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Ferrofluid Flow in the Presence of Magnetic Dipole

G. Bogńar, K. Hricźo

The aim of this paper is to introduce new results on magneto-thermomechanical interaction between heated viscous
incompressible ferrofluid and a cold wall in the presence of a spatially varying magnetic field. Similarity transfor-
mation is applied to convert the governing nonlinear boundary layer equations into coupled nonlinear ordinary
differential equations. This system is numerically solved using higher derivative method. The effects of governing
parameters corresponding to various physical conditions are investigated. Numerical results are represented for
distributions of velocity and temperature, for dimensionless wall skin friction and for heat transfer coefficients.
Two bifurcate solutions have been obtained and one of the two solutions compares well with previous studies.

1 Introduction

During the last several decades, liquids are intensively investigated by various researchers due to their numerous
applications in industry. One of them is the nanofluid, a homogenous combination of base fluid and nanoparticles.
These suspensions are prepared with various metals or non-metals e.g., aluminium (Al), copper (Cu), silver (Ag),
and graphite or carbon nanotubes respectively, and the base fluid, which includes water, oil or ethylene glycol,
glycerol, etc. Ferrofluid is a special type of nanofluid. Magnetic fluids, also called ferrofluids, are stable colloidal
suspensions of non-magnetic carrier liquid containing very fine magnetized particles, for example magnetite, with
diameters of order 5-15 nm (seePapell(1965)). Ferrofluids are useful for retaining dust from the drive shafts of the
magnetic disk drive. Furthermore, these fluids are used in enhancing the heat transfer rate in numerous materials
and liquids in the industry.

Nanofluids can be used in many areas in our daily lives and technological processes. Such type of applications
includes heat exchanger, vehicle cooling, nuclear reactor, cooling of electronic devices. The magneto nanofluids
are also very much helpful in magnetic drug targeting in cancer diseases, hyperthermia, wound treatments, removal
of blockage in the arteries, magnetic resonance imaging (MRI) etc. (seeBhatti et al.(2016)).

When magnetizable materials are subjected to an external magnetizing fieldH, the magnetic dipoles or line currents
in the material will align and create a magnetizationM .

Problem of magnetohydrodynamic (MHD) flow near infinite plate has been studied intensively by a number of
researchers (see, e.g.,Abel and Mahesha(2008), Adiguzel and Atalik(2017), Andersson and Valnes(1988),
Bogńar (2016a), Bogńar (2016b), Siddheshwar and Mahabaleshwar(2005)). Andersson(1992) investigated the
heat transfer rate in ferromagnetic fluids. The hydrodynamic flow of MHD fluids was studied when the applied
transverse magnetic field is assumed to be uniform.

In recent years various theoretical models have been put forward to study the continuum description of ferrofluid
flow. Most of the analytical studies concerning the motion of ferrofluids are based on the formulation given by
eitherNeuringer and Rosensweig(1964) or Shliomis(2004). Neuringer and Rosensweig developed a model, where
the effect of magnetic body force was considered under the assumption that the magnetization vectorM is parallel
to the magnetic field vectorH.

Andersson and Valnes(1988) extended the so-called Crane’s problem by studying the influence of the magnetic
field, due to a magnetic dipole, on a shear driven motion, on a flow over a stretching sheet of a viscous non-
conducting ferrofluid. It has been shown that the effect of the magnetic field is a slowing of the fluid movement
compared to the hydrodynamic case.Abraham and Titus(2011) concluded that the presence of heat source (or sink)
controls the effect of the magneto-thermomechanical interaction, which decelerates the flow along the stretching
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Figure 1: Parallel flow along a cold flat sheet in the presence of magnetic field due two line currents

sheet, thereby influence on the heat transfer rate.Zeeshan et al.(2016) investigated the effects of magnetic dipole
and thermal radiation on the flow of ferromagnetic fluid on a stretching sheet.

Neuringer(1966) has examined numerically the dynamic response of ferrofluids to the application of non-uniform
magnetic fields with studying the effect of magnetic field on two cases, the two-dimensional stagnation point flow
of a heated ferrofluid against a cold wall and the two-dimensional parallel flow of a heated ferrofluid along a wall
with linearly decreasing surface temperature.

The aim of this paper is to re-investigate the two-dimensional parallel flow of a heated ferrofluid along a wall with
decreasing surface temperature of power-law type and the static behaviour of ferrofluids in magnetic field using
similarity analysis. The similarity method is applied for the governing equations to transform partial differential
equations to nonlinear ordinary differential equations. Numerical solutions are obtained with higher derivative
method. The heat transfer, velocity and temperature distribution in the boundary layer are provided and compared
with the results obtained byNeuringer(1966) for constant streaming speed and linearly decreasing wall temper-
ature. The behaviour of the velocity and thermal distribution is presented. We point out for the existence of two
different solutions on the base of numerical results to the corresponding boundary value problem. The effects of
the parameters involved in the boundary value problem are graphically illustrated.

2 Problem Formulation

Consider a steady two-dimensional flow of an incompressible, viscous and electrically non-conducting ferromag-
netic fluid over a flat sheet in the horizontal direction shown in Fig.1.

The dipole of the magnet is placed at a distancea from the surface, in such a way its center lies ony-axis. The
magnetic field (H) due to the magnetic dipole is directed towards positivex-direction. The ferrofluid influences by
the dipole of the permanent magnet whose scalar potential is

φ(x, y) = −
I0

2π

(

tan−1 y + a

x
+ tan−1 y − a

x

)

, (1)

whereI0 denotes the dipole moment per unit length anda is the distance of the line current from the leading edge.
The wall temperature is a decreasing function ofx and is given byTw = Tc −Axm+1, whereTc denotes the Curie
temperature,A andm are real constants.

The negative gradient of the magnetic scalar potentialφ equals to the applied magnetic field, i.e.H = − ∇φ.
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Then, the corresponding field components are given by

Hx = −
∂φ

∂x
= −

I0

2π

[
y + a

x2 + (y + a)2
+

y − a

x2 + (y − a)2

]

, (2)

Hy = −
∂φ

∂y
= −

I0

2π

[
x

x2 + (y + a)2
+

x

x2 + (y − a)2

]

. (3)

Moreover, the second derivatives are given by

∂2φ

∂x2
= −

∂2φ

∂y2
= −

I0

2π






2x (y + a)
[
x2 + (y + a)2

]2 +
2x (y − a)

[
x2 + (y − a)2

]2




 (4)

and

∂2φ

∂x ∂y
= −

I0

2π






(y + a)2 − x2

[
x2 + (y + a)2

]2 +
(y − a)2 − x2

[
x2 + (y − a)2

]2




 . (5)

Neuringer and Rosensweig(1964) showed that the existence of spatially varying fields is required in ferrohydrody-
namic interactions. We shall have the following assumptions for the exposition of ferrohydrodynamic interaction:

(i) the fluid temperature must be less than Curie temperature,

(ii) the applied magnetic field is inhomogeneous.

Then, the dynamic response of ferrofluids to the application of non-uniform magnetic fields follows from the fact
that the force per unit volume on a piece of magnetized material of magnetizationM (i.e. dipole moment per unit

volume) in the field of magnetic intensityH is given by the formμ0M∇H, whereH =

√(
∂φ
∂x

)2

+
(

∂φ
∂y

)2

, μ0

denotes the free space permeability andM represents the magnitude ofM . Applying the scalar potentialφ, ∇H
is calculated as follows

∇H =
(
[∇H]x , [∇H]y

)
=







∂φ
∂x

∂2φ
∂x2 + ∂φ

∂y
∂2φ

∂x ∂y√(
∂φ
∂x

)2

+
(

∂φ
∂y

)2
,

∂φ
∂x

∂2φ
∂x ∂y + ∂φ

∂y
∂2φ
∂y2

√(
∂φ
∂x

)2

+
(

∂φ
∂y

)2





 , (6)

where[∇H]x and[∇H]y denotes the first and second components of∇H, respectively. Since(∂φ/∂x)y=0 = 0
and

(
∂2φ/∂y2

)
y=0

= 0 at the wall, then[∇H]y vanishes.

In the boundary layer for regions close to the wall when distances from the leading edge large compared to the
distances of the line sources from the plate, i.e.x � a, then one gets

[∇H]x = −
I0

π

1
x2

. (7)

From the above said consideration of the flow analysis, the governing equations (conservation of mass, momentum
and energy) of the boundary layer flow are formed according to the following assumptions (Neuringer(1966)):

(i) the intensity of magnetic field is strong enough to drench the magnetic fluid, and the variation of magnetiza-
tion M is the linear function of temperature as reported byM = K(Tc − T ), whereK is the pyromagnetic
coefficient andTc denotes the Curie temperature proposed byAmirat and Hamdache(2012),

(ii) the induced field resulting from the induced magnetization compared to the applied field is neglected; hence,
the ferrohydrodynamic equations are uncoupled from the electromagnetic equations and
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(iii) in the temperature range to be considered, the thermal heat capacityc, the thermal conductivityk, and the
coefficient of viscosityν are independent of temperature.

Then, the governing equations are described as follows

∂u

∂x
+

∂v

∂y
= 0, (8)

u
∂u

∂x
+ v

∂u

∂y
= −

Ioμ0K

πρ
(Tc − T )

1
x2

+ ν
∂2u

∂y2
, (9)

c

[

u
∂T

∂x
+ v

∂T

∂y

]

= k
∂2T

∂y2
, (10)

where thex andy axes are taken parallel and perpendicular to the plate,u andv are the parallel and normal velocity
components to the plate, respectively,μ0 means the permeability of the vacuum,ν is the kinematic viscosity andρ
denotes the density of the ambient fluid, which will be assumed constant. Equations (8)-(10) are considered under
the boundary conditions at the surface (y = 0) with

u(x, 0) = 0, v(x, 0) = 0, T (x, 0) = Tw, (11)

whereTw = Tc − Axm+1 and asy leaves the boundary layer(y → ∞) with

u(x, y) → u∞, T (x, y) → T∞ (12)

whereT∞ = Tc, andu∞ is the exterior streaming speed which is assumed throughout the paper to beu∞ = U∞xm

(U∞ = const.). Parameterm is relating to the power law exponent. The parameterm = 0 refers to a linear
temperature profile and constant exterior streaming speed. In case ofm = 1, the temperature profile is quadratic
and the streaming speed is linear. The value ofm = −1 corresponds to no temperature variation on the surface.

Introducing the stream functionψ, defined byu = ∂ψ/∂y andv = −∂ψ/∂x, problem(8)–(10) can be formulated
as

∂ψ

∂y

∂2ψ

∂yx
−

∂ψ

∂x

∂2ψ

∂yy
= ν

∂3ψ

∂yyy
−

I0μ0K

πρ
(Tc − T ) , (13)

c

[
∂ψ

∂y

∂T

∂x
−

∂ψ

∂x

∂T

∂y

]

= k
∂2T

∂yy
. (14)

Boundary conditions (11) and (12) are transformed to

∂

∂y
ψ(x, 0) = 0,

∂

∂x
ψ(x, 0) = 0, T (x, 0) = Tc − Axm+1, (15)

∂

∂y
ψ(x, y) → U∞xm T (x, y) = Tc asy → ∞. (16)

Using the following transformations, the structure of (13)–(16) allows us to look for similarity solutions of a class
of solutionsψ andT in the form (seeBarenblatt(1996))

ψ(x, y) = C1x
bf(η), T = Tc − Axm+1Θ(η) , η = C2x

dy, (17)

whereb andd satisfy the scaling relation

b + d = m (18)

and for positive coefficientsC1 andC2 the relation

C1

C2
= ν (19)
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are fulfilled. The real numbersb, d are such thatb − d = 1 andC1C2 = U∞, i.e.

b =
m + 1

2
, d =

m − 1
2

, C1 =
√

νU∞, C2 =

√
U∞

ν
. (20)

By taking into account (17), equations (13) and (14) and conditions (15) and (16) lead to the following system of
coupled ordinary differential equations

d3f

dη3
− m

(
df

dη

)2

+
m + 1

2
f

df

dη
− β Θ = 0, (21)

d2Θ
dη2

+ (m + 1) Pr

(
1
2

f
dΘ
dη

− Θ
df

dη

)

= 0. (22)

The boundary conditions reduces to the following equations subjected to the boundary conditions

f(0) = 0,
d

dη
f(0) = 0, Θ(0) = 1, (23)

d

dη
f(η) = 1, Θ(η) = 0 as η → ∞, (24)

wherePr = cν/k is the Prandtl number andβ = I0μ0KA/(πρU2
∞).

The components of the non-dimensional velocityv = (u, v, 0) can be expressed by

u = U∞ xm df(η)
dη

, (25)

v = −
√

νU∞ x(m−1)/2

(
m + 1

2
f (η) +

m − 1
2

df(η)
dη

η

)

. (26)

The physical quantities that specify the surface drag and heat transfer rate can be derived. Mathematically these
quantities are interpreted in the following form

τy=0 = νρ

(
∂u

∂y

)

y=0

= ρU∞

√
νU∞ x

3m−1
2

d2

dη2
f(0), (27)

−k

(
∂T

∂y

)

y=0

= −kA

√
U∞

ν
x

3m+1
2

d

dη
Θ(0), (28)

where(d2f/dη2)(0) denotes the skin friction coefficient and(dΘ/dη)(0) stands for the heat transfer coefficient.

According to our knowledge, the coupled boundary-layer equations for the case whenm = 0 were first examined
by Neuringer(1966). If m = 0 andβ = 0, equation (21) is equivalent to the famous Blasius equation

d3f

dη3
+

1
2

f
df

dη
= 0, (29)

which appears when studying a laminar boundary-layer problem for Newtonian fluids (seeBarenblatt(1996)).

In the mathematical study of a model describing the dynamics of heat transfer in an incompressible magnetic fluid
under the action of an applied magnetic field, the fluid is assumed nonelectrically conducting and the obtained
solutions are valid only for distances greater thana.
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3 Results and Discussion

There are several methods for the numerical solution of boundary value problems of similar type of coupled
strongly nonlinear differential equations as (21)–(22). Bhatti et al.(2016) applied the successive linearization
method to solve the boundary value problem, where the unknown functions are obtained by iteratively solving
the linearized version of the governing equation. Using a selection of initial guesses, auxiliary linear operators
are quite essential to find the homotopic solutions for flow analysis (seeHayat et al.(2015)). Tzirtzilakis and
Kafoussias(2003) obtained numerical results by a numerical technique based on the common finite difference
method. Zeeshan et al.(2016) andAbraham and Titus(2011) solved the highly non-linear differential equation
subjected to boundary conditions by shooting method when the higher-order ordinary differential equations are
converted into the set of first-order simultaneous equations, which can be integrated as an initial value problem
using the well known Runge-Kutta Fehlberg fourth-order scheme. The initial guesses for the unknown functions
were adjusted iteratively by Newton-Raphson’s method.

Due to the difficulties involved in two-point boundary value problems, several researchers have explored different
approaches for solving these types of problems. The differential transformation method has been proved to be
effective to provide approximate analytical solutions as it does not require many computations as carried out
in Adomian decomposition method (ADM), homotopy analysis method (HAM), homotopy perturbation method
(HPM), and variational iteration method (VIM). Also, the differential transformation method introduced byZhou
(1986) has been used in many engineering and scientific research papers due to its comparative advantages over
the other approximate analytical methods. These numerical method could be used to solve differential equations,
difference equation, differential-difference equations, fractional differential equation, pantograph equation and
integro-differential equation, to solves nonlinear integral and differential equations without restrictive assumptions,
perturbation and discretization or round-off error.

The system of equations (21)–(22) with the corresponding conditions (23)–(24), is interpreted numerically using
BVP solution technique built in Maple.

In this paper, the coupled ordinary differential equations (21)–(22) are solved numerically with boundary con-
ditions using a special type of BVP technique, namely, the higher derivative method (HDM) with A-stability
property. The HDM method can be applied for the determination of efficient solution to some boundary value
problems, which are described by nonlinear ordinary differential equations (seeChen et al.(2017)). The dis-
cretization of boundary value problems based on HDM scheme. It is experienced that most of the test runs quickly,
in a few seconds. The Maple code is attached in the Appendix.

During our investigations, the velocity and temperature changes in the boundary layer are examined and the effects
of the parameters on the solution are illustrated on the figures.

The boundary value problems can have the situation that either no solution or multiple solutions exist even for the
simple set of differential equations (seeBogńar (2012) andHussaini and Lakin(1986)). Here, the boundary value
problem in Maple with applying the HDM method was solved. From the implementations we realized that two
differential solutions exist, call them an upper and a lower solutions for velocity distribution, these are denoted by
green and yellow curves and exhibited on Fig.2 for m = 0, Pr = 10, β = 0.1 and for the length ofηmax = 6. The
Prandtl numberPr = 10 is fixed as a typical value of kerosine based ferrofluid. The obtained solutions of thermal
distribution can be seen on Fig.3, where we have lower and upper solutions, same as in the case of velocity, but in
this case, the lower solution is in a good agreement with published byNeuringer(1966).

The ferromagnetic parameterβ highlights the effect of the external magnetic field. The variation ofβ is shown
on Figs.4-5. It is can also be noticed that the boundary layer thickness is different for different values ofβ. The
thermal boundary-layer thickness is smaller than the corresponding velocity boundary-layer thickness.

The effect of parameterm is presented in Fig.6 for the shear stress at the wall, and the impact on the heat transfer
at the wall in Fig.7. It can be checked from the figures that for the increasing values ofm the surface shear stress
f ′′(0) decreases, and the effect is opposite for the heat transfer rateΘ′(0).

Figure8 shows the dependence of temperature profiles on the Prandtl number. Greater values ofPr result in thin-
ning of thermal boundary layers. It is observed that an increasing in the Prandtl number decreases the temperature
profile in the flow region.
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Figure 2: The effect ofβ on the velocity distribution form = 0, Pr = 10, β = 0.1

Figure 3: The effect ofβ on the temperature distribution form = 0, Pr = 10, β = 0.1
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Figure 4: The velocity distribution for varyingβ (m = 0, Pr = 10)

Figure 5: The temperature distribution for varyingβ (m = 0, Pr = 10)
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Figure 6: The shear stress at the wall forPr = 10, β = 0 andβ = 0.1
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Figure 7: The heat transfer at the wall forPr = 10, β = 0 andβ = 0.1

Figure 8: The effect of the Prandtl numberm = 0 andβ = 0.1
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4 Conclusions

This paper presents similarity solution of the boundary layer flow and heat transfer over a cold wall of a ferrofluid
fow in the presence of spatially varying magnetic field. By means of similarity transformation, the governing
mathematical equations are reduced into ordinary differential equations which are then solved numerically us-
ing a higher derivative method. The effects of some governing parameters namely ferromagnetic parameterβ,
Prandtl number and power law parameter on the flow, and heat transfer characteristics are graphically presented
and discussed. The findings of the numerical results can be summarized as follows:

(i) Dual solutions exist for the system of equations (21)–(22) with the corresponding conditions (23)–(24).

(ii) The effect of the external magnetic field is shown by he ferromagnetic parameterβ. The boundary layer
thickness is different for different values ofβ. The thermal boundary-layer thickness is smaller than the
corresponding velocity boundary-layer thickness.

(iii) The increasing of parameterm is to decrease the surface shear stressf ′′(0), and the effect is opposite for the
heat transfer rateΘ′(0) on the wall.

(iv) The increase of the Prandtl number leads to a decrease of the temperature profile in the flow region.
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Nomenclature

a [m] distance
A [K ∗ m−(m+1)] coefficient
c [J/K] thermal heat capacity
C1, C2 [-] parameters
f [-] similarity velocity function
H [A/m] magnetic field strength
I0 [A] dipole moment per unit length
k [W/mK] thermal conductivity
K [A/mK] pyromagnetic coefficient
m [-] constant
M [A/m] magnetisation of the field
T [K] temperature
Tc [K] Curie temperature
Tw [K] wall temperature
T∞ [K] fluid temperature far from the wall
u∞ [m/s] fluid velocity
u, v [m/s] velocity components
uw [m/s] wall velocity
x, y [m] distances parallel and perpendicular to the wall, respectively

Greek symbols

η [-] similarity variable
Θ [-] similarity temperature function
μ0 [V s/Am] permeability of the vacuum
ν [m2/s] kinematic viscosity
ρ [kg/m3] density of the fluid
φ [A] scalar potential
ψ [m2/s] stream function
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Appendix

The HDM adapt procedure is applied to determine the approximate numeric solution. The simulation gives the
value of unknown parametersB andC, and then we get the figure of all solution functions.

> restart:
> read("HDM.txt");
> Digits:=15;
> EqODEs:=[diff(y1(x),x) = y2(x),diff(y2(x),x) = y3(x),
diff(y3(x),x) = m * y2(x) * y2(x)-(m+1)/2 * y1(x) * y3(x)+b * y4(x),
diff(y4(x),x) = y5(x),
diff(y5(x),x) = -Pr * ((m+1)/2 * y1(x) * y5(x)-(m+1) * y4(x) * y2(x))];
> bc1:=evalf([y1(x),y2(x),y3(x)-B,y4(x) - 1,y5(x)-C]);
> bc2:=evalf([y2(x)-1,y4(x)]);
> Range:=[0.,5.6];
> pars:=[m=0.00,beta=0.1,Pr=4];
> unknownpars:=[B,C]; nder:=5;nele:=20;
> atol:=1e-6;rtol:=atol/100;
> sol:= HDMadapt(EqODEs,bc1,bc2,pars,unknownpars,nder,nele,Range,atol,rtol):
> sol[1][(nops(sol[3])+1) * nops(EqODEs)+1..nops(sol[1])];
> sol[4];
> sol[5];
> NN:=nops(sol[3])+1; print(y5(x));
> node:=nops(EqODEs);

> odevars:=select(type,map(op,map(lhs,EqODEs)),’function’);
> xx:=Vector(NN):
> xx[1]:=Range[1]:
> for i from 1 to nops(sol[3]) do xx[i+1]:=xx[i]+sol[3][i]: od:
> for j from 1 to node do

> plot([seq([xx[i],rhs(sol[1][i+NN * (j-1)])],i=1..NN)],
axes=boxed,labels=[x,odevars[j]],style=point);

> end do;
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