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Energy Cascade in a Nonlinear Mechanistic Model of Turbulence

B. D. Bak, T. Kalmar-Nagy

Energy transfer plays an essential role in many natural and engineering processes which include different scales.
Understanding how the energy cascade (which refers to the energy transfer among the different scales) works is of
primary importance. One notable example is the energy cascade in turbulent flow whose kinetic energy is trans-
ferred from large eddies to smaller ones. Below a threshold scale the energy is dissipated due to viscous friction.
We introduce a nonlinear phenomenological mechanistic model of turbulence which consists of masses connected
by springs arranged in a binary tree structure. To represent the various scales, the masses are gradually decreased
in lower levels. The bottom level of the model consists of nonlinear energy sinks to provide dissipation. Based on
previous research, we choose the system parameters and analyze its behavior for simple impulsive excitations. The
decay of the total mechanical energy and the discrete energy spectrum of the system are compared for different
impulse magnitudes. It is demonstrated that the dissipation is much more significant compared to the linear model,
if the input energy is large enough. The energy spectra are compared with that of the linear model. We find that
the energy spectrum of the nonlinear model better highlights the cut-off feature of the Kolmogorov spectrum.

1 Introduction

There are many complex phenomena both in nature and in engineering processes which include energy transfer
among a wide range of different scales. Many studies dealt with examining systems exhibiting energy cascades,
see e.g. Vakakis et al. (2008). Frequently studied examples include nonlinear chain oscillators (Gendelman et al.
(2001); Vakakis and Gendelman (2001)) and the Fermi-Pasta-Ulam problem described by Fermi et al. (1955). An
energy cascade describes energy transfer primarily from large scales to small ones. There also exist inverse cascade
models in which the energy is transferred from small scales to larger scales. A notable example is the forest fire
model of Turcotte et al. (1999) which describes how small clusters of fires combine and form larger fires.

In fluid mechanics the well-known example of such a process is the turbulent energy cascade. According to
Richardson (1922) there are vortices of different sizes in a turbulent flow. The larger vortices are unstable and
break up to form several smaller vortices. Thus, the kinetic energy of the flow is transferred to smaller scales. The

turbulent energy cascade is characterized by the energy speEt(rm}nNhich shows the distribution of the total
energyF of the flow among the different scales. In other words, the spectrum is a Fourier-transfétmef

E= /E(/i)dﬁ, 1)

where the wavenumber ~ 1/L is associated with the vortex having characteristic gize

The spectrum of 3D homogeneous isotropic turbulence (also known as Kolmogorov spectrum, see Kolmogorov
(1941)) is shown in Fig. 1.
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Figure 1: The Kolmogorov spectrum.

This spectrum corresponds to “pure turbulence”: there are no force fields, boundary influences or any kind of
disturbance. The flow statistics are spatially homogeneous and isotropic, temporally stationary or decaying. The
energy spectrum shown in Fig. 1 describes the main features of the turbulent energy cascade. Energy production
mainly affects the large scales (characterized gy, most of the energy is contained in the large eddies (energy
containing range). There is an intermediate wavenumber rdnde (< x < 1/L,) in which the energy spectrum
is described by the scaling law

E(k) ~ k73, 2

This part of the spectrum is called the inertial range. Dissipation becomes significant due to viscosity below the so
called Kolmogorov length scalk,. This is why the spectrum cuts off by large wavenumbers (dissipation range).
A more detailed description of the Kolmogorov spectrum is given by Pope (2000).

The viability of the Kolmogorov spectrum was confirmed by means of both experimental and simulation tech-
nigues. For instance, various grid turbulence measurements are reported in the literature, e.g. Stalp et al. (1999);
Kurian and Fransson (2009); Ertuncg et al. (2010) and the results agree with Kolmogorov’s notion of turbulence.
Simulation tools are also extensively used to predict the statistics of turbulent flows, e.g. large eddy simulation was
used by Kang et al. (2003), Galanti and Tsinober (2004) performed direct numerical simulations, Ditlevsen (2010)
and Biferale (2003) reviewed the shell-models of turbulent energy cascade.

Our goal in this paper is to present a purely phenomenological model of turbulence which includes nonlinearity.
Our mechanistic turbulence model is a binary tree of masses and springs (see Fig. 2), in which the masses represent
the different scales, and the springs provide the connection among them. In a previous paper (Bak and Kalm
Nagy (2018b)) we analyzed the response of a linear version of the system for impulsive and continuous harmonic
excitations. We showed that among the scales of the linear system there is a qualitatively similar energy distribution
as the Kolmogorov spectrum, if the model parameters are adequately chosen.

This paper is structured as follows: in Section 2 the phenomenological mechanistic model is described in details.

In Section 3 we show how the energy dissipation depends on the input energy in the nonlinear mechanistic model.
Furthermore, the energy spectrum of the model is described, and the characteristics of this spectrum is analyzed
with different input energy levels. The energy spectra of the linear and nonlinear systems are compared. In Section
4 we draw conclusions. Throughout the analysis we consider every quantity to be dimensionless and/or normalized
by a reference value.
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2 Mechanistic Turbulence Model
2.1 Introduction of the Model

We introduce a mechanistic model of turbulence which is a binary tree of masses connected by springs. The tree
hasn levels, there ar@'~! massesi(= 1, ..., n) in thelth level. The total number of massesNs= 2" — 1. The
model forn = 3 is depicted in Fig. 2.

The masses represent the different scales of vortices. The top mass (the largest vortex) is connected to the motion-
less ceiling with a spring. In the bottom level the masses (associated with the smallest, energy dissipating scale)
are connected to the previous level with either linear or nonlinear springs and linear dampers.

In the nonlinear version of the model the parts responsible for the dissipation are nonlinear energy sinks (NES) as
opposed to the linear model in which those are tuned mass dampers (TMD). Considering impulsive excitation, a
fundamental difference between NES and TMD is that the effectiveness of the NES depends on the input energy
magnitude, while the TMD is effective if it is tuned to the natural frequencies of the primary system. The behavior
of a purely linear system is completely independent of the input energy magnitude.

Considering a system having at least 4 levels, the equations of motion for the masses in the different levels are

kai(z2i — i) + k2it1(v2i41 — @) — bz, i=1,

koi(wo; — i) + ko1 (T2i41 — @5) — ki(@i — 2502)), 1=2,..., 22— 1,

Mili = 4 ki (220 — 24)° + kaig1 (T2ir1 — 24)7 — k(@i — 2(3/2))+ 3)
teoi(og — @) + Cojpr (o1 — dy), =2""2,..,2"" L1,

—ki(xi —Z|i/2) )ﬁ — cl(xz — .’,‘CU/QJ), 1= 2”71, ..., N.

The symbol|.| denotes the floor operation. The expongat in the linear case an@=3 in the nonlinear case.
The number of levels is > 4.
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Figure 2: A 3-level mechanistic turbulence model.

2.2 Model Parameters

We set the masses, stiffnesses and dampers to be equal within a level. This allows us to introduce the following
notations:
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e M; is the size of each mass in thté level (i.e. My = my, My = mo = mg, ...).

e [ denotes the stiffness of the top spring; (I = 2, ..., n) denotes the stiffness coefficient of every spring
which connects a mass of the- 1th and a mass of thizh levels.

e Every damper has the same damping coefficient which is denotéd by

To represent the different length scales of vortices, the masses are gradually decreased in lower levels (a vortex of
size L breaks up into smaller vortices). The power-law distribution

My =121 1=1,..,n, (4)

specifies the masses in each level. Thus, the sum of masses in each level is 2 Sihfe= 2!-1(1/2)!"! = 1.
Similarly to the masses, thi€; values are specified with a power-law distribution

Ki=0¢"Y 0>0 1=1,..n, (5)

whose single parameter éswhich is called the stiffness parameter. Thus, the stiffness of the top spriig is
o =1.

We define the damping ratio of the system as

¢ = C/2V/M, K, ®)

The analysis of the previous linear model revealed that the energy spectrum (which we define in Section 3) in
effect depends on, and is practically independent 6f In this paper we us€ = 0.001, because such a weak
damping well highlights how the nonlinear system behaves for different input energy magnitudes. Based on pre-
vious investigation of the linear model we set= 0.45, since for thisr the energy spectrum has many similarities

with the Kolmogorov spectrum (see Bak and KalriNagy (2018b)). An 8-level system is analyzed for impulsive
excitation. Every initial condition is set to zero, except0) (an initial velocity is set for the top mass).

3 Energy Transfer in the Mechanistic Model
3.1 The Total Mechanical Energy

The total mechanical energy(t) of the system is the sum of the kinetic energy stored in the masses, the potential
energy stored in the linear springs, and the potential energy stored in the nonlinear springs, i.e.

271. 1_q

Zmzm + ]{;11‘1—1—7 Z ]4; .IU/QJ +ﬁ Z k‘ —l'L/Qj) (7)
j=2n—1
The key dlfference between the linear and the nonlinear system is immediately seen from Fig. 3 which shows the
percentage of’(t) compared to the initial energf(0) = 1/24%(0) for 8-level systems. In this figure the graph
corresponding to the linear system+£ 1) is depicted with a solid line.

In the nonlinear syster(¢) strongly depends on the initial mechanical energy. For sii@l) (see Fig. 3a) the
dissipation is comparable to that of the linear systemEAB) increases, the dissipation becomes more significant
(see Fig. 3b). This is in accordance with the description in Vakakis et al. (2008) which states that below a certain
energy threshold the dissipation of the NES is not significant.

The evidence of a more efficient energy transfer realized by the NES compared to the TMD is shown in Fig. 4.
In this figure E5(t) refers to the energy stored in the 8th level (the last level which includes the dissipating parts).
Though the maximum percentagelf(¢) / E(t) is around 25% in both cases, there are much more spikes reaching
this peak by the nonlinear case. The spikes are also wider in the nonlinear case. Thus, even for a moderately small
impulse E(0) = 1), more energy is transferred to the dissipating parts of the system in the same amount of time,

if NESs are used instead of TMDs.
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Figure 3: The total mechanical energy of 8-level mechanistic models for different amount of initial energies. The
continuous line corresponds to the linear system.
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Figure 4: The percentage of the total mechanical energy of an 8-level system stored in the dissipating parts. The
initial energy isE(0) = 1.

3.2 The Energy Spectrum

We computeE; (t) which is the mechanical energy stored in lek€l = 1,...,n). Naturally, the kinetic energy

of the masses located in levetontribute toE;(¢). By design, the potential energy of the springs connecting two
masses is distributed equally between the two levels. The potential energy of the top spring is ddded This
definition of E;(¢) ensures tha} ;" , E;(t) = E(t), andE;(t) > 0 fort > 0.

The mean total mechanical energyof the system during the time peridd , t,] is E(t) averaged over this time
period, i.e.

1 t2

ta —t1 Jy,

E:

E(t)dt. @8)

The mean mechanical ener@y stored in level can be calculated in the same manner, i.e.

1
to —ty

to
E'l = / El(t)dt, l= 1, ey N (9)
t

1

In turbulent flow the energy spectruﬁ‘(n) shows the “contribution” of the different scales to the total energy of
the flow, i.e. the mean energy stored in the different wavenumbgsse Eqg. (2)). Analogously to the wavenumber
of a turbulent scale, we define the “wavenumber” of the masses ithtevel as
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R = l/ﬂfl, l= 1, ey 1 (10)

The energy fraction stored in wavenumlgiis defined as

E(k)=E/JE, 1=1,..,n, (11)

and it shows the “contribution” of a scale to the total mechanical energy of the systemEg(ax)rbplongs to a
different “mass scale}M;). The E;(x) values { = 1, ...,n) constitute the discrete energy spectriitk) of the
mechanistic model.

Fig. 3 shows that the behavior of the system consists of an initial, highly dissipative part which is followed by

a slowly decaying part. In the first part the spectrum heavily depends on the time irjterval (see Bak and
Kalmar-Nagy (2018b)). In Bak and Kafn-Nagy (2018a) we eliminated this dependence on the chosen time
interval by calculating the spectrum of the linear system in the asymptotic limit e co. In practice we can
approximate the spectrum corresponding to the asymptotic lintit ef oo by choosing a sufficiently largs .
Therefore, in this study we extract the energy spectrum fra59900, 60000] for both the linear and nonlinear

cases. Our experience is that the energy spectrum of the nonlinear system is also practically independent of the
time intervallty, t2], if ¢1 is sufficiently large. Typical energy spectra for different initial energies are shown in Fig.

5.

To make the comparison easier, the energy spectrum of the lineargaséa)is depicted in every plot. As Fig.
5 shows, the shape of the energy spectrum depends on the initial energy of the nonlinear system. In general, the
cut-off at the largest wavenumber is much more significant in the nonlinear case.

For small initial energy (Fig. 5a) the slope of the spectrum of the nonlinear system is less steep than that of the
linear system. The dissipative parts are very efficient for moderately large initial energy (Fig. 5b), and the cut-off at
the largest wavenumber is less noticeable in this case. As the initial energy further increased (Fig. 5c) the spectrum
of the nonlinear system becomes the same as that of the linear system, except at the largest wavenumber where
the cut-off becomes significant again. Comparing Figs. 3 and 5 explains the more serious cut-off in the nonlinear
cases. When the system is nonlinear, a plateau is observed in the plots) @ffter the initial, highly dissipative

part. This means that the energy dissipation becomes insignificant. Thus, the energy fraction stored in the largest
wavenumber (which corresponds to the dissipating nonlinear part) must be negligible, since otherwise the energy
dissipation would be still significant. This is why a spectacular cut-off is present in the energy spectrum by the
largest wavenumber. In the linear system the energy is still steadily decaying after the high initial dissipation,
hence the cut-off in the energy spectrum is less significant.

Similarly to the Kolmogorov spectrum, the midrange of the energy spectra seemingly obeys a scaling law which is

E(k) ~ k%, (12)

where the scaling exponeatmainly depends on. In the nonlinear case also depends on the input energy. For
the linear model the scaling exponent= —2.37, while it is always larger or the same for the nonlinear model.

4 Conclusions

We analyzed a nonlinear mechanistic model of turbulence which is a binary tree of masses connected by springs.
The bottom level of the system consists of NESs to model dissipation. The response of the system was studied for
impulsive excitations which were applied to the top mass. These impulses had different magnitude to show that
the behavior of the nonlinear system strongly depends on the input energy. We defined and showed the energy
spectrum of the mechanistic model for linear and nonlinear cases. The parameters of theonaoak])(were

chosen to replicate an energy spectrum which is similar to the Kolmogorov spectrum. The choice was based on
the analysis of the previously investigated linear model. Compared to the spectrum of the linear model, for small
to moderate initial energy the spectrum of the nonlinear model contains more energy in the intermediate and large
wavenumbers, except the largest wavenumber. At the largest wavenumber the spectrum cuts off. The cut-off is
in general much more serious in the nonlinear case, because after the initially rapid energy dissipation the energy
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Figure 5: Energy spectra of the linear and nonlinear 8-level mechanistic models for different initial energies.
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transfer to the dissipating bottom level becomes negligible. For large initial energy the spectra of the linear and
the nonlinear cases are practically the same, except the largest wavenumber. Including nonlinearities in the model
“improved” the shape of the spectrum in the sense that it better resembles the Kolmogorov spectrum with the more
significant cut-off at the largest wavenumber. In future work we intend to include negative damping (which would
correspond to internal energy generation) and more nonlinear springs at higher levels of the model to investigate
the energy cascade of those systems.
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