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Optimal design of elasto-plastic structures

under displacement constraints
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1. Introduction

In the optimal design of bar structures presented in this pa-

per various loading conditions and several design criteria

are taken into consideration.

In elastic stage the displacements are not allowed to ex-

ceed the allowable elastic displacements due to a given ar-

rangement of the loads acting on the structure. When the

structure is submitted to a multi-parameter loading then oc-

curance of plastic deformations might be permitted, but it

must be proved, that during the entire loading historythese

deformations do not accumulate unrestrictedly, i. e. the

structure shakes down. In some cases special extremal

loads (6. g. earthquake, explosion, impact) should also be ta-

ken into account. Then again plastic deformations might be

allowed but they should not exceed the values which lead

to local failure or to the collapse of the entire structure.

In the procedure of optimal design the objective function is

the volume of the structure and the constraints are the de—

sign criteria described above. Considering these criteria

separately several independent optimal solutions can be

determined which can form the basis of the design e. g. by

choosing for every point of the structure the maximum

cross-sectional area obtained by the separate solutions

[2], [4]. A more general solution can be obtained, however,

if all or several of the prescribed design criteria are simult-

aneously taken into consideration [8].

In the following the variational formulation of the optimal

design problems described above will be presented.

2. Fundamentals

In the following linearly elastic-perfectly plastic bar structu-

res (frames, trusses) with given shape and geometry

will be considered. The structure is composed of

i = 1, 2, ...,n prismatic members with given lengths I,

and with unknown cross-sectional areas A, as design varia-

bles. It is assumed that the specific stiffness S. and the spe-

cific elastic and plastic strength R? and R? of the members

can be expressed in terms of A, in the following general

forms [2], [4]:

3i = ,oEA‘i",

Rf: way/if, (1)

p: 7
Fti poyAi.

Here a, w, Q, a. ß and y are appropriately chosen constants

and E and oy denote the Young's Modulus and the yield

stress of the material. Für example in case of beams and

frames 8,, Ft? and R? denote the specific bending stiffness,

the maximum elastic moment M? and the fully plastic mo-

ment M',’ of the members [8].

In the following three different loading conditions will be

considered:

a) a one-parameter static load Fo(x) with given distribu-

tion and intensity;

b) a multi-parameter static loading defined by the loads

F,(x), F2(x)‚ Fp(x) which can act independently or

simultaneously;

c) a high intensity, short—time dynamic pressure Fd(x,t)

defined by the relationships

F‘tx. t) = pit) Fä(x>‚

pa) po. if0 s t S to. (2)

llp(t) o, ift > to.

Here x denotes the coordinate measured along the axis of

the bars and t is the time.

Considering the assumptions, loading conditions and the

design criteria described above the optimal design of a bar

structure might be specified in the following form.

With the cross-sectional areas A, as design variables and

the volume

V (Ail =

"
M
3

‚3
’

ll

‚...‚n) (3)

of the structure as objective function determine the design

that minimizes V subject to the following constraints.

a) Under the action of the static load Fo(x) the structure

does not undergo plastic deformations and at [given

pointsj = 1, 2, ..,m the elastic displacements w‘,’ do

not exceed the allowable elastic displacements

W8], e.

Qsi 5 Rei; (i

ll

.
.
L

‚
N

3
Y (4)

w‘fswäi; (j = 1,2,...,m). (5)

Here 05, denotes the maximum internal force caused by

the load Fo(x) in the i-th memberof the elastic structure and

R? is defined by eq. (1).



b) The plastic deformations caused by the multi-parame-

ter loading do not accumulate unrestrictedly, i. e. the

structure shakes down.

c) At given pointsj = 1,2, ...,m, inthe structure the pla-

stic displacements w‘,’ caused by the dynamic pressure

F"(x‚ t) do not exceed the allowable plastic displace-

ments wBi, i. e.

wli’ 5 WE]; (j = 1,2,..., m). (6)

Using eq. (1) the constraint defined by eq. (4) can be writ-

ten in the form

Ai 5 AijOr

where (7)

Q? 1/

way

Here Q? denotes the maximum elastic internal force cau-

sed by the load Fo(x) in the i-th member of the structure.

Using the above relationships and introducing the indepen-

dent ,,s|ack variables" a,, e], g; the inequalities (4) -— (6) can

be converted into equality constraints which have the follo-

wing forms

 

(Al " Am) ‘3? = 0, (4a)

(w‘,9 — wäj) + e? = 0, (5a)

(wt — W) + g? o. (6a)

Next, we discuss the above design constraints in detail and

present separately the variational formulation of each opti-

mal design problem.

3. Static analysis of the elastic struc-

ture

3.1. General relationships

Under the action of the static load Fo(x) the structure under

consideration is in elastic state and the corresponding in-

ternal force distribution is denoted by Qs(x, 8;). Then the

elastic displacement w? at the point] in the structure can be

obtained from the following relationship

c2s (x, Si) O.D(x)

f ___’—_ dx. (8)

1 3.

Here Q?(x) denotes any statically admissible internal force

distribution equilibrating a ,,dummy unitforce" acting at the

point] in the direction of w?. Note that Qs(x, Sa) is function of

the design variable A., Q?(x) is, however, independent of

it. Introducing the flexibility coefficient

fn(si) = hi QS(X‚Si)Q?(X)dX (9)

elastic displacement constraint (5a) can be expressed in

the form

n fii($i)

07=|2 —|—w3‚+e%=o; (10)

i=1 SI

(j = 1,2,...,m).

3.2. Variational formulation

Using variational formulation the optimal design Ai satisfy-

ing the geometric and design constraints (4a) and (10) is

identified with the stationarity of the functional

   

n m n til-(Si) e 2

Je= ”Al|i+2>\[ " —woj+ej]+

i=1 i=1 l—1 3,

n 2
+ 2Ki(Ai—AiO—ai). (11)

i=1

Here A; and Ki denote Langrangian multipliers. The varia-

tion of the functional .Jta with respect to the variables A, e;

and ai yields to the following equations:

  

3J9 m Äi

__ = |i + 2

W M (5,)2

öfij as,

(ä Sit—f”) _- + Ki = 0,

asi aAi

(I = 1,2, n), (12)

6Je

_— = Ale] = O; (J = 1,2, . ,m), (13)

be]-

we

——- =Klal=0; (i=1,2,...,n). (14)

öa

From eqs. (13) and (14) follows that along the structure

either e, or A, and either K or a; must vanish. Considering“

these ,,switching conditions“ the structure can be subbivi-

ded into different regions.

In the region where ei = 0 and K = 0 eqs. (10) and (12) pro-

vide n+m equations for the determination of Ai and xi.

Where, on the other hand, e; = 0 and a, = 0 eq. (4a) yields

to the solution A, = A50.

In the region where M = 0 according to eq. (12) K aé 0 there-

fore, independently from the value of e], a must vanish.

Hence for this region eq. (4a) provides again the solution

A; 2 Ac.

We can conclude that the above variational formulation

uniquely defines the optimal solution of our problem.
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4. Shakedown analysis of the elastic-

plastic structure

4.1. General relationships

The condition of Shakedown of a linearly elastic— perfectly

plastic, statically q times indeterminate structure is defined

by the following relationsships [6], [7]

ma R D

Qk (8,) + Ok S Rk‚

(k=1‚2‚ ...‚s).

Rmin p

ok (5,) + c1k 2 —Rk.

(15)

Here QT“(S,) and Q'fi“"(S,) denote the maximum and mini-

mum values of the internal forces of the linearly elastic

structure calculated from all the possible combinations of

the multi-parameter loading F,(x). F2(x) at the critical

cross-sections k = 1,2, . . . ,s and Ft: and Q? are the pla-

stic strengths (e.g. plastic moments) and the self-equilibra-

ting internal residual forces of the critical cross-sections,

respectively. The latter can be expressed in terms of the

unknown statically indeterminate forces X,(| = 1,2, . . . ,q)

in linear forms

Ft Cl . _Q = Z aklx„ (k—1‚2‚...,5)‚ (16}

where an are constant coefficients. Note that 0T“, Q‘E’"

and R’; are functions of the design variables A,, Q’Q but X,

are independent of them.

Substituting eq. (16) in eqs. (15) and introducing the inde-

pendent “slack variables“ dk and fk the condition of shake-

down can be defined as

q

max p 2

0k (Si)+|_21ak|Xl—Rk+dk ll

0

r (17a/b)

. q
mm p 2 _

Ok (8,) + E1ak‚X| + Rk —fk — o.

(k=1‚2‚ s)

In addition, to fulfil some constructional requirements, it

might be necessary to prescribe a minimum valueA0 for the

cross-sectional area. This geometrical constraint is ex-

pressed as

(Ai-Ao)-af=0; (i=1.2.... n).

where a, is a slack variable.

(18)

4.2. Variatona/ formulation

The variational formulation of the optimal design A, staisfy-

ing the constraints (17a-b) and (18) is identified with static-

narity of the functional
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+ 2 Ki(Ai—A0—ai).

i=1

(19)

Here uk, vk and K, denote Lagrangian multipliers.

The variation of the functional Js with respect to the varia-

bles A,, X,, dk and a, equations:

 

max p

8Js n BO k (Si) öSi aRk

.__ : I + 2 “kM __ _

BA, ' k=1 aSi aAi aAi

l (20)

s ao‘Q'Wsi) as, an:

+ Z uk[ — —] + Ki = 0,

(|=1‚2‚ n),

E“ 251 ( + V )a O (l 12 q) (21)_— : ‚u
‚ ‘ ‚ ‚ -‚ rax‘ k=1 k k kl

öJs

——— — d O (k=1,2, . ,s), (22)adk “k k

BJs

——= kak=0 (k=1,2,...,s). (23)

ark

Considering the ,.switching conditions“ (21 )—(23) different

regions can be distinguished in the structure.

In the region where dk= 0. fkaé 0 and K= O according to

eq. (23) Vk must vanish. Then, eqs. (17a), (20) and (21)

provide (s+ n+ q) equations for the determination of

V k, X, and A,.

On the other hand, in the region where (1,, ye O, fk = 0 and

K , = according to eq. (22) pk must vanish. Hence,’eqs.

(17b), (20) and (21) provide again (3+ n +q) equations for

the determination of V, X, and A,.

In the region where dk= 0, f, = O and v, = 0 both uk and v,

can be different from zero. Now eqs. (17a-b), (20) and

(21) provide (2s+n+q) equations from which (1,, 1),, X,

and A, can be calculated.

It can be easily seen, that in all the remaining parts of the

structure the above switching conditions yield to a constrai-

ned solution i.e. in these regions A, = A0. Hence, we can

conclude that the above variational formulation uniquely

defines the optimum solution of the problem.
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5. Dynamic analysis of the rigid — per-

fectly plastic structure

5.1. Generalrelationsship

The maximum permanent displacements of a rigid — per-

fectly plastic structure subjected to a high intensity short-

time dynamic pressure given by eq. (2) can be determined

among others by the kinematic approximation [3], [5]. The

basic ideas of this approximation is that during the dynamic

response the structure has stationary motion wich is des—

cribed by a function expressed in product form

w (x. t) = W(t) w"(x). (24)

Here w"(x) denotes any arbitrary kinematically admissible

displacement field (yield mechanism) and W(t) is an un-

known displacement parameter function W( t) is deter-

mined by the differential equation of motion of the structure

and reaches its maximum value WP when the structure co-

mes to standstill. Omitting the details for W" the following

expression can be obtained [5], [6]

1 p0p=_ 2 __
w 2 K po to [pk 1] (25)

H

ere (F3 (x) w"(x) dx
L

K = n . ' (26)

p 2 Ai f[wk(x)]2dx

i=1 I.

 

Q is the density per unite volume of the material and pk de-

notes the kinematically admissible multiplier associated

with the load F§(x) and displacement field wk(x) and isdefi-

ned by the expression

n

2 R? 3.“

i=1 ‘ '
p = __.___..__. . (27)

ng(x)wk(x)dx

L

Here q'i‘ denotes the sum of the absolute values of the ge-

neralized strains (e.g. rotations) occuring in the perfectly

plastic cross-sections (e.g. in the plastic hinges) of the bar i.

Making use of eq. (25) the approximate values of the maxi-

mum plastic displacements can be expressed in the form

k

w?=pr_ =

1 pO k

1 2

Kpotä [ _— —1]w.. (28)
k J

p

Note that the accuracy of the approximation might be im-

proved by introducing several kinematically admissible dis-

placement fields [5], [6]. Then, the maximum values of the

permanent displacements obtained by the use ofthese dis-

placement fields are competent in the design.

Substituting eqs. (26) and (27) in eq. (28) and introducing

the notations

G = f F3(x) wk(x)dx, Di = f[wk(x)]2dx (29)
L l.

l

for the design constraint (1 1a) we get the expression

 

2 k
p0 toleji pOG p

l - 11- w .+ 9 =o‚
n n __ k 0]

2p 2: D.A. E Ftp q.
l l I |

I=1 I=1

(30)

(i = 1,2, m)

and the geometrical constraint (18) has the form

(Ag—Ao)—a£=’0 (i=1,2,...,n). (31)

5.2. Variationalformulation

The variational formulation of optimal design A.- satisfying

the design and geometric constraints (30) and (31) is iden-

tified with the stationarity of the functional

n

Jp= i§1IIAi +

2 k

n "otoGIW'| poG 2
+2wj[——-——' —————1—w3j+gjl

‘:1 n n

' 2p 2 DA 2 R‘.’qik

i=1 i=1 '

n

+ 2 ‚(i (Ai _ A0 _ a?) (32)

i=1

Here mm and K, denote Lagrangian multipliers. The varia-

tion of the functional Jp with respect to the variables Ai, g,

and ai yields to the following equations:

 

2

öAi ' 2p

Ö 1 DOG m

i ( —1)]>: (U.|wl.(|
öAi n n _k 1:1 I l

Z DiA E R? q.
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I=1 i=1
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6Jp
.
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ag_ J l

J

öJp
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1

Similarly to the former problems we can see that for the re-

gion where g; = 0 and K i = 0 an unconstrained solution can

be obtained for the determination of A; and 1(1). In the other

parts of the structure we get a constrained solution, i.e.

Ai = A0. Hence. the above variational formulation uniquely

defines the optimal solution of the problem under conside-

ration.



6. Concluding remarks

The optimal design problems presented above can also be

described in form of mathematical programming. Since the

equations are highly nonlinear the solution can be obtained

by the application of iterative procedure. The details of this

numerical solution and the applications are published

elsewhere [8].
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