Elementary investigations of the equation for a free surface

Jürgen Socolowksy

Es wird ein freies Randwertproblem für die Navier-Stokes-Gleichungen betrachtet, des einen Vorhangbeschichtungsprozeß beschreibt. Mit Hiffe elementarer analytischer Methoden werden eine Startlösung för die Lage der unteren freien Oberfläche bestimmt und deren Eigenschaften diskutiert.

A free boundary value problem for the Navier-Stokes equations describing a curtain coating process is considered. Using elementary anaytical methods a starting approach for the position of the lower free surface is determined and its properties are discussed.

1. Introduction

In the present paper we consider the following flow domain describing a curtain coating process in Chemical Engineering (cf. Fig. 1). The infinite flow domain G is bounded by the rigid walls $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}$, and by the a priori unknown free surfaces Γ_{1} and Γ_{2}.

Figure 1
Flow domain of a curtain coating process

The problem is investigated in the plane \mathbb{R}^{2} with a fixed Cartesian coordinate system $x=\left(x_{1}, x_{2}\right)$. The complete mathematical description of the flow domain and the free boundary value problem for the underlying Navier-Stokes equations are given in [1], [2].
In this paper we are especially interested in determining a starting approach for the position of the lower free surface Γ_{1}. In [1] the solvability of the complete problem was proved using the results given here. First of all in [2] a similar problem was solved the geometry of which was much simpler than in the case considered here.
Figure 2 shows that part of the flow domain which consists of the lower free surface Γ_{1} and its two endpoints $Q_{1}\left(\bar{x}_{1}\right.$, $0), Q_{2}\left(0, h_{1}\right)$.
Now we can formulate the equation and the boundary conditions describing the starting approach for the position of Γ_{1}. In order to do that we assume that $v \equiv 0$ and $p=p_{c}=$ const. are starting solutions for the velocity and pressure, respectively. Furthermore, we suppose that the free surface Γ_{1} separates from the rigid wall Σ_{2} at the static contact point Q_{2} and ends at the (a priori unknown) dynamic contact point Q_{1} on the moving rigid wall Σ_{1}. The dynamic con-

Figure 2
The lower free surface in various positions
tact angle Θ_{1}, i. e. the angle between the x_{1}-axis and the tangent to Γ_{1} at \bar{x}_{1}, is given. Finally we suppose that Γ_{1} can be described as the graph of a function Ψ_{1} with respect to $x_{2} \in\left[0, h_{1}\right]$. These assumptions make physically sense.
We receive the following two-point boundary value problem ($=$ BVP) for an ordinary differential equation of second order

$$
\begin{align*}
& \frac{d}{d x_{2}} \frac{\Psi_{1}\left(x_{2}\right)}{\left[1+\left(\Psi_{1}\left(x_{2}\right)\right)^{2}\right]^{1 / 2}}+\beta x_{2} \\
& =W\left(p_{c}+p_{0}-\beta_{u}\right),\left(x_{2} \in I 0, h_{1} l\right) \tag{1}\\
& \Psi_{1}\left(h_{1}\right)=0, \Psi_{1}(0)=-A:=\cot \Theta_{1} . \tag{2.1}
\end{align*}
$$

From physical point of view the restriction $\pi / 2<\Theta_{1} \leqq \pi$ on Θ_{1} makes sense. Thus we have $0<A \leqq+\infty$. The constants β,W are positive and they depend only on the Weber number (i. e. surface tension) and on the acceleration of gravity. The symbols $\hat{\rho}_{c}, \hat{\beta}_{u}$ denote the positive (constant) athmospheric pressures outside Γ_{1} and Γ_{2}, respectively.

2. The solvability of BVP (1), (2)

We define $c_{1}:=W\left(\rho_{c}+\hat{\rho}_{o}-\hat{\rho}_{u}\right) / \beta$. From Eq. (1) we then receive
$\frac{d}{d x_{2}} \frac{\Psi_{1}\left(x_{2}\right)}{\left[1+\left(\Psi_{1}\left(x_{2}\right)\right)^{2}\right]^{1 / 2}}$
$\left.=-\beta\left(x_{2}-c_{1}\right) \cdot\left(x_{2} \in\right] 0, h_{1} I\right)$

Integrating Eq. (3) with respect to x_{2} we obtain
$\frac{\Psi_{1}\left(x_{2}\right)}{\left[1+\left(\Psi_{1}^{\prime}\left(x_{2}\right)\right)^{2}\right]^{1 / 2}}=-\frac{\beta}{2}\left(x_{2}-c_{1}\right)^{2}+c_{2}$
and after taking into account condition (2.2)
$c_{2}=\frac{\beta}{2} c_{1}^{2}-\frac{A}{\sqrt{1+A^{2}}}, \frac{\Psi_{1}{ }^{\prime}\left(x_{2}\right)}{\left[1+\left(\Psi_{1}\right)_{2}\right]^{1 / 2}}$
$=-\left(\frac{\beta}{2} x_{2}^{2}-\beta c_{1} x_{2}+\tilde{A}\right)$,
where $\tilde{A}:=A\left(1+A^{2}\right)^{-1 / 2}$ was set. Obviously, $0<\tilde{A} \leqq 1$ holds. Eq. (4) yields the following necessary conditions on the solution
$-1<F\left(x_{2}\right):=\frac{\beta}{2} x_{2}^{2}-\beta c_{1} x_{2}+\tilde{A}$,
$\left.F\left(x_{2}\right) \leqq 1 .\left(x_{2} \in\right] 0, h_{1} l\right)$
In the sequel we have to distinguish some cases for the parameter c_{1}.
a) The case $c_{1} \leqq 0$

The expression on the left-hand side of Eq. (3) is equivalent to the curvature of Γ_{1} at x_{2}. Thus for $c_{1} \leqq 0$ the function Ψ_{1} is concave on the whole interval $J_{1}:=10, h_{1}[$. From the definition of F it follows that $F\left(x_{2}\right)>0$ holds on J_{1} and hence the function Ψ_{1} is a strongly decreasing one (cf. Eq. (4)). To fulfill the inequality (5.2) it is sufficient to require
$\frac{\beta}{2} h_{1}^{2}-\beta c_{1} h_{1}+\tilde{A} \leqq 1$.
This condition is equivalent to the inequality
$c_{1} \geqq \frac{h_{1}}{2}-\frac{1-\tilde{A}}{\beta h_{1}}$.
Inequality (6) can be fulfilled only, if the right-hand side of
(6) is negative, i. e. for $h_{1} \leqq \sqrt{\frac{2(1-\bar{A})}{\beta}}$.
b) The case $0<c_{1}<h_{1}$

From Eq. (3) it follows that the function Ψ_{1} is convex on the interval $x_{2} \in\left[0, c_{2}\right.$ [and concave on the interval $\left.x_{2} \in\right] c_{1}$, h_{1}. Due to $F^{\prime}\left(x_{2}\right)=\beta\left(x_{2}-c_{1}\right)$ we have
$\min _{x_{2} \in J_{1}} F\left(x_{2}\right)=F\left(c_{1}\right)=\tilde{A}-\frac{\beta}{2} c_{1}^{2}$.
If $F\left(c_{2}\right)>-1, i . e$. if
$c_{1}<\sqrt{\frac{2}{\beta} \cdot(\tilde{A}+1)}$
holds, then the inequality (5.1) is fulfilled. Furthermore, note that

$$
\begin{aligned}
\max _{x_{2} \in J_{1}} F\left(x_{2}\right) & =\max \left[F(0), F\left(h_{1}\right)\right] \\
& =\max \left[\tilde{A}, \frac{\beta}{2} h_{1}^{2}-\beta c_{1} h_{1}+\tilde{A}\right]
\end{aligned}
$$

Since $\tilde{A} \leqq 1$ we obtain the necessary condition
$\frac{\beta}{2} h_{1}^{2}-\beta c_{1} h_{1}+A \leqq 1$
258
in order to satisfy inequality (5.2). The last condition leads to
$c_{1} \geqq \frac{h_{1}}{2}-\frac{1-\tilde{A}}{\beta h_{1}}$.
Since the right-hand side of (8) is less than h_{1} we have to verify only the condition
$\frac{h_{1}}{2}-\frac{1-\tilde{A}}{\beta h_{1}}<\sqrt{\frac{2}{\beta}(\tilde{A}+1)}$,
which is fulfilled iff
$h_{1}<\sqrt{\frac{2}{\beta}(\tilde{A}+1)}+\frac{2}{\sqrt{\beta}}$
hold. Next, we study the monotonicity of the function Ψ_{1}. Note that ψ_{1} is decreasing at $x_{2}=0$ (cf. Eq. (4)). The condition
$F\left(x_{2}\right)>0 \quad\left(x_{2} \in\left[0, h_{1}\right]\right)$
is necessary and sufficient for the monotonicity of Ψ_{1} on the whole interval J_{1}. Inequality (10) implies
$\min _{x_{2} \in J_{1}} F\left(x_{2}\right)=F\left(c_{1}\right)=\tilde{A}-\frac{\beta}{2} c_{1}^{2}>0$,
$x_{2} \in J_{1}$
i. e. $c_{1}<\sqrt{\frac{2 \tilde{A}}{\beta}}$.

The condition (11) can be fulfilled together with (8) iff
$\frac{h_{1}}{2}-\frac{1-\tilde{A}}{\beta h_{1}}>\sqrt{\frac{2 \tilde{A}}{\beta}}$, i.e. $h_{1}<\sqrt{\frac{2 \tilde{A}}{\beta}}+\sqrt{\frac{2}{\beta}}$,
holds. If condition (11) or (12) is not fulfilied then the function Ψ_{1} always possesses a local minimum at
$\tilde{x}_{2}=c_{1}-\sqrt{c_{1}^{2}-2 \tilde{A} / \beta}$. If, additionally, the inequality $c_{1}<\min \left[h_{1}, \frac{h_{1}}{2}+\frac{\tilde{A}}{\beta h_{1}}\right]$ holds then Ψ_{1} has also a local maximum at $\hat{X}_{2}=c_{1}+\sqrt{c_{1}^{2}-2 \tilde{A} / \beta}$.
c) The case $h_{1} \leqq c_{1}$

If $h_{1} \leqq c_{1}$ holds then the function Ψ_{1} is convex on the whole interval J_{1}. This follows immediately from Eq. (3).
Due to $F^{\prime}\left(x_{2}\right)=\beta\left(x_{2}-c_{1}\right) \leqq 0$ on J_{1} we get
$\min _{x_{2} \in J_{1}} F\left(x_{2}\right)=F\left(h_{1}\right)=\frac{\beta}{2} h_{1}^{2}-\beta c_{1} h_{1}+\tilde{A}$,
$\max F\left(x_{2}\right)=F(0)=\tilde{A} \leqq 1$.
$x_{2} \in J_{1}$
To fulfill condition (5.1), i. e. $F\left(x_{2}\right)>-1$. on \bar{J}_{1}, we require $F\left(h_{1}\right)>-1$. This inequality is equivalent to
$c_{1} \leqq \frac{h_{1}}{2}+\frac{\tilde{A}+1}{\beta h_{1}}$.
Because of $c_{1} \geqq h_{1}$ the right-hand side of (13) must be greater than h_{1}, i. e.
$h_{1}<\sqrt{\frac{2(\tilde{A}+1)}{\beta}}$.
If, additionally, $F\left(h_{1}\right) \geqq 0$ holds then the solution Ψ_{1} is strongly decreasing. The last condition is fulfilled for

interval of h_{1}	feasible solution of c_{1}	convexity	$\begin{aligned} & \text { monotoni- } \\ & \text { city } \end{aligned}$	minimum at $\tilde{x}_{2}=$
$] 0,(2 \widetilde{A} / \beta)^{1 / 2}[$	$\left[\frac{h_{1}}{2}-\frac{1-\tilde{A}}{B h_{1}}, h_{1}[\right.$	concave, as $c_{1}<0$	decreasing	-
	$\left[h_{1}, \frac{h_{1}}{2}+\frac{\tilde{A}}{\beta h_{1}}[\right.$	convex	decreasing	- -
$\left[(2 \tilde{A} / \beta)^{1 / 2},(2(\tilde{A}+1) / \beta)^{1 / 2}[\right.$	$\left[\frac{h_{1}}{2}-\frac{1-\widetilde{A}}{\beta \mathrm{~h}_{1}},(2 \widetilde{A} / \beta)^{1 / 2}[\right.$	concave, as $c_{1}<0$	decreasing	-
	$\left[(2 \tilde{A} / \beta)^{1 / 2}, \mathrm{~h}_{1}[\right.$	-	- :	$c_{1}-\left(c_{1}^{2}-2 \tilde{A} / \beta\right)^{1 / 2}$
	$\left[h_{1}, \frac{h_{1}}{2}+\frac{\tilde{A}+1}{\beta h_{1}}[\right.$	convex	-	$c_{1}-\left(c_{1}^{2}-2 \tilde{A} / B\right)^{1 / 2}$
$\left[(2(\widetilde{\mathrm{~A}}+1) / \beta)^{1 / 2},(2 \tilde{A} / \beta)^{1 / 2}+(2 / \beta)^{1 / 2}[\right.$	$\left[\frac{\mathrm{h}_{1}}{2}-\frac{1-\widetilde{A}}{\beta \mathrm{~h}_{1}},(2 \widetilde{A} / \beta)^{1 / 2}[\right.$	-	decreasing	9
$\left[(2 \tilde{A} / \beta)^{1 / 2}+(2 / \beta)^{1 / 2},(2(\tilde{A}+1) / \beta)^{1 / 2}+2 / \beta^{1 / 2}[\right.$	$\left[\frac{\mathrm{h}_{1}}{2}-\frac{1-\widetilde{\mathrm{A}}}{\beta \mathrm{h}_{1}}, 2(\widetilde{\mathrm{~A}}+1) / \beta[\right.$	-	-	$c_{1}-\left(c_{1}^{2}-2 \tilde{A} / \beta\right)^{1 / 2}$
$\left[(2(\widetilde{\mathrm{~A}}+1) / \beta)^{1 / 2}+2 / \beta^{1 / 2},+\infty[\right.$	no solution	-	-	-

Table 1
Survey of all solutions to BVP (1), (2)
$c_{1} \leqq \frac{h_{1}}{2}+\frac{A}{\beta h_{1}}$.
Inequality (15) can be fulfilled only, if
$h_{1}<\sqrt{\frac{2 \AA}{\beta}}$
holds. If Ψ_{1} is not monotonous then Ψ_{1} possesses a global minimum at $\bar{x}_{2}=c_{1}-\sqrt{c_{1}^{2}-2 \tilde{A} / \beta}$. If h_{1} is greater than the right-hand side of (9) then a parameter c_{1} satisfying conditions (5.1) and (5.2) does not exist. Thus in that case there is no solution Ψ_{1} to BVP (1), (2).
Finally in this section, we give a survey of the solvability of BVP (1), (2) and the features of the solution.

3. The solution to BVP (1), (2)

As shown in Table 1 for $h_{1}<\sqrt{\frac{2(\tilde{A}+1)}{\beta}}+\frac{2}{\sqrt{\beta}}$ a feasible parameter c_{1} exists. Now we want to write the solution Ψ_{1} to BVP (1), (2). From Eq. (4) we get $\psi_{1}{ }^{\prime}\left(x_{2}\right)=-F\left(x_{2}\right)$ $\left[1-F^{2}\left(x_{2}\right)\right]^{-1 / 2}$. Integrating and taking into account boundary condition (2.1) we obtain the formula

$$
\begin{align*}
& x_{1}=\Psi_{1}\left(x_{2}\right)=\int_{x_{1}}^{h_{1}} \frac{F(t)}{\sqrt{1-F^{2}(t)}} d t \\
& =\int_{x_{2}} \frac{\frac{\beta}{2} t^{2}-\beta c_{1} t+\tilde{A}}{\sqrt{1-\left(\frac{\beta}{2} t^{2}-\beta c_{1} t+\tilde{A}\right)^{2}}} d t . \tag{17}
\end{align*}
$$

As a starting approach \bar{x}_{1}^{0}, of the position of the dynamic contact point $Q_{1}\left(\bar{x}_{1} 0\right)$ we finally obtain

$$
\begin{equation*}
\bar{x}_{1}^{0}=\int_{0}^{h_{1}} \frac{\frac{\beta}{2} t^{2}-\beta c_{1} t+\tilde{A}}{\sqrt{1-\left(\frac{\beta}{2} t^{2}-\beta c_{1} t+A\right)^{2}}} d t \tag{18}
\end{equation*}
$$

If a local minimum of Ψ_{1} exists at $\tilde{x}_{2}=c_{1}-\sqrt{c_{1}{ }^{2}-2 \tilde{A} / \beta}$ then this minimum can be calculated by the formula

$$
\bar{x}_{1}=\Psi_{1}\left(\bar{x}_{2}\right)=\int_{\tilde{x}_{2}}^{h_{1}} \frac{\frac{\beta}{2} t^{2}-\beta c_{1} t+\tilde{A}}{\sqrt{1-\left(\frac{\beta}{2} t^{2}-\beta c_{1} t+\tilde{A}\right)^{2}}} d t
$$

From Eq. (17) one can conclude that Ψ_{1} is infinitely differentiable on] $0, h_{1}$ [. For $\tilde{A}<1$, i. e. as $A<+\infty$, the function Ψ_{1} is infinitely differentiable even in the closed interval [0 , h_{1}]. Thus we have proved the following lemma.

Lemma 1. For any h_{1} and c_{1} satisfying the conditions of an arbitrary row of Table 1 the BVP (1), (2) possesses a unique inifinitely differentiable solution Ψ_{1}.

Similar analytical studies of free surfaces with capillary contact angles were given by Finn and Shinbrodt (cf. $[3,4]$).

REFERENCES

[1] Socolowsky, J.: The solvability of a free boundary problem for the stationary Navier-Stokes equations with a dynamic contact line. (Submitted, 1991).
[2] Socolowsky, J.: Mathematische Untersuchungen freier Randwertaufgaben der Hydrodynamik viskoser Flüssigkeiten. Dissertation B, Merseburg 1989, 218 S.
[3] Finn, R., Shinbrodt, M.: The capillary contact angle. I. The horizontal plane and stick-slip motion. J. Math. Anal. Appl. 123, 1-17 (1987).
[4] Finn. R., Shinbrodt, M.: The capillary contact angle. II. The inclined plane. Preprint, 1-41 (1987).

Anschrift des Verfassers:

Dr. habil. Jürgen Socolowsky
FB Mathematik / Informatik
TH Merseburg
Geusaer Straße
Merseburg
O-4200

