Elementary investigations of the equation for a free surface

Jürgen Socolowksy

Es wird ein freies Randwertproblem für die Navier-Stokes-Gleichungen betrachtet, das einen Vorhangbeschichtungsprozeß beschreibt. Mit Hilfe elementarer analytischer Methoden werden eine Startlösung für die Lage der unteren freien Oberfläche bestimmt und deren Eigenschaften diskutiert.

A free boundary value problem for the Navier-Stokes equations describing a curtain coating process is considered. Using elementary analytical methods a starting approach for the position of the lower free surface is determined and its properties are discussed.

1. Introduction

In the present paper we consider the following flow domain describing a curtain coating process in Chemical Engineering (cf. Fig. 1). The infinite flow domain *G* is bounded by the rigid walls Σ_1 , Σ_2 , Σ_3 , and by the a priori unknown free surfaces Γ_1 and Γ_2 .

Figure 1 Flow domain of a curtain coating process

The problem is investigated in the plane \mathbb{R}^2 with a fixed Cartesian coordinate system $x = (x_1, x_2)$. The complete mathematical description of the flow domain and the free boundary value problem for the underlying Navier-Stokes equations are given in [1], [2].

In this paper we are especially interested in determining a starting approach for the position of the lower free surface Γ_1 . In [1] the solvability of the complete problem was proved using the results given here. First of all in [2] a similar problem was solved the geometry of which was much simpler than in the case considered here.

Figure 2 shows that part of the flow domain which consists of the lower free surface Γ_1 and its two endpoints Q_1 (\bar{x}_1 , 0), Q_2 (0, h_1).

Now we can formulate the equation and the boundary conditions describing the starting approach for the position of Γ_1 . In order to do that we assume that $v \equiv 0$ and $p = p_c =$ const. are starting solutions for the velocity and pressure, respectively. Furthermore, we suppose that the free surface Γ_1 separates from the rigid wall Σ_2 at the static contact point Q_2 and ends at the (a priori unknown) dynamic contact point Q_1 on the moving rigid wall Σ_1 . The dynamic con-

Figure 2 The lower free surface in various positions

tact angle Θ_1 , i. e. the angle between the x_1 – axis and the tangent to Γ_1 at \bar{x}_1 , is given. Finally we suppose that Γ_1 can be described as the graph of a function Ψ_1 with respect to $x_2 \in [0, h_1]$. These assumptions make physically sense. We receive the following two-point boundary value problem (= BVP) for an ordinary differential equation of second order

$$\frac{d}{dx_2} \frac{\Psi_1(x_2)}{[1+(\Psi_1(x_2))^2]^{1/2}} + \beta x_2$$

= $W(p_c + \hat{p}_o - \hat{p}_u), (x_2 \in]0, h_1[)$ (1)
 $\Psi_1(h_1) = 0, \Psi_1(0) = -A := \cot \Theta_1.$ (2.1). (2.2)

From physical point of view the restriction $\pi/2 < \Theta_1 \leq \pi$ on Θ_1 makes sense. Thus we have $0 < A \leq +\infty$. The constants β , *W* are positive and they depend only on the Weber number (i. e. surface tension) and on the acceleration of gravity. The symbols β_{α} , β_u denote the positive (constant) athmospheric pressures outside Γ_1 and Γ_2 , respectively.

2. The solvability of BVP (1), (2)

We define $c_1 := W(\rho_c + \hat{\rho}_o - \hat{\rho}_u)/\beta$. From Eq. (1) we then receive

$$\frac{d}{dx_2} \frac{\Psi_1(x_2)}{[1 + (\Psi_1(x_2))^2]^{1/2}} = -\beta (x_2 - c_1) \cdot (x_2 \in]0, h_1[)$$
(3)

257

Integrating Eq. (3) with respect to x_2 we obtain

$$\frac{\Psi'_1(x_2)}{[1+(\Psi'_1(x_2))^2]^{1/2}} = -\frac{\beta}{2} (x_2 - c_1)^2 + c_2$$

and after taking into account condition (2.2)

$$c_{2} = \frac{\beta}{2} c_{1}^{2} - \frac{A}{\sqrt{1 + A^{2}}}, \frac{\Psi_{1}'(x_{2})}{[1 + (\Psi_{1})_{2}]^{1/2}}$$
$$= -\left(\frac{\beta}{2} x_{2}^{2} - \beta c_{1} x_{2} + \tilde{A}\right), \qquad (4)$$

where \tilde{A} := A (1 + A²)^{-1/2} was set. Obviously, $0 < \tilde{A} \leq 1$ holds. Eq. (4) yields the following necessary conditions on the solution

$$-1 < F(x_2) := \frac{\beta}{2} x_2^2 - \beta c_1 x_2 + \tilde{A},$$

$$F(x_2) \le 1. (x_2 \in]0, h_1[)$$
(5.1), (5.2)

In the sequel we have to distinguish some cases for the parameter c1.

a) The case $c_1 \leq 0$

The expression on the left-hand side of Eq. (3) is equivalent to the curvature of Γ_1 at x_2 . Thus for $c_1 \leq 0$ the function Ψ_1 is concave on the whole interval $J_1 :=]0, h_1[$. From the definition of F it follows that $F(x_2) > 0$ holds on J_1 and hence the function Ψ_1 is a strongly decreasing one (cf. Eq. (4)). To fulfill the inequality (5.2) it is sufficient to require

$$\frac{\beta}{2} h_{1}^{2} - \beta c_{1} h_{1} + \tilde{A} \leq 1$$

This condition is equivalent to the inequality

$$c_1 \ge \frac{h_1}{2} - \frac{1 - \tilde{A}}{\beta h_1} \quad . \tag{6}$$

Inequality (6) can be fulfilled only, if the right-hand side of (6) is negative, i. e. for $h_1 \leq \sqrt{\frac{2(1-A)}{\beta}}$

b) The case $0 < c_1 < h_1$

From Eq. (3) it follows that the function Ψ_1 is convex on the interval $x_2 \in [0, c_2[$ and concave on the interval $x_2 \in]c_1$, h_1]. Due to $F'(x_2) = \beta(x_2 - c_1)$ we have

$$\min_{x_{2} \in J_{1}} F(x_{2}) = F(c_{1}) = \tilde{A} - \frac{\beta}{2}c_{1}^{2}.$$

$$\lim_{x_{2} \in J_{1}} F(c_{2}) > -1, i. e. \text{ if}$$

$$c_{1} < \sqrt{\frac{2}{\beta} \cdot (\tilde{A} + 1)}$$
(7)

holds, then the inequality (5. 1) is fulfilled. Furthermore, note that

$$\max_{\substack{x_{2} \in \tilde{J}_{1} \\ = \max[\tilde{A}, \frac{\beta}{2}h_{1}^{2} - \beta c_{1}h_{1} + \tilde{A}].}$$

Since $\tilde{A} \leq 1$ we obtain the necessary condition

$$\frac{\beta}{2} h_1^2 - \beta c_1 h_1 + \tilde{A} \le 1$$

$$258$$

in order to satisfy inequality (5.2). The last condition leads to

$$c_1 \ge \frac{h_1}{2} - \frac{1 - \tilde{A}}{\beta h_1} \quad . \tag{8}$$

Since the right-hand side of (8) is less than h_1 we have to verify only the condition

$$\frac{h_1}{2} - \frac{1-\tilde{A}}{\beta h_1} < \sqrt{\frac{2}{\beta}} (\tilde{A}+1) ,$$

which is fulfilled iff

$$h_1 < \sqrt{\frac{2}{\beta}(\tilde{A}+1) + \frac{2}{\sqrt{\beta}}}$$
(9)

hold. Next, we study the monotonicity of the function Ψ_1 . Note that ψ_1 is decreasing at $x_2 = 0$ (cf. Eq. (4)). The condition

$$F(x_2) > 0 \qquad (x_2 \in [0, h_1]) \tag{10}$$

is necessary and sufficient for the monotonicity of Ψ_1 on the whole interval J₁. Inequality (10) implies

$$\min_{\substack{x_{2} \in \tilde{J}_{1} \\ i. \ e. \ c_{1} < \sqrt{\frac{2\tilde{A}}{\beta}}} = F(c_{1}) = \tilde{A} - \frac{\rho}{2}c_{1}^{2} > 0,$$
(11)

The condition (11) can be fulfilled together with (8) iff

$$\frac{h_1}{2} - \frac{1 - \tilde{A}}{\beta h_1} > \sqrt{\frac{2\tilde{A}}{\beta}} , i.e. h_1 < \sqrt{\frac{2\tilde{A}}{\beta}} + \sqrt{\frac{2}{\beta}},$$
(12)

holds. If condition (11) or (12) is not fulfilled then the function Ψ_1 always possesses a local minimum at $\tilde{x}_2 = c_1 - \sqrt{c_1^2 - 2\tilde{A}/\beta}$. If, additionally, the inequality $c_1 < \min\left[h_1, \frac{h_1}{2} + \frac{\tilde{A}}{\beta h_1}\right]$ holds then Ψ_1 has also a local

maximum at $\hat{x}_2 = c_1 + \sqrt{c_1^2 - 2\tilde{A}/\beta}$.

c) The case $h_1 \leq c_1$

If $h_1 \leq c_1$ holds then the function Ψ_1 is convex on the whole interval J_1 . This follows immediately from Eq. (3).

Due to $F'(x_2) = \beta (x_2 - c_1) \leq 0$ on \overline{J}_1 we get min $F(x_2) = F(h_1) = \frac{\beta}{2}h_1^2 - \beta c_1 h_1 + \tilde{A}$, $X_2 \in \overline{J}_1$ $\max F(x_2) = F(0) = \tilde{A} \leq 1.$ $X_2 \in \overline{J}_1$

To fulfill condition (5.1), i. e. $F(x_2) > -1$. on \overline{J}_1 , we require $F(h_1) > -1$. This inequality is equivalent to

$$c_{1} \leq \frac{h_{1}}{2} + \frac{\tilde{A} + 1}{\beta h_{1}} .$$
 (13)

Because of $c_1 \ge h_1$ the right-hand side of (13) must be greater than h 1, i. e.

$$h_1 < \sqrt{\frac{2(\tilde{A}+1)}{\beta}} . \tag{14}$$

If, additionally, $F(h_1) \ge 0$ holds then the solution Ψ_1 is strongly decreasing. The last condition is fulfilled for

interval of h _l	feasible solution of c_1	convexity	monotoni- city	minimum at $\tilde{x}_2 =$
$\left]0,\left(2\widetilde{\lambda}/\beta\right)^{1/2}\right[$	$\left[\frac{h_1}{2} - \frac{1 - \widetilde{A}}{\beta h_1}, h_1\right]$	concave, as c _l < 0	decreasing	-
	$\begin{bmatrix} h_1, \frac{h_1}{2} + \frac{\widetilde{A}}{\beta h_1} \end{bmatrix}$	convex	decreasing	li d i dinga
$\left[(2\widetilde{\mathbf{A}}/\beta)^{1/2}, (2(\widetilde{\mathbf{A}}+1)/\beta)^{1/2} \right]$	$\left[\frac{h_{1}}{2}-\frac{1-\widetilde{A}}{\beta h_{1}},(2\widetilde{A}/\beta)^{1/2}\right[$	concave, as c ₁ <0	decreasing	-
	$\left[\left(2\widetilde{A}/\beta\right)^{1/2}, h_{1}\right]$	-	- 2	$c_1 - (c_1^2 - 2\widetilde{A}/\beta)^{1/2}$
	$\left[h_{1}, \frac{h_{1}}{2} + \frac{\widetilde{A}+1}{\beta h_{1}}\right]$	convex		$c_1 - (c_1^2 - 2\widetilde{A}/\beta)^{1/2}$
$\left[\left(2\left(\widetilde{\mathtt{A}}+1\right)/\beta\right)^{1/2},\left(2\widetilde{\mathtt{A}}/\beta\right)^{1/2}+\left(2/\beta\right)^{1/2}\right]$	$\left[\frac{h_1}{2} - \frac{1 - \widetilde{\lambda}}{\beta h_1}, (2\widetilde{\lambda} / \beta)^{1/2}\right]$	-	decreasing	- 30 - 11 - 30 - 11
$\left[(2\tilde{A}/\beta)^{1/2} + (2/\beta)^{1/2}, (2(\tilde{A}+1)/\beta)^{1/2} + 2/\beta^{1/2} \right]$	$\left[\frac{h_1}{2} - \frac{1-\widetilde{A}}{\beta h_1}, 2(\widetilde{A}+1)/\beta\right]$	-	-	$c_1^{-}(c_1^2 - 2\widetilde{A}/\beta)^{1/2}$
$\left[(2(\tilde{\mathbf{A}}+1)/\beta)^{1/2} + 2/\beta^{1/2}, + \infty \right]$	no solution	-	-	_

$$c_1 \le \frac{h_1}{2} + \frac{\bar{A}}{\beta h_1} \,. \tag{15}$$

Inequality (15) can be fulfilled only, if

$$h_1 < \sqrt{\frac{2\,\tilde{A}}{\beta}} \tag{16}$$

holds. If Ψ_1 is not monotonous then Ψ_1 possesses a global minimum at $\bar{x}_2 = c_1 - \sqrt{c_1^2 - 2\tilde{A}/\beta}$. If h_1 is greater than the right-hand side of (9) then a parameter c_1 satisfying conditions (5.1) and (5.2) does not exist. Thus in that case there is no solution Ψ_1 to BVP (1), (2).

Finally in this section, we give a survey of the solvability of BVP(1), (2) and the features of the solution.

3. The solution to BVP (1), (2)

As shown in Table 1 for $h_1 < \sqrt{\frac{2(\tilde{A}+1)}{\beta} + \frac{2}{\sqrt{\beta}}}$ a feasible

parameter c_1 exists. Now we want to write the solution Ψ_1 to BVP (1), (2). From Eq. (4) we get $\psi_1'(x_2) = -F(x_2)$ [$1 - F^2(x_2)$] ^{-1/2}. Integrating and taking into account boundary condition (2.1) we obtain the formula

$$x_{1} = \Psi_{1}(x_{2}) = \int \frac{F(t)}{\sqrt{1 - F^{2}(t)}} dt$$

$$= \int_{X_{2}}^{h_{1}} \frac{\frac{x_{2}}{\sqrt{1 - (\frac{\beta}{2}t^{2} - \beta c_{1}t + \tilde{A})^{2}}} dt.$$
(17)

As a starting approach \bar{x}_1^0 , of the position of the dynamic contact point Q_1 ($\bar{x}_1 0$) we finally obtain

$$\bar{x}_{1}^{0} = \int_{0}^{n_{1}} \frac{\frac{\beta}{2}t^{2} - \beta c_{1}t + \bar{A}}{\sqrt{1 - (\frac{\beta}{2}t^{2} - \beta c_{1}t + \bar{A})^{2}}} dt.$$
(18)

If a local minimum of Ψ_1 exists at $\tilde{x}_2 = c_1 - \sqrt{c_1^2 - 2\tilde{A}/\beta}$ then this minimum can be calculated by the formula

Table 1

Survey of all solutions to BVP (1), (2)

$$\bar{x}_{1} = \Psi_{1}(\bar{x}_{2}) = \int_{\tilde{x}_{2}}^{n_{1}} \frac{\frac{\beta}{2}t^{2} - \beta c_{1}t + \tilde{A}}{\sqrt{1 - (\frac{\beta}{2}t^{2} - \beta c_{1}t + \tilde{A})^{2}}} dt.$$

From Eq. (17) one can conclude that Ψ_1 is infinitely differentiable on] 0, h_1 [. For $\tilde{A} < 1$, i. e. as $A < +\infty$, the function Ψ_1 is infinitely differentiable even in the closed interval [0, h_1]. Thus we have proved the following lemma.

Lemma 1. For any h_1 and c_1 satisfying the conditions of an arbitrary row of Table 1 the BVP (1), (2) possesses a unique inifinitely differentiable solution Ψ_1 .

Similar analytical studies of free surfaces with capillary contact angles were given by Finn and Shinbrodt (cf. [3, 4]).

REFERENCES

- Socolowsky, J.: The solvability of a free boundary problem for the stationary Navier-Stokes equations with a dynamic contact line. (Submitted, 1991).
- [2] Socolowsky, J.: Mathematische Untersuchungen freier Randwertaufgaben der Hydrodynamik viskoser Flüssigkeiten. Dissertation B, Merseburg 1989, 218 S.
- [3] Finn, R., Shinbrodt, M.: The capillary contact angle. I. The horizontal plane and stick-slip motion. J. Math. Anal. Appl. 123, 1–17 (1987).
- [4] Finn. R., Shinbrodt, M.: The capillary contact angle. II. The inclined plane. Preprint, 1–41 (1987).

Anschrift des Verfassers: Dr. habil. Jürgen Socolowsky FB Mathematik / Informatik TH Merseburg Geusaer Straße Merseburg O-4200

259