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Planar elongation viscosity is a material property involved in extensional deformation, which plays a significant 
role in many processes such as film-casting and coating. As for the elongation behavior of a polymeric film, 
some commercial measurement methods are available. However, these measurement methods cannot be applied 
to liquids with lower viscosities. A method of measuring planar elongation viscosity, especially for low viscosity 
liquids, has been proposed, which generates a planar elongation flow by pushing a bullet-shaped bob into a cup 
filled with the sample liquid. The pushing force, which can be measured by a conventional rheometer, reflects 
the responses of shear, planar extensional deformation, and buoyancy. However, measurements using a bullet-
shaped bob may be strongly affected by the shear flow between the bob and the cup. Therefore, an alternative 
measurement using a flat disk-shaped bob is proposed, in order to significantly reduce the influence of shear 
flow. However, such improvements cannot be estimated numerically. In this study, we performed numerical 
simulations of viscoelastic fluids for both measurement methods to clarify the shear flow effects. 
 
 
Nomenclature 
E [Pa] elastic stress tensor 
F [N] applied force 
g [m/s2] gravity acceleration 
g [m/s2] gravity vector 
G [Pa] relaxation modulus 
h  [m] gap between bob and cup 
L [m] representative length 
p [Pa] pressure 
Q [m3/s] volume flow rate 
R [m] radius 
S [m2] surface area 
S [s-1] rate of deformation tensor 
u, w [m/s] velocity in r, z direction 
v [m/s] velocity vector 
Vb [m/s] bob sliding velocity 
α, s [-] Giesekus model parameter 
γ  [s-1] shear rate 
δ [-] unit tensor 
ε  [s-1] elongation velocity 
η0 [Pa ⋅s] zero-shear viscosity 
θ [rad] radial angle 
λ        [s] relaxation time 
ρ [kg/m3] density 
τ [Pa] extra stress tensor 
∇  [m-1] gradient operator 
IId         [s-2] second invariant of deformation tensor 
IIId       [s-3] third invariant of deformation tensor 
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Subscripts and Superscripts 
b bob 
c cup 
hd hydraulic mean depth 
m smallest 
M largest 
PE planar elongation 
r, z direction 
T transpose 
∇  contravariant convective derivative 
 
 
1 Introduction 
 
Planar elongation flow of viscoelastic fluids can be observed in film-casting, blow molding, and coating 
processes, among others. Such processes can be affected by the material response under extensional deformation, 
which is different from the response under shear deformation. To evaluate the planar elongation behavior of such 
fluids is important for the design and operation of the processes. However, useful planar elongation viscosity 
measurements are not available, because it is difficult to generate a steady planar elongation flow field, especially 
for low viscosity fluids. Sugihara et al. [1] proposed a method of measuring the planar elongation viscosity, 
which uses the planar elongation flow generated by pushing a bullet-shaped bob into a cup filled with the sample 
liquid. A commercial stress-controlled rheometer was used to measure the normal force at a given bob speed. The 
normal force is equivalent to the summation of resistance forces acting on the bob, such as a buoyancy force, 
pressure, and extra stresses due to the elongation and shear flows. The bullet-shaped bob and cup are precisely 
manufactured to generate a planar elongation flow at a desired planar elongation rate, as shown in Figure 1. This 
method is useful for lower viscosity liquids. However, the Trouton ratio of the planar elongation viscosity of the 
Newtonian fluid was approximately 103 times higher than the theoretical value of 4. On the other hand, Sugihara 
et al. [1] also showed numerical results, such as the streamline and shear rate profiles shown in Figure 2. They 
pointed out that the resistance force on the bob is dominated by shear flow due to the longer narrow gap between 
the bob and cup, and it is necessary to reduce the influence of the shear flow for accurate planar elongation 
viscosity measurements. 
 
To reduce the effect of the shear flow at the gap, a flat disk-shaped bob with a knife-edged rim was proposed [2]. 
Figure 3 shows a schematic view of the disk-shaped bob. This technique was intended to reduce the influence of 
the shear flow significantly because the length of the narrow gap is infinitesimally short. However, it was 
necessary to assume a representative length L of the shear and elongation flow region instead of the length of the 
test section in order to estimate the resistance force to evaluate the planar elongation viscosity. The choice of this 
representative length is important to increase the accuracy of the elongation viscosity measurement. They used 
the hydraulic mean depth as the representative length, so that Trouton ratio of the flow channel of Newtonian 
fluids agrees with the theoretical value of 4. Ideally, the representative length characterizing the flow field should 
be determined based on an analytically or experimentally obtained velocity distribution. The flow field occurring 
around the disk-shaped bob and the cup, however, has not yet been revealed. In this study, we perform a 
numerical simulation of a viscoelastic fluid for the flat disk-shaped bob to clarify the effect of the shear flow 
region on the resistance force and the validity of using the hydraulic mean depth as the representative length.  
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Figure 1.  Boundary conditions of flow analysis in the bullet-shaped bob geometry. 

 
 

     
 

Figure 2. (a) Streamlines and velocity profile and (b) shear rate profile of the flow channel between the cup and 
bullet-shaped bob sliding at Vb=0.1 mm/s. 
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Figure 3.  Schematic of flow problem between the disk-shaped bob and cylindrical cup. 

 
 
2 Numerical Analysis 
2.1 Governing Equations 
 
The isothermal and steady state flow of a viscoelastic fluid is governed by the following basic equations, i.e., 
equation of continuity (1), momentum equation (2) and constitutive equations (3) and (4) as follows. 
 

0⋅ =v∇  (1) 
 

pρ ρ⋅ = − + ⋅ +v v gτ∇ ∇ ∇  (2) 
                                                                                                                                                               

2 0sη= +S Eτ  (3) 

 

( ) ( )2/ 2 10G sλ α η
∇

+ + = −E E E S  
(4) 

 
where S is the deformation tensor ( T2 ≡ +S v v∇ ∇ ) and the upper convected derivative of the elastic stress ∇

E  
defined in equation (5), which is the elastic part of the extra stress τ. The unit mode Giesekus model [3] is 
employed as a constitutive equation with a zero-shear viscosity η0, a relaxation time λ, model parameters α, s and 
relaxation modulus ( )0 1 /G sη λ≡ − . 
 

( )T
∇

≡ ⋅ − ⋅ + ⋅E v E v E E v∇ ∇  
(5) 

 
The elastic–viscous–split–stress (EVSS) method [4] for viscoelastic flows is used to improve the convergence of 
the analysis. Biquadratic interpolation and linear interpolation are used for the velocity and the pressure field, 
respectively. A 4×4 sub element scheme and stream up winding method [5] are employed for discretization of 
constitutive equations using the Galerkin finite element method by POLYFLOW software ANSYS 19.0. 
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2.2 Boundary Conditions 
 
Figure 3 is a schematic illustration of the flow geometry with a disk-shaped bob. 2D asymmetrical flow was 
assumed in this simulation. The radius of the disk-shaped bob, the rod, and the inner cup are Rb, Rs, and Rc, 
respectively. The upper part of the disk is slightly conical in shape. 
 
Boundary conditions are summarized in Figure 4. The flow at the inlet boundary is taken to be fully developed at 
a given flow rate with a specified profile velocity and components of the elastic stress E, as well as the total 
stress are set to vanish at the outlet. No-slip conditions are assumed along the surfaces of the cup wall and the 
bob. The bob is fixed, and the cup wall moves up at the bob sliding speed Vb. 
 
Figure 5 shows a mesh profile of the calculation domain consisting of 7,620 elements. A close-up of the mesh 
profile around the tip of the disk-shaped bob is shown on the right side. The tip of the disk-shaped bob is slightly 
rounded to relax the singularity effect. 
 

 
Figure 4.  Boundary conditions for flow analysis between the cup and disk-shaped bob. 

 

 
Figure 5.  Overview of mesh profile (left side) and its close-up view around the tip of the disk (right side). 
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2.3 Material 
 
M1 fluid [7, 8] was used as a low-viscosity viscoelastic liquid, and was measured by a rheometer MCR301 
(Anton Paar Corp.). Figure 6 shows the rheological properties of the M1 fluid. The M1 fluid shows an almost 
constant shear viscosity over the tested shear range but exhibits slightly shear-thinning behavior (Figure 6). The 
data of storage modulus G’ and loss modulus G” are replotted from Te Nijenhuis et al. [10]. 
 
We also fit parameters of the unit mode Giesekus model to the experimental data. The rheological curves 
obtained by this fitting are shown as the solid lines in Figure 6. The model parameters used in the simulations are 
η0 = 1.64 Pa∙s, λ = 0.200 s, α = 0.500, and s = 0.595. 
 

 
Figure 6. Rheological properties of the M1 fluid: Storage modulus G’, Loss modulus G”, Shear viscosity η. 

 
 
2.4. Estimation of Resistance Forces 
 
In the case of the disk-shaped bob, the summation of the apparent resistance force F’ can be written as: 
 

' b ss sn PEF F F F F F= − = + +  (6) 

 
where F is the net resistance force, Fb is the buoyancy force, Fss is the contribution of the shear stress acting on 
the aspect of the bob, Fsn is the contribution of the pressure drops of the shear flow, and FPE is generated by the 
planar elongation flow in the test section [2]. In the case of the bullet-shaped bob, Fsn will be the dominant force, 
because the shear stress acting on the bullet-shaped bob is much bigger due to the longer channel, as shown in 
Figure 2(a). However, the shear stress acting on the surface of the disk-shaped bob can be neglected because of 
the knife-edged rim, giving Fss=0. In addition, shear stress will be generated on the cup surface in the narrow gap 
region. Sugihara et al. [2] assumed that Fsn is given as follows: 
 

2 2

0

L

sn b b
dp dpF R dz R L
dz dz

p p   = − = −   
   ∫  

(7) 
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In the experimental measurement of planar elongation, we treat the M1 fluid as a power-law fluid (flow 
coefficient power-law index K=1.25 Pa·sn) [2]. Assuming a power-law fluid, the pressure gradient over a 
representative length L can be calculated. Finally, the planar elongation rate can be given as follows: 
 

( ) ( )
2

2 2 2 2

1 c
PE

c b c b

R VQ
LR R L R R

ε
π

= × =
− −

  
(8) 

 
Here, the choice of representative length L is important for the disk-shaped bob. Sugihara et al. [2] used the 
hydraulic mean depth Lhd as L [9], which gave the experimentally obtained Trouton ratio of the Newtonian fluid 
the theoretically predicted value of 4. 
  

( )
( )

2 2

2 2
c b c b

hd
c b

R R R R
L

R R

π

π

− −
= =

+
 

(9) 

 
Lhd is half of the width between the tip of the disk-shaped bob and the cup wall. 
 
 
3 Results and Discussion 
3.1 Results of Numerical Simulation 
 
Figure 7 shows the apparent resistance force F’ generated by the flow between the cup and the bob. The solid 
line with open circles indicates experimental values replotted from [2]. The dashed line with solid circles 
indicates F’ obtained by the numerical simulation. F’ increases linearly and agrees well with the experimental 
data. The relative error with respect to the experimental value at Vb=10 mm/s is -0.73%. Therefore, the validity of 
the numerical simulation is confirmed. 
 
Figure 8(a) shows streamlines in the flow field. The magnitude of velocity is indicated on each streamline by the 
color scale. Fully developed flow enters from the bottom of the cup. The mean inlet velocity in the z-direction 

inw  is 0.1 mm/s, which is the same as the bob sliding velocity Vb. The streamlines are parallel to each other. The 
streamlines are gradually concentrated and smoothly enter the narrow gap between the disk-shaped bob and cup. 
However, no vortex was found in the calculation domain. Approaching the gap from the bottom, the flow 
velocity is dramatically increased up to about 8.76 times faster than the mean inlet velocity. The value is 
dependent on the flow geometry. After passing through the narrow gap, the streamlines diverge smoothly and the 
velocity profile changes again to parallel flow. Numerical results at Vb = 10 mm/s are similar to those at Vb = 0.1 
mm/s. 
Figure 8(b) shows a contour plot of the elongation rate, which can be evaluated by equation (10) [6], 
 

3 /PE d dIII IIε =  (10) 

 
where IId and IIId are the second and third invariants of the deformation tensor S, respectively. It was found that 
strong elongation flow is clearly generated in the entrance region of the narrow gap. 
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Figure 7. Apparent resistance force generated by flow between the cup and the bob. 

 
 

     
Figure 8. (a) Streamlines and velocity profile of the M1 fluid. Sliding velocity of the disk-shaped bob was Vb=0.1 

mm/s. (b) Elongation rate profile at Vb=0.1 mm/s. (c) Shear rate profile at Vb=0.1 mm/s. 
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3.2 Validity of Representative Length 
 
A shear rate profile for the calculation domain is given in Figure 8(c). It is readily apparent that the area of shear 
flow in the disk-shaped geometry is much smaller than in the bullet-shaped bob geometry shown in Figure 2(b). 
 
An enlarged view of the shear rate contour plot around the edge of the disk is shown in Figure 9. The wall shear 
on the cup is biggest just beside the tip and falls off rapidly with increasing distance from the tip. Figure 10 
shows the normalized wall shear rate along the cup surface near the tip. The shear rates at four sliding speeds 
(Vb=0.1, 1, 5, 10 mm/s) were normalized by the maximum value. The lines are very similar in shape near the tip. 
This means that the normalized shear region is independent from the bob sliding velocity Vb. Therefore, it is 
reasonable to determine the representative length from the shear rate profile on the cap wall. The hydraulic mean 
depth Lhd matches the range of high shear rate, max 0.9γ γ ≥  . Thus, the assumption of representative length is 
reasonable in the estimation of elongation viscosity.  
 

 
Figure 9.  Shear rate profile around the edge of a disk-shaped bob at Vb=0.1 mm/s. 

 
 

 
Figure 10. Effect of bob velocity Vb on normalized shear rate on the cup wall surface. Rb=8 mm, Rc=8.5 mm, 

h=0.5 mm, Lhd=0.25 mm. 
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3.3 Effect of Bob Geometry on Representative Length 
 
We examined the effect of the radius and gap geometry on the shear rate profile along the cup wall. The bob 
geometry was changed gradually in two ways: (1) Rc and Rb were changed with constant gap h, and (2) the gap h 
between the bob and cup was changed with constant cup radius Rc. Figure 11 shows the calculation results for the 
constant gap cases. The shear rate on the cup wall is normalized by its maximum value. Twenty lines overlap in 
Figure 11, and they are all very similar to each other near the tip. Each hydraulic mean depth Lhd agrees with the 
range of over 90% of its maximum shear rate value. 
 
Figure 12 shows the simulations result for the constant Rc cases. The bob radii are varied as Rb=6.5, 7.5, 8, 8.1 
mm, and the gaps are varied as h=2, 1, 0.5, 0.4 mm. The shear rate on the cup wall is normalized by its maximum 
value. When the horizontal axis of the figure is normalized by the gap h, the similar profiles were obtained. 
These simulation results indicate that the choice of Lhd is applicable to various bob geometries. 
 
 

Rb [mm] Rc [mm] h [mm] 
8 8.5 0.5 
5 5.5 0.5 

11 11.5 0.5 
20 20.5 0.5 
25 25.5 0.5 
8.1 8.5 0.4 
7.5 8.5 1 
6.5 8.5 2 

 
Table 1. Geometric parameters of the disk-shaped bob. 

 
 

 
Figure 11. Normalized shear rate on cup wall surface near the tip. Rb=5, 8, 11, 20, 25 mm. Lhd=0.25 mm. 
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Figure 12. Normalized shear rate on cup wall surface near the tip. Rb=6.5, 7.5, 8, 8.1 mm. Lhd/h=0.5 mm. 

 
 
3.4 Effect of Thickness of the Disk-shaped Bob on Resistance Force 
 
The accuracy of the estimation of planar elongation viscosity can be improved by increasing the contribution of 
the planar elongation stress FPE compared to the resistance force F’. In the case of the bullet-shaped bob, the 
ratio of FPE to F’ is about 0.4% [1] due to the bigger shear region as shown in Figure 2(b). However, in the case 
of the disk-shaped bob, the ratio can be dramatically improved up to 44.8% at Vb=10 mm/s, because the region of 
shear flow near the narrow gap is eliminated. We numerically evaluated the effect of the longitudinal length (bob 
thickness l) of the narrow gap, as shown in Figure 13, on the ratio of FPE to F’.  
 
Figure 14(a) shows streamlines in the flow field at l=5 mm and Vb=0.1 mm/s. Figure 14(b) shows a contour plot 
of the elongation rate. The maximum elongation rate is almost the same as that at l=0 mm and Vb=0.1 mm/s. A 
shear rate profile for the calculation domain is shown in Figure 14(c). Strong shear flow is obvious in the narrow 
gap region depending on the length of l and that increases the shear contribution, Fss and Fsn. Figure 15 shows the 
effect of the thickness length l and the bob sliding speed Vb on the apparent resistance force F’. The numbers on 
the right side indicate the ratio of the elongation stress term FPE to the apparent resistance force F’ at Vb=10 
mm/s. It is clear that the thinner disk-shaped bob is preferable for the measurement of elongation viscosity. 
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Figure 13. Schematic of flow with a disk-shaped bob and a cylindrical cup. The disk-shaped 

bob has thickness l. 
 

 

   
Figure 14 (a). Streamlines and velocity profile of the M1 fluid. Thickness of the disk-shaped bob is l=5 mm. 

Sliding velocity of the disk-shaped bob is Vb=0.1 mm/s, (b) Elongation rate distribution. l=5 mm, Vb=0.1 mm/s, 
(c) Shear rate distribution. l=5 mm, Vb=0.1 mm/s. 
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Figure 15. Apparent resistance force generated by flow between the cup and the bob. Left numbers indicate the 

contribution of planar elongation at a bob velocity Vb of 10 mm/s. 
 
 
Conclusions 

 
We performed a numerical simulation of a viscoelastic fluid for the measurement method using a disk-shaped 

bob developed by Sugihara et al. [2]. Approaching the gap, flow velocity increases dramatically, and a strong 
elongation velocity is clearly generated in the entrance region of the narrow gap. 

 
The wall shear rate profiles near the tip are similar for four different bob sliding speeds. The width of the 
normalized strong shear region was the almost same as the hydraulic mean depth. Therefore, the validity of this 
assumption in the calculation of elongation viscosity for the disk-shaped bob was confirmed. 
 
The effects of bob and cup geometry were examined. The hydraulic mean depth matched the region of high wall 
shear rate, confirming the validity of the use of the hydraulic mean depth as the representative length. 
 
Shear rate distributions for the disk-shaped bob and the bullet-shaped bob are compared. The effect of shear in 
the disk-shaped geometry is much smaller than that in the bullet-shaped bob. The thinner disk-shaped bob is 
preferable for the measurement of elongation viscosity, because the influence of shear flow along the wall surface 
is significantly reduced. 
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