.2). The last condition leads
to
h 1-A
g = - —— . 8)
2 Bh,
Since the right-hand side of (8) is less than h; we have to
verify only the condition

h; 1-A 1/ 2
2 Bhy B

which is fulfilled iff

h1<V§(A+1)+\/—2—ﬁ_— (9)

hold. Next, we study the monotonicity of the function ¥,.
Note that y is decreasing at x , = 0 (cf. Eq. (4)). The con-
dition

F(x2)>0  (x2€[0,h4]) (10)

is necessary and sufficient for the monotonicity of ¥; on
the whole interval J;. Inequality (10) implies

mnF(x;)=F(c,)=A—--c,?>0,
X2€J1 2

7

2A
e.cy< \[— . (11)

The condition (1 1) can be fulfilled together with (8) iff

"h 55 F— “ , I.e. h1 V‘——'f' M
2 ﬂh1

holds. If condition (11) or (12) is not fulfilied then the func-
tion ¥, always possesses a local minimum at
Xa=c¢—\ ¢ —2A/ B. If additionally, the inequality

A
¢y < min [hh ﬁ + — ] holds then ¥, has also a local
1

maximum at X, =c 1+ 2_2AI8.

c) The case h; = ¢y

If hy = ¢, holds then the function ¥, is convex on the whole
interval J,. This follows immediately from Eq. (3).
Dueto F’(xz) =B (xz2—¢4)=00nJ; weget

min F (xz) = F(h1)—éh1 2—Bcih i +A
X2€J1

maxF(xp)=F(0)=A=1.

X26J1

To fulfill condition (5. 1),i.e. F (x3) > —1. onJ1,werequure
F (hy) > — 1. This inequality is equivalent to
hy  A+1

Ci=—+
2 Bh,

(13)

Because of ¢; = h ¢ the right-hand side of (13) must be
greaterthan h 4, i. e.

‘/ A
hy < _?i;il)_ (14)

If, additionally, F ( h 1) Z 0 holds then the solution ¥ , is
strongly decreasing. The last condition is fulfilled for



interval of h1 feasible solution of cq

. ~
monotoni- minimum at le=

convexity |city Table 1

. i Survey of all solutions
bt ©BVP (1), (2)

}0,(23/13)1/2[

convex decreasing] -

concave, as

c, < 0 decreasing =

1/2[

2 o 1/2
c,-te? - 2am'/

L
[(2X/ra)1/2.<2(i+1)//3) L [(2;/,@ /2 “1[

2 "~ 2
convex - Syiley = /e

kz(iu)/,a M2, R e /2]

- decreasing =

172

h 15
BZA/B Y2402/p) ,(2(A+1)/r5)1/2+2/f31/2[ {—zi = 2(A+1)/f5[

_ - cl—(c§~2}(/f3)l/2

Ez(iu)/p W22t/ oo[ no solution

C1§i'+—A— (15)

Bhy
Inequality (15) can be fulfilled only, if

h<—2—A (16)
N

holds. If ¥; is not monotonous then ¥, possesses a global
minimum at%, =c; — | ¢ — 2A/8. Ifhyis greater than

the right-hand side of (9) then a parameter c, satisfying
conditions (5.1) and (5.2) does not exist. Thus in that case
there is no solution ¥; to BVP (1), (2).

Finally in this section, we give a survey of the solvability of
BVP (1), (2) and the features of the solution.

3. The solution to BVP (1), (2)

2(A+1) 2 )
- + — a feasible
B VB

parameter ¢, exists. Now we want to write the solution ¥,
to BVP (1), (2). From Eq. (4) we get ¢ (x3) = — F(x,)
[1 - F2%(xy)] V2. Integrating and taking into account
boundary condition (2.1) we obtain the formula

As shown in Table 1 for hy <

h,

Xv=‘1’1(X2)=I (1)

(e

h, X2

St?2-Bec,t+ A
j \[1 —(gtz—ﬂc,t-&-/‘)z

NI

dt. (17)
X2

As a starting approach X3, of the position of the dynamic
contact point Q, (X 0) we finally obtain
hy
g t2-Bc t+A
%0 = j dt. (18)
\/1 - (-2—ﬂt-2—1301t+A)2

0

If alocal minimum of ¥ existsat%, = ¢, — | ¢, - 2 A/8
then this minimum can be calculated by the formula

h,
j gtz"'ﬂC1t+A
%,) = dt.

\/1 —(gtz—ﬂc1t+A)2

From Eq. (17) one can conclude that ¥, is infinitely differ-
entiableon]0,h,[.ForA<1,i.e.as A < + o, the function
¥, isinfinitely differentiable even in the closed interval [ 0,
hy ]. Thus we have proved the following lemma.

Lemma 1. For any h, and ¢ satisfying the conditions of an
arbitrary row of Table 1 the BVP (1), (2) possesses a uni-
que inifinitely differentiable solution ¥,.

Similar analytical studies of free surfaces with capillary
contact angles were given by Finn and Shinbrodt (cf.
[3, 4]).
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