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Heat Transfer across the Free Surface of a Thermocapillary Liquid Bridge

F. Romaǹo1, H. C. Kuhlmann2

The heat transfer across the free surface of a millimetric thermocapillary liquid bridge is investigated for two
dimensional axisymmetric flows, computed by Newton–Raphson iteration. The coupled multiphase flow in the
silicone-oil liquid bridge and in the ambient gas (air) is considered for Marangoni and Prandtl numbers of interest
for typical space experiments. Based on the space-resolved heat flux of the two-phase flow for a wide range of
parameters, we derive a model for the heat flux in form of Newton’s heat transfer law for a surrogate single phase
flow, in which a space-dependent Biot function is considered. A parametric study for a 2 cSt silicone-oil liquid
bridge is conducted for 150 configurations to derive a reliable fit of the Biot function for a wide range of Reynolds
numbers and aspect ratios. An explicit form of the parametric fit is provided which takes into account the hot- and
cold-wall boundary layers in the liquid.

Nomenclature

A0,1,2,3 [−] coefficients for Re-dependent fits
Bi [−] Biot number and Biot function
Ca [−] capillary number
Ma [−] Marangoni number
Pr [−] Prandtl number
Re [−] Reynolds number
V [−] volume ratio of the liquid bridge
J [−] Jacobian matrix
R, Rtc, Rgap [m] radius of rods, test chamber and annular gap around the liquid bridge
T, ΔT [K] temperature and temperature difference
a [−] coefficients forz-dependent fits
d [m] distance between support rods
f [−] residual of the Newton method
hfs [−] free surface deformation
hg [W/(m2K)] heat-transfer coefficient (gas)
p, u [−] pressure and velocity field
r, ϕ, z [−] radial, azimuthal, axial coordinate
x [−] position vector
y [−] solution of the Newton method
α, β [−] coefficients forΓ-dependent fits
γ [N/(mK)] negative surface-tension coefficient
δ [−] increment of the Newton method
θ [−] reduced temperature
κ [m2/s] thermal diffusivity
Λ [−] axial aspect ratio
λ [W/(mK)] thermal conductivity
ν [m2/s] kinematic viscosity
ρ [kg/m3] density
σ [N/m] surface tension
Γ [m/s] radial aspect ratio
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Subscripts and Superscripts
0 evaluated at average temperature
c1, c2 boundary layer at the cold rod
DSD dynamic surface deformation
m polynomial fit in the middle of the liquid bridge
cold, hot hot and cold support rods
fs free surface
g gas phase
l liquid phase
k k-th iteration of the Newton method
min, max local minimum and local maximum of Bi
ref reference (non-dimensional temperature)
h boundary layer thickness on the hot rod
tc test chamber
gap annular gap between the liquid bridge surface and the test chamber wall

1 Introduction

When the interface between two immiscible fluids experiences a tangential temperature gradient, the resulting
variable surface tension leads to thermocapillary forces, which can drive the flow in the two phases (1). A natural
framework for thermocapillary flows are microfluidic systems, where surface forces become more important than
volume forces and buoyancy does not overshadow Marangoni stresses. This is the case, e.g., for small droplets
(2) or thin films (3), where the interfacial forces between two immiscible fluids play a key-role for the fluid flow.
Thermocapillary convection is also important in industrial processes which involve large temperature gradients,
e.g., welding (4), combustion (5) and crystal growth (6). For these reasons, much attention has been paid to
thermocapillary flows in simplified configurations such as thermocapillary liquid films (7), cavities (8; 9; 10),
annular pools (11) and liquid bridges (12).

Originally, the system of a liquid bridge has been proposed as a model for the floating-zone crystal-growth process
(13). Later, it became a paradigm for thermocapillary flows. The multiphase flow is crucially determined by
the heat transfer across the liquid–gas interface, because the driving force depends on the tangential temperature
gradient. Despite of the importance of the heat transfer, for the sake of computational economy, the flow is typically
modelled as a single-phase liquid flow, where an interfacial heat transfer is assumed in form of Newton’s law of
cooling with some ad hoc temperature distribution in the ambient gas (14; 15). The single-phase modeling limits
the computational cost, and the parameter space reduces to the non-dimensional groups for the liquid flow and a
few parameters characterizing the heat transfer to the ambient gas, often a constant Biot number only.

Even though the surrounding gas has a strong influence on the liquid flow and its stability (16; 17), most numerical
simulations and linear stability analyses have assumed Newton’s cooling law with constant Biot number (even
zero, i.e. adiabatic conditions) or a fixed given heat flux (15). We shall show that both these assumptions are too
simplistic to properly represent the heat transfer and the driving of the thermocapillary flow.

Starting from two-dimensional multiphase simulations, we aim at constructing a refined heat-transfer model in the
form of Newton’s cooling law. To take into account the thermal effect of the flow in the ambient gas the constant
Biot number is replaced by a Biot function which depends on the axial coordinate along the free surface. A new,
robust and physically motivated methodology is developed to derive this functional dependence. Moreover, the
improved Biot function is given in explicit form which allows to readily supply a single-phase solver with an
accurate thermal boundary condition.

In Sec. 2 the multiphase flow problem is defined mathematically; in Secs. 3 and 4 the numerical discretization and
the methodology to derive the model are explained. Section 5 presents the improved heat-transfer model and some
evidence for its robustness and accuracy is provided. Additional comments are given and conclusions are drawn in
Sec. 6.
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2 Problem Formulation

A droplet of an incompressible Newtonian liquid is suspended between two coaxial cylindrical rods of radiusR,
placed at a mutual distanced, forming a liquid bridge. The liquid has a densityρ and a temperature-dependent
kinematic viscosityν(T ) and thermal diffusivityκ(T ). The rods are differentially heated at constant temperatures
Tcold = T0−ΔT/2 andThot = T0+ΔT/2, respectively, whereT0 is the mean temperature andΔT the temperature
difference between the support rods. Due to the thermocapillary effect the temperature gradient along the free
surface of the liquid bridge induces a thermocapillary shear-stress which drives the flow along the free-surface
from the hot rod to the cold rod. Up to linear order, the temperature-dependent surface tensionσ(T ) reads

σ(T ) = σ0 − γ(T − T0), (1)

whereσ0 = σ(T0) is the surface tension at the mean temperatureT0 andγ = −∂σ/∂T |T=T0
the negative surface-

tension coefficient. Sinceγ > 0 is a positive constant for most liquid–gas combinations∂σ/∂T < 0 and the
surface tension decreases linearly with the surface temperature.

The liquid bridge is surrounded by an annular chamber space filled with a Newtonian gas (assumed incompressible)
with constant densityρg, kinematic viscosityνg and thermal diffusivityκg. The annular chamber has an outer
radiusRtc = R +Rgap and a heightdtc = dcold+ d+ dhot. The bounding walls are thermally insulating (see fig. 1).
In the absence of gravity, thermocapillary stresses at the liquid–gas interface represent the only driving of the flow.

Thot

Tcold

liquid gas

adiabatic

adiabatic

adiabatic

d

dhot

dcold

z

r

R Rgap

Figure 1: Sketch of the liquid bridge held in place by surface tension between the hot and the cold rod. The liquid
bridge is surrounded by an ambient gas confined to an adiabatic test chamber.

Velocity, length, time, pressure and temperature are scaled withγΔT/ρν0, d, dρν0/γΔT , γΔTd andΔT , respec-
tively (thermocapillary scaling). The resulting non-dimensional continuity, Navier–Stokes and energy equation for
the steady flow are

Re(u ∙ ∇u) = −∇p + ∇ ∙ (ν/ν0∇u) , (2a)

∇ ∙ u = 0, (2b)

Ma(u ∙ ∇θ) = ∇ ∙ (κ/κ0∇θ) , (2c)

whereν0 = ν(T0) andκ0 = κ(T0) are the reference kinematic viscosity and thermal diffusivity,x = (r, ϕ, z) and
t are polar space and time coordinates,u = (u, v, w) andp the velocity and pressure fields, andθ = (T −T0)/ΔT
is the reduced temperature. Two non-dimensional groups arise, the thermocapillary Reynolds number Re and the
Marangoni number Ma

Re=
γΔTd

ρν2
0

, Ma =
γΔTd

ρν0κ0
. (3)

For comparison with other work, the Prandtl number Pr= Ma/Re= ν0/κ0 is defined at the reference temperature.
The geometry is characterized by the four aspect ratios (see fig. 1)

Γ =
d

R
, Γtc =

d

Rtc
, Λhot =

d

dhot
, Λcold =

d

dcold
, (4)
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where, in the following, we fix the three aspect ratiosΓtc = d/Rtc = 0.1 and Λhot = Λcold = 1 such that
Λtc = 1 + Λhot + Λcold = 3, and varyΓ = 0.5, 0.66 and 1, which are values of common interest in the literature.

A major difficulty in solving (2) is the determination of the shapehfs(z) of the liquid–gas interface. Here we
assume a pinning of the interface at the sharp circular edges of the rods, i.e.hfs(z = ±1/2) = 1/Γ. Furthermore,
we consider the limit of asymptotically large mean surface tensionσ0, for which the capillary number Ca=
γΔT/σ0 → 0. Using this approximation is justified for silicone oil liquid bridges: An asymptotic analysis
of (18) has shown that the steady flow-induced interface deformations are typically smaller than 0.1% of the
radius of the liquid bridge (see also (19)). Oscillatory flow-induced deformations were measured by (20) to be
of the order of 0.1 microns. Thus, the dynamic oscillatory deformations were105 times smaller than the length
scaleh = 10 mm of the liquid bridge (see also (21; 22)). Taking the limit Ca→ 0, flow-induced (liquid and
gas) interfacial deformations are absent. Therefore, the interfacial shape is independent of the flow and can be
determined by solving the Young–Laplace equation (12). In the absence of gravity and for unit non-dimensional
volume of liquid

V =
∫ 1/2

−1/2

h2
fs(z)dz = 1, (5)

the liquid bridge is cylindrical, i.e.hfs = 1/Γ. The cylindrical shape of the liquid bridge is experimentally proven
to be a good approximation for silicone oil liquid bridges.

The bulk equations (2) are solved assuming axisymmetry (∂ϕ = 0) and closed by the boundary conditions. Along
the cold and hot support, no-slip and isothermal boundary conditions are enforced

hot rod: u = 0, θ = 1/2, (6a)

cold rod: u = 0, θ = −1/2, (6b)

whereas no-slip and adiabatic conditions are assumed at the walls of the test chamber

r = 1/Γtc: u = 0, ∂rθ = 0, (7a)

z = ±Λtc/2: u = 0, ∂zθ = 0. (7b)

Finally, imposing kinematic boundary conditions, balancing the stresses and the heat fluxes and imposing continu-
ity of velocity and temperature at the liquid–gas interface, respectively, yields

r = 1/Γ : u = 0, (8a)

(ν0/ν)∂zθ + ∂rw = (μg/μ(T ))∂rwg, (8b)

∂rθ = (κg/κ(T ))∂rθg (8c)

u = ug (8d)

θ = θg, (8e)

whereμg = ρgνg andμ(T ) = ρν(T ) are the dynamic viscosity of gas and liquid phase, respectively,wg is the
axial velocity in the surrounding gas andug andθg denote the velocity vector and the temperature in the gas phase,
respectively.

3 Numerical Methods

The mathematical problem defined in Sec. 2 admits axisymmetric steady state solutions which are computed by
means of the Newton–Raphson method

J
(
yk
)
∙ δy = −f

(
yk
)
, (9a)

yk+1 = yk + δy, (9b)

whereJ
(
yk
)

is the Jacobian of (2),y = (u, w, p, θ)T the solution vector,k enumerates the iteration step,f
(
yk
)

is the nonlinear residual andδy the solution increment between thek-th and the(k + 1)-th iteration.

Inserting (9b) in (2) and linearizing with respect toδy yields

∇ ∙ δu = −∇ ∙ uk, (10a)

Re
(
δu ∙ ∇uk + uk ∙ ∇δu

)
+ ∇δp −∇ ∙ (ν/ν0∇δu) = −Re

(
uk ∙ ∇uk

)
−∇pk + ∇ ∙

[
ν(T k)/ν0∇uk

]
,

(10b)

Ma
(
δu ∙ ∇θk + uk ∙ ∇δθ

)
−∇ ∙ (κ/κ0∇δθ) = −Ma

(
uk ∙ ∇θk

)
+ ∇ ∙

[
κ(T k)/κ0∇θk

]
, (10c)
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where the convective term has been linearized by

∇ ∙
(
uk+1uk+1

)
≈ −∇ ∙

(
ukuk

)
+ ∇ ∙

(
uk+1uk

)
+ ∇ ∙

(
ukuk+1

)
. (11)

Equation (10) is solved using the same grid, initial guesses and convergence criteria as in (23).

4 Heat Transfer Model

The numerical solution of the steady multiphase Navier–Stokes system ensures a full thermal and mechanical
coupling between the liquid and the gas phase. Hence, no additional models are required to determine the heat
transfer between the liquid bridge and the surrounding gas. Post-processing the flow fields allows to compute the
heat transfer across the interface. Withθ and∂rθ|l obtained from the numerical solution and evaluated at the free
surface, the heat exchange at the liquid–gas interface can be recast in a Newton’s cooling law

r = 1/Γ : Bi =
∂rθ|l

θ − θref
, (12)

where the cold rod temperatureθref = −1/2 is used as the reference temperature. Equation (12) uses a non-
standard definition of the Biot number, such that, if Bi> 0, andθ > θref, then∂rθ|l > 0. Equation (12) can be
understood as a definition of the local Biot number, or Biot function,

Bi(z) =
hg(z)d

λ
, (13)

whereλ is the heat conductivity of the liquid andhg(z) the heat-transfer coefficient of the gas. In this framework,
the Biot function not only depends onz, but also on all other governing parameters, i.e. Bi= Bi(z; Re, Pr, Γ, Prg,
Γtc, ...).

The classical Newton’s cooling law is based on a constant Biot number (Bi= 0 for adiabatic free surface). This
is a poor approximation to the actual heat transfer process. We aim at deriving a robust fit for Bi(z; Re, Pr =
28.5, Γ, Prg, ...) assuming air as surrounding gas (i.e. Prg = 0.71). Once the Biot function is known, (12) can be
interpreted as a boundary condition forθ in the framework of a single-phase flow model. Using the Biot function,
the single-phase model would yield almost the same flow and temperature field as the two-phase model, albeit with
much less numerical effort.
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Figure 2: Biot function forPr = 28.5, Γ = 0.5, Re= 300 and ambient air (full line). Power-law fits to Bi(z) in
the region of the thermal boundary layers at the hot and cold wall are shown as dashed, dotted and dashed–dotted
lines. The circles indicate the stationary points of Bi(z).

A typical Biot function is shown in fig. 2 (full line) forΓ = 0.5 and Re= 300. Owing to the high Prandtl number,
the temperature field in the liquid is subject to strong convective effects. The corresponding thermal boundary
layers on the cold and the hot wall are reflected by the sharp minimum and maximum of the Biot function near the
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edgesz = ±1/2. The dependence of the Biot function in the boundary layer region is well captured by power laws
(dashed, dotted and dashed–dotted lines in fig. 2). Moreover, the locations and the absolute values of the stationary
points of Bi(z) (see fig. 2) are well described by the functional dependence

{δcold, Bimin, δhot, Bimax} ≈ A0 + A1Re+ A2/ReA3 , (14)

whereδcold = zmin andδhot = 0.5−zmax are the distances from the cold and hot wall of the minimum and maximum
of the Biot function, respectively.Ai = αi +βiΓ are fit parameters which, to good approximation, depend linearly
onΓ within the rangeΓ ∈ [0.5, 1]. This is demonstrated in fig. 3.

Based on the typical behavior shown in fig. 2, the dependence of Bi(z) in the layers at the hot and cold rods are
represented by

z ∈ [zmax, 0.5] : Bi ≈ a0h + a1h(0.5 − z)a2h (15a)

z ∈

[
− 0.5 + zmin

2
, zmin

]

: Bi ≈ a0c1 + a1c1(0.5 + z)a2c1 (15b)

z ∈ [zmin, zmin + 0.1] : Bi ≈ a0c2 + a1c2(0.5 + z)a2c2 . (15c)

Adding these terms and including a polynomial of degree five to fit the intermediate behavior far away from the
edges (middle part of the Biot function, subscript m) yields the functional form of the fit for the Biot function

Bi = [a0h + a1h(0.5 − z)a2h ] +
2∑

j=1

[a0cj + a1cj(z + 0.5)a2cj ] +
5∑

i=0

aimzi, (16)

whereaih, aic1 andaic2 (i = 0, 1, 2) andaim (i ∈ [0, ..., 5]) are fit parameters. The constants can be collected
a0 = a0h + a0c1 + a0c2 + a0m, once the individual subregions have been fitted.

All coefficients are function of the aspect ratioΓ and the Reynolds number Re. By combining results from all
simulations, the functional dependence of the fitting coefficients onΓ and Re will be obtained. The functional
dependence (14) has been employed for fittingaih, aic1 and aic2, and the result is reported in table 1. Such
assumption is motivated by the ansatz for the fit of the stationary points of the Biot function. In order to achieve a
robust fit, which can also elucidate the boundary layer scaling of Bi(z), we follow a multistage approach.

In a first step only the power laws (15) for the boundary layers are determined. Each fit requires the determination,
by least squares, of three fit parameters. Since the fitting function is non-linear, a Newton method is employed to
find the solution of the non-linear system resulting from the least squares minimization. Given an initial guess for
the coefficients, the iteration is terminated when the absolute norm of the residuals of the fit coefficients is less
than10−8. To obtain a robust fit, the fit protocol follows four stages.

I) all three coefficients are obtained by (15) fitting Bi(z) for each combination ofΓ ∈ {0.5, 0.66, 1} and
Re∈ [30, 1500];

II) the coefficienta0∗ (where∗ ∈ {h, c1, c2}) is fitted by (14) and a successive fit operation is employed to
find the coefficientsαi andβi reported in table 1 (see fig. 4). Inserting the fit ofa0∗ in (15), the other two
coefficients are obtained fitting Bi(z) for each combination ofΓ ∈ {0.5, 0.66, 1} and Re∈ [30, 1500];

III) the coefficienta1∗ is fitted by (14) and a successive fit operation is employed to find the coefficientsαi and
βi reported in table 1 (see fig. 5). The fit ofa1∗ is substituted in (15) together with the fit ofa0∗. The last
coefficient is computed fitting Bi(z) for each combination ofΓ ∈ {0.5, 0.66, 1} and Re∈ [30, 1500];

IV) the coefficienta2∗ is fitted by (14) and a successive fit operation is employed to find the coefficientsαi and
βi reported in table 1 (see fig. 6).

Once all the fit parameters of the power laws have been determined, (16) is employed to determineaim in a single
step using the same least squares and Newton–Raphson method employed fora∗h, a∗c1 anda∗c2.
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Figure 3: Minimum, Bimin, and maximum, Bimax, of the Biot function Bi(z), and corresponding distance from the
cold and hot rod,δcold andδhot, respectively. Markers refer to simulation data:Γ = 0.5 (circles, full line), 0.66
(squares, dashed line) and 1 (triangles, dash-dotted line). The lines refer to least square fits.
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5 Results

The three successive fits corresponding to stages II, III, and IV, are demonstrated fora0c2(Γ, Re), a1c2(Γ, Re) and
a2c2(Γ, Re) in figs. 4, 5 and 6, respectively. No continuation method is employed for educating the guess ofa0∗,
a1∗ anda2∗ depending on their value at a previous Reynolds number. This explains the scatter ofa0∗, which is due
to an underdetermination of the non-linear system to fit (see fig. 4). Reducing the underdetermination of the system
by fixing a0∗ leads to a much smaller scatter in stages III and IV fora1∗ anda2∗ (see figs. 5 and 6, respectively).
As for the location and absolute value of the stationary points of the Biot function, also foraih, aic1 andaic2, the
fitting constantsAi are well approximated by a linear fit inΓ.

Table 1: Fit coefficientsAi = αi + βiΓ, aih, aic1 andaic2 are fitted with the ansatz (14).

a0h a1h a2h

α0 14.971 −14.089 0.00597
β0 0 −11.215 −0.0124
α1 −0.115 0.00353 −6.99 × 10−5

β1 0 −0.0016 2.86 × 10−5

α2 0 −2.277 0
β2 0 9.190 0
α3 0 −0.246 0
β3 0 0.163 0

a0c1 a1c1 a2c1

α0 −0.287 0 2.960
β0 −6.254 0 −27.306
α1 0 0 8.43 × 10−5

β1 0 0 −8.10 × 10−5

α2 0 0.743 2.787
β2 0 0.491 26.183
α3 0 0.587 0.0607
β3 0 2.861 −0.0348

a0c2 a1c2 a2c2

α0 −2.922 0.574 0.0301
β0 −47.389 54.748 0.0149
α1 0 −0.0014 2.70 × 10−6

β1 0 0.00410 9.25 × 10−6

α2 0 0 −14.204
β2 0 0 46.087
α3 0 0 1.079
β3 0 0 0.599

In the next step all constant coefficientsa0∗ are gathered ina0 and the remaining coefficientsaim for i = 1, ..., 5,
are determined by insertinga1h, a2h, a1c1, a2c1, a1c2 anda2c2 into (16). The coefficienta0 has been obtained by
means of a free fitting operation shown in fig. 7. A successive fit ofa0 is done using the ansatz (14) with onlyA0,1

and leads toA0 = 13.626 − 52.635Γ andA1 = −0.00297 − 0.00170Γ.

In order to make the polynomial fit more robust, the other coefficientsaim have been found by means of a con-
ditioned minimization of the least square distance as follows. Provided that the unconditioned fit foraim (where
i = 1, ..., 5) has been obtained for the lowest Reynolds number considered, Remin = 30, the fit coefficients at
higher Reynolds numbers are conditioned by[aim(Re) − aim(Remin) − Re/Remin + 1] ∈ [−1, 1]. The resulting
fitting coefficientsaim(Re, Γ) can be downloaded from
https://mega.nz/#!hQEmFIwY!9ybtrqWOqPd2NYYnafG0EpC5CeA3oJF5oB3DBUH1WKw or
http://www.ovgu.de/ifme/zeitschrift_tm/2019_Heft1/Fitting_Coefficients.zip .

Employing the multi-stage methodology described in Sec. 4, a robust and physically motivated fit is obtained to
model the Biot function for a wide range of thermocapillary Reynolds numbers and for all three aspect ratios of
our study. A comparison between the Biot function obtained by the fit and the Biot function resulting from the
multiphase numerical simulation shows a good agreement (fig. 8).

The importance of a robust heat-transfer model, which depends on the surrounding gas, is evident for numerical
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Figure 4: Fit of Bi(z) with respect toa0c2(Γ) (stage II,z ∈ [zmin, zmin + 0.1]) which is independent of Re (lines).
Shown are data forΓ = 0.5 (circles, full line), 0.66 (squares, dashed line) and 1 (triangles, dash-dotted line).
A0(Γ) is depicted as solid dots and the fit as a solid line in the side panel.
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Figure 5: Fit of the coefficienta1c2 resulting after stage II. The open markers refer to the fit of the Biot number
for z ∈ [zmin, zmin + 0.1] andΓ = 0.5 (circles), 0.66 (squares) and 1 (triangles) after thata0c2 has been fixed
as reported in table 1. The solid, dashed and dashed–dotted lines are the power-law fits employed to fita1c2 for
Γ = 0.5, 0.66 and 1, respectively.A0,1(Γ) are depicted as solid dots and the fits as a solid line in the side panels.
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Figure 6: Fit of the coefficienta2c2 resulting after stage III. The open markers refer to the fit of the Biot number
for z ∈ [zmin, zmin + 0.1] andΓ = 0.5 (circles), 0.66 (squares) and 1 (triangles) after thata0c2 anda1c2 have been
fixed as reported in table 1. The solid, dashed and dashed–dotted lines are the fits employed to fita2c2 for Γ = 0.5,
0.66 and 1, respectively.A0,1,2,3(Γ) are depicted as solid dots and the fits as a solid line in the side panels.
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Figure 7: Fit of the coefficienta0 = a0h +a0c1 +a0c2 +a0m. The open markers refer to the fit of the Biot number
for Γ = 0.5 (circles), 0.66 (squares) and 1 (triangles) after thata1h, a2h, a1c1, a2c1, a1c2 anda2c2 have been fixed
as reported in table 1. The solid, dashed and dashed–dotted lines are the fits employed fora0 for Γ = 0.5, 0.66 and
1, respectively.A0,1(Γ) are depicted as solid dots and the fits as a solid line in the side panels.
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Figure 8: Comparison between the Biot function obtained from the multiphase simulation (solid line) and the
corresponding fit obtained by the multi-stage approach of sec. 4 (solid line with full markers) for Pr= 28.5,
Re = 300, Γ = 0.5. The dashed, dotted and dashed–dotted lines indicate the power laws fits within the three
subranges.

simulations of the flow in thermocapillary liquid bridges and the onset of three-dimensional instabilities. The
primary goal of the model is to replace (8c) by a boundary condition (12) which only involves the liquid phase and
the Biot function. Since the viscous forces exerted by the gas on the interface can often be neglected (νg = 0) this
single-phase approach still leads to a reliable prediction of flow in the liquid bridge. The computational cost of a
single-phase solver is much cheaper (saving about70% for the present simulations cost) than the corresponding
multiphase solver employed.

To demonstrate the effectiveness of using the Biot function in combination with a single-phase solver we compare
the resulting free-surface velocity|wfs| employing different methods in fig. 9. The surface velocity obtained using
the Biot function (dots) much better approximates the reference result of the two-phase simulation (full line) than
the single phase solver using Bi= 0 (dashed line) or Bi= −0.2 (dashed–dotted line, value suggested by (24)). This
clearly demonstrates the superiority of the Biot-function approach over the use of a constant unknown Biot number.
The advantage is understood when inspecting a typical Biot function as in fig. 2: Only the regionz ∈ [−0.4, 0.4]
may perhaps be approximated by a constant Biot number. The sharp variation of Bi(z) in the boundary layer region
close to the hot and the cold walls, however, cannot be represented by Newton’s heat-transfer law with a constant
Biot number. The (false) modeling assumption of an adiabatic free surface leads to an increase and thinning of
the velocity peak at the cold wall and too low surface velocities near the hot rod. A similar trend is observed
for Bi = −0.2, even though the free-surface velocity compares slightly better with the multiphase simulation, in
particular, near the cold corner (fig. 9).
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Figure 9: Comparison of the free surface velocity|wfs| obtained by the multiphase solver (solid line), single-phase
adiabatic solver (dashed line), single-phase solver with Bi= −0.2 (dashed–dotted line) and single-phase solver
supplied by our heat transfer model (full markers) for Pr= 28.5, Re= 300, Γ = 0.5.

6 Discussion and Conclusions

A correlation for the space-resolved heat transfer across the free surface between a liquid bridge and the ambient
gas phase has been established. To that end fully-coupled, multiphase, axisymmetric simulations for a 2 cSt-
silicone-oil liquid bridge surrounded by air have been carried out for a generic adiabatic air chamber. The heat
transfer across the liquid–gas interface has been computed for 150 configurations varying the aspect ratioΓ of the
liquid bridge and the thermocapillary Reynolds number Re, i.e. the strength of the flow.

Based on the two-phase data computed, a heat transfer model has been proposed in form of Newton’s cooling law,
but with a space-dependent Biot number which was called Biot function Bi(z). The Biot function, obtained by a
multistage fit, well reproduces the characteristic strong variations of the heat transfer near the edges of the interface
which are caused by the thermal boundary layers in the flow. The shape of the Biot function Bi(z) near the walls
can be well represented by power laws. The resulting explicit fit compares very well with the heat transfer obtained
from multiphase simulations without any a priori heat-transfer modeling.

Additional accurate calculations of the steady axisymmetric flow forV = 1 have been carried out for(Γ, Re) ∈
{0.5, 1} × {30, 1500}, admitting dynamic, flow-induced surface deformations using the material properties of
2 cSt silicone oil. The calculations are based on the codeMaranStable briefly described in section 4.2 of (17).
In all four cases, the difference in the surface temperature when dynamic surface deformations are taken into
account as compared to when they are neglected was nowhere larger than3×10−3. Moreover, computing the Biot
function BiDSD(z) taking into account the dynamic surface deformations (DSD) for the above cases, the difference
|BiDSD(z) − Bi(z)| was always two orders of magnitude smaller than the confidence level of the fit used. These
tests confirm that dynamic free surface deformations can be safely neglected for the parameters investigated.

The correlation derived in form of a Biot function can be supplied as a boundary condition to any single-phase
solver. Corresponding single-phase simulations were shown to much better approximate the results of the fully
coupled multiphase solver than any Newton law using a constant Biot number. Beyond the practical advantages
of the present model to reduce the computational cost of multiphase solvers by equivalent single-phase solvers,
we expect that the use of a Biot function will contribute to clarify the asymptotic scaling of Bi(z) in the boundary
layer regions and help guiding experimental measurements of the heat transfer which are planned to be carried out
under microgravity conditions (25).

Future work should aim at extending the parametric study presented, including the effect of gravity forces which are
relevant for ground conditions, as the hydrostatic pressure does affect the shape of the liquid bridge. Furthermore,
other liquids, gases and chamber geometries might be of interest.
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